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Abstract: In this article, we developed the spinors connections from 

Schwarzschild metric and make use of the spinor connections in geodesics in 

order to obtain the equation of spinor in the vicinity of spherical star. The 

gravitational scalar potential for non-homogeneous spherical body was use to 

developed the magnetic field of different regions of some non-homogenous 

spherical bodies. 
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1.  Introduction  

In 1915, Albert Einstein developed his theory of general relativity, having earlier 

shown that gravity does influence light's motion. Only a few months later, Karl 

Schwarzschild found a solution to the Einstein field equations that describes the 

gravitational field of a point mass and a spherical mass (Schwarzschild, 1999) which 

shows how gravity affect photon and other mass. 

The motion of particle and photon around gravitational field has been a progressive 

unfolding mystery. The Planetary equations of motion and equations of motion of photons 

in the vicinity of spheroids have been derived by Chifu and his equations are having 

additional spheroidal terms not found in Schwarzschild’s space-time (Chifu et al., 2008; 

Chifu & Howasu, 2008; Chifu & Lumbi, 2008). Also Bulus Timothy developed the 

explicit equations of test particles of non-zero mass; test particles along the equatorial 

plane and relativistic equation of photon in the vicinity of an ellipsoidal star is differential 

equation of motion (Bulus, 2022).  

In most articles and research work done by many. Those work focus on the motion of 

either photon or point mass which moves around massive bodies or strong gravitational 

field. This article is going to provide the equation of motion of spinor in gravitational 

field.  

A planetary magnetic field, or the absence of such a field, informs us about the internal 

structure of a body and its thermal evolution. Together with the gravitational field, the 

magnetic field provides a window into the interiors of bodies that we can only probe from 
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a distance. The magnetic fields recorded and preserved in the crusts of planets and 

satellites also provide a window into the histories of the bodies. (Schubert & Soderlund, 

2011). The Earth and most of the planets in the Solar system, as well as the Sun and other 

stars, all generate magnetic fields through the motion of electrically conducting fluids 

(Weiss, 2002). The idea given by Weiss, Jordan and Finlay clearly shows that magnetic 

field varies from one region to another, whereas most researchers model the earth and 

other planets to be homogenous in order to determine their magnetic field.    

This article also developed the equation that is used to determine the magnetic field of 

non-homogeneous spherical bodies with three regions and also investigate the magnetic 

of some planets. 

2.  Theoretical Analysis 

The Schwarzschild’s metric is the solution of Einstein’s field equations exterior to a 

static homogenous spherical body (Gu, 2021) given as: 

𝑔𝜇𝑣 = 𝑑𝑖𝑎𝑔( −𝐴(𝑟), −𝑟2, −𝑟2𝑠𝑖𝑛2𝜃, 𝐵(𝑟))     (1) 

The affine connections can be determine as follows 

The metric tensors are given as  

𝑔44 = 𝐵(𝑟),   𝑔11 = −𝐴(𝑟), 𝑔22 = −𝑟2,   𝑔33 = −𝑟2𝑠𝑖𝑛2𝜃    (2) 

𝑔44 =
1

𝐵(𝑟)
,   𝑔11 = −

1

𝐴(𝑟)
,     𝑔11 = −

1

𝑟2 ,    𝑔11 = −
1

𝑟2𝑠𝑖𝑛2𝜃
      (3) 

With A and B as yet undetermined functions of r. Note that if A or B is equal to zero 

at some point, the metric would be singular at that point. On each hyper surface of 

constant t, constant 𝜃and constant ф (i.e, on each radial line), 𝑔11  and 𝑔44 should only 

depend on r (by spherical symmetry). Hence 𝑔11  and 𝑔44 are functions of a single 

variable. 

The relation for affine connection is given as:  

𝛤𝜇𝑣
𝛼 =

1

2
𝑔𝛼𝛽[𝑔𝛽𝜇,𝑣 + 𝑔𝑣𝛽,𝜇 − 𝑔𝜇𝑣,𝛽]      (4) 

Set 𝛼 = 1,   𝜇 = 1,   𝑣 = 1,   𝛽 = 1   

𝛤11
1 =

1

2
𝑔11[𝑔11,1 + 𝑔11,1 − 𝑔11,1]      (5) 

Substituted equation (2) and (3) into (4) 

 𝛤11
1 = −

1

2

1

𝐴(𝑟)
[𝜕𝑟(−𝐴(𝑟)) + 𝜕𝑟(−𝐴(𝑟)) − 𝜕𝑟(−𝐴(𝑟))] 

When the above equation is simplified we have  

𝛤11
1 =

𝐴ˈ

2𝐴
         (6) 

Apply similar approach to that of equation (2) and (3) for other values of 𝛼,   𝜇, 𝑣 𝑎𝑛𝑑   𝛽  

we obtain the following affine connections:  

𝛤11
1 =

𝐴ˈ

2𝐴
         (7) 

𝛤22
1 = −

𝑟

𝐴
        (8) 

𝛤33
1 = −

𝑟𝑠𝑖𝑛2𝜃

𝐴
        (9) 

𝛤33
1 = −

𝐵ˈ

2𝐴
         (10) 
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𝛤12
2 = 𝛤21

2 =
1

𝑟
         (11) 

𝛤33
2 = −𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃       (12) 

𝛤23
3 = 𝛤32

2 = 𝑐𝑜𝑡𝜃        (13) 

𝛤14
4 = 𝛤41

4 =
𝐵ˈ

2𝐵
        (14) 

Determination of the Spinor connection in curved spacetime   

In other to determine the spinor connection in spacetime. We shall input affine 

connection and Schuster-Wilson-Backett relation into Spinor connection.  

The relation for spinor connection is (Gu, 2021) given as: 

𝛤𝜇𝑣𝛼
=

1

4
𝛾𝑣(𝜕𝜇𝛾𝑣 − 𝛤𝜇𝑣

𝛼 𝛾𝛼)        (15) 

Schuster-Wilson-Backett relation: 

𝛾𝜇 = 𝛾𝑣 = 𝛾𝛼 = (
𝛾4

√𝐵
,

𝛾1

√𝐴
,

𝛾2

𝑟
,

𝛾3

𝑟𝑠𝑖𝑛𝜃
)     (16) 

𝛾𝜇 = 𝛾𝑣 = 𝛾𝛼 = (
√𝐵

𝛾4
,

√𝐴

𝛾1
,

𝑟

𝛾2
,

𝑟𝑠𝑖𝑛𝜃

𝛾3
)     (17) 

By substituting (2), (3), (16) and (17) into (15) we obtain the following spinor connections 

𝛤111
=

1

8
(

1

√𝐴𝐴ˈ
−

𝐴ˈ

𝐴
)        (18) 

𝛤221
=

1

4√𝐴

𝛾2

𝛾1         (19) 

𝛤331
=

1

4√𝐴

𝛾3

𝛾1 𝑠𝑖𝑛𝜃        (20) 

𝛤441
=

𝐵ˈ√𝐴

8𝐴√𝐵

𝛾4

𝛾1        (21) 

𝛤212
= −

1

4√𝐴

𝛾1

𝛾2       (22) 

𝛤221
=

1

4𝑟
(1 − 1) = 0        (23) 

𝛤332
=

1

4

𝛾3

𝛾2 𝑐𝑜𝑠𝜃        (24) 

𝛤332
=

1

4
(𝑐𝑜𝑡𝜃 − 𝑐𝑜𝑡𝜃) = 0       (25) 

𝛤323
= −

1

4

𝛾2

𝛾3 𝑐𝑜𝑡𝜃𝑠𝑖𝑛𝜃       (26) 

𝛤144
=

1

8
(

1

√𝐵ˈ
−

𝐵ˈ

𝐵
)        (27) 

𝛤414
=

1

8

𝛾1

𝛾4

𝐵ˈ

√𝐴𝐵
        (28) 

3.  The Motion of Spinor in the Vicinity of Spherical Star 

Geodesics  

The General Relativistic equation of motion for particles of non-zero rest mass in a 

gravitational field (Chifu et al., 2008; Chifu & Howasu, 2008; Chifu & Lumbi, 2008) is 

given as; 

𝑑2𝑥𝜎

𝑑𝜏2 + Γ𝛼𝜆
𝜎 𝑑𝑥𝛼

𝑑𝜏

𝑑𝑥𝜆

𝑑𝜏
= 0       (29) 

Where 𝜏 is a parameter to be determine 

Therefore, the equation of motion are given explicitly as follows; 
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When 𝜎 = 1, 𝑥1 = 𝑐𝑡, 𝑥2 = 𝑟,𝑥3 = 𝜃, 𝑥4 = 𝜙 

The General relativistic equation of motion for particles of non-zero rest mass in a 

gravitational field (Chifu et al., 2008; Chifu & Howasu, 2008; Chifu & Lumbi, 2008) is 

given as (29) can be given another form by replacing affine connection with spinor 

connection. 

𝑑2𝑥𝜎

𝑑𝜏2 + 𝛤𝜎𝛼𝜆

𝑑𝑥𝛼

𝑑𝜏

𝑑𝑥𝜆

𝑑𝜏
= 0     (30) 

Setting 𝜎 = 1 

𝑑2(𝑐𝑡)

𝑑𝜏2
+ 𝛤111

𝑑𝑥1

𝑑𝜏

𝑑𝑥1

𝑑𝜏
+ 𝛤144

𝑑𝑥4

𝑑𝜏

𝑑𝑥4

𝑑𝜏
= 0   (31) 

𝑑2(𝑐𝑡)

𝑑𝜏2
+ 𝛤111

𝑑(𝑐𝑡)

𝑑𝜏

𝑑(𝑐𝑡)

𝑑𝜏
+ 𝛤144

𝑑𝜙

𝑑𝜏

𝑑𝜙

𝑑𝜏
= 0   (32) 

𝑐�̈� + 𝛤111
𝑐2�̇�2 + 𝛤144

�̇�2 = 0    (33) 

Substituting (18) and (27) into (31), we get 

              𝑐�̈� +
1

8
(

1

√𝐴𝐴ˈ
−

𝐴ˈ

𝐴
) 𝑐2�̇�2 +

1

8
(

1

√𝐵ˈ
−

𝐵ˈ

𝐵
) �̇�2 = 0    (34) 

Following same as the (34) we get 

�̈� + 𝑐 (
1

4√𝐴

𝛾2

𝛾1) �̇��̇� − 𝑐 (
1

4√𝐴

𝛾1

𝛾2) �̇��̇� = 0     (35) 

�̈� + 𝑐 (
1

4√𝐴

𝛾3

𝛾1 𝑠𝑖𝑛𝜃) �̇��̇� + (
1

4√𝐴

𝛾3

𝛾2 𝑐𝑜𝑠𝜃) �̇��̇� − (
1

4√𝐴

𝛾2

𝛾3 𝑐𝑜𝑠𝜃) �̇��̇� = 0   (36) 

�̈� +
𝐵ˈ√𝐴

8𝐴√𝐵

𝛾4

𝛾1 �̇��̇� +
1

8

𝛾1

𝛾4

𝐵ˈ

√𝐴𝐵
�̇��̇� = 0      (37) 

Hence, the equations (34), (35), (36) and (37) are the explicit equations of motion of 

spinors in the vicinity of spherical stars 

4.  The Equation of Magnetic Field of Non-Homogeneous Spherical Bodies of 

Three Regions  

 The Schwarszchild’s Metric 

𝑑𝑠0
2 = 𝑑𝑡2 − 𝑟2𝑑𝜃2 − 𝑟2𝑠𝑖𝑛2𝜃𝑑𝑠2 − 𝑑𝑟2    (38) 

The constitutive relations can be written as  

𝐻𝜃 =
𝛹

𝜇0𝑟2 𝐵𝜃,   𝐻𝜑 =
1

𝛹𝜇0

𝐵𝜑

𝑟2𝑠𝑖𝑛2𝜃
, 𝐻𝑟 =

𝐵𝑟

𝜇0𝑟4𝑠𝑖𝑛4𝜃
, 𝐻𝑥0

=
1

𝛹𝜇0
𝐵𝑥0   (39) 

𝐵𝜃 =
1

𝛹
𝜇0𝑟2𝐻𝜃, 𝐵𝜑 = 𝛹𝜇0𝑟2𝑠𝑖𝑛2𝜃𝐻𝜑, 𝐵𝑟 = 𝜇0𝑟4𝑠𝑖𝑛4𝜃𝐻𝑟,𝐵𝑥0 = 𝛹𝜇0𝐻𝑥0

, (40) 

By substituting the Vector potential F with the electromagnetic field tensor  𝐺𝜇𝛽 (Gu, 

2021) 

∇. 𝐺𝜇𝛽 =  
1

𝑟2

𝜕

𝜕𝑟
{𝑟2 (1 +

2

𝑐2 𝑓)
−

𝟏

𝟐
𝐵𝑟} +

1

𝑟𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
𝐵𝜃 +

1

𝑟2𝑠𝑖𝑛2𝜃

𝜕

𝜕φ
𝐵φ  

                  +
𝜕

𝜕𝑥0 {(1 +
2

𝑐2 𝑓)
−

𝟏

𝟐
𝐵𝑥0}    =  

4𝜋

𝑐
𝑗𝜷     (41) 

Substituting equation (39) into (41) and simplifying we get  

{(1 +
2

𝐶2 𝑓)
−𝟏

(20𝜇0𝑟2𝑠𝑖𝑛4𝜃𝐻𝑟)}       =   
4𝜋

𝑐
𝑗𝛽    (42) 

Putting  𝐵𝑟 = 𝜇0𝑟4𝑠𝑖𝑛4𝜃𝐻𝑟    into (41) and simplifying we will obtain  𝐵𝑟 as 
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                                    𝐵𝑟 =
2𝜋𝑟2

5𝑐3 𝑓(𝑟)                       (43) 

The Newton’s Dynamical Gravitational Scalar Potential for non- homogeneous 

bodies  

Newton’s dynamical gravitational scalar potential for the three regions of non static 

homogeneous spherical body is given as (Minister, 2015): 

𝑓1(𝑟) = 2𝜋𝐺[𝑅1
⬚(𝜌1 − 𝜌2) − 𝜌2𝑅2

2] +
2

3
𝜋𝐺𝜌1𝑟2 ;  𝑟 < 𝑅1   (44) 

𝑓2(𝑟) =
4

3
𝜋𝐺𝑅1

2(𝜌1 − 𝜌2)
1

𝑟
+

2

3
𝜋𝐺𝜌2𝑟2 − 2𝜋𝐺𝜌2𝑅2

2 ;  𝑅1 < 𝑟 < 𝑅2    (45) 

𝑓3(𝑟) =
4

3
𝜋𝐺[𝜌2(𝑅1

2 − 𝑅2
⬚) − 𝜌1𝑅1

⬚]
1

𝑟
 ;  𝑟 > 𝑅2                                (46) 

 Substituting equation (44) into (43) we get 

𝐵𝑟 =
2𝐺𝜋2𝑟2

5𝑐3
{[𝑅1

⬚(𝜌1 − 𝜌2) − 𝜌2𝑅2
⬚] +

2

3
𝜌1𝑟2} 𝑟 < 𝑅1   (47) 

Substituting equation (45) into (43) we get  

𝐵𝑟 =
2𝐺𝜋2𝑟2

5𝑐3
{

2

3
𝑅1

2(𝜌1 − 𝜌2)
1

𝑟
+

𝜌2

3
𝑟2 − 𝜌2𝑅2

⬚} 𝑅1 < 𝑟 < 𝑅2   (48) 

Substituting equation (46) into (43) we get  

𝐵𝑟 =
2𝐺𝜋2𝑟

5𝑐3
{

2

3
[𝜌2(𝑅1

2 − 𝑅2
⬚) − 𝜌1𝑅1

⬚]}  𝑟 > 𝑅2    (49) 

Equations obtained as (47), (48) and (49) are the equations for the magnetic fields of three 

regions of planets. 

𝑅1is the radius of the core 

𝑅2is the radius of the upper layer  

𝜌1is the density of the core 

𝜌2is the density of the upper 

𝜌gis mass density of planets with, SI unit kg.m-3 

𝑐  is the speed of light given as 𝑐 = 2.9979 × 108𝑚𝑠−2 

𝑟  is the radius of planets 

𝑓(𝑟) is the gravitational scalar potential that depend of r 

G is the universal gravitational constant𝐺 = 6.67 × 10−11𝑁𝐾𝑔2𝑚−2 

The magnetic field of planet Earth  

𝑅1= 3486km, 𝑅2= 2885km, 𝜌1= 12g/cm3 𝜌2= 3.816g/cm3 

Radius of the earth 𝑟⬚ = 6.371 × 106m 

G is the universal gravitational constant 𝐺 = 6.67 × 10−11𝑁𝐾𝑔2𝑚−2 

𝑐 is the speed of light given as 𝑐 = 2.9979 × 108𝑚𝑠−2 

1Gauss = 10-4Tesla 

By proper substitution of all parameters in (47), (48) and (49) will give the values found 

in the below table 

Table 1. The magnetic field of the planets 

Planets Magnetic field for 

region 1 

(𝐵𝑟1
)nT 

Magnetic field for 

region 2 

(𝐵𝑟2
)nT 

Magnetic field for 

region 3 

(𝐵𝑟3
)nT 
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5.  Conclusion  

The Equation (47), (48) and (49) gave the magnetic field of the three regions of planets. 

The equation of magnetic field obtained from this research work contained some addition 

terms such as 𝜌1, 𝜌2, 𝑅2, 𝑅1 which account for densities and radius of the regions of 

planets. 

The Earth and most of the planets in the Solar system, as well as the Sun and other 

stars, all generate magnetic fields through the motion of electrically conducting fluids 

(Schwarzschild, 1999). Its field originates in its core. This is a region of iron alloys 

extending to about 34000km (Jordan, 1979). The Earth magnetic field at the surface 

ranges from 25𝜇𝑇 to 65𝜇𝑇 (Finlay & Constable, 2010). Also magnetic field of the 

massive fields is generally associated with small-scale features and often varies markedly 

over distances of a few kilometres. 

The computer simulation of Earth’s field in a period of normal polarity between 

reversal. The lines represent magnetic field lines, blue when the field points towards the 

center and yellow when away. The rotational axis of Earth’s is centered and vertical. Then 

clusters of lines are within Earth’s core. 

 

 

 

 

 

 

 

Figure 1 (Glatzmaier, 2014). The Earth’s field in a period of normal polarity 

The variation in the magnetic field at different regions of planets as suggested by 

Weiss, Finlay, Gary and others. And couple with clusters nature of the magnetic field at 

the core as shown in figure 1 clearly suggest that the equation obtained from this article 

as (47), (48) and (49) is the appropriate equation when dealing with non-homogeneous 

spherical bodies. 

The results obtained in this paper have paved the way for the study of motion of spinors 

in the vicinity of spherical bodies and also this paper can be used to determine the 

magnetic field of the different regions of other planetary bodies that are non-

homogenoeus in nature. The immediate consequences of the results obtained in this paper 

are as follows: 

1) The spinors connections for other planetary bodies like elliptical and oblade 

spheroidal can be determine. And afterward the equation of motion of spinors 

around such body can be determined.  

Earth 128.8449 20.4863 1.9254 x 10-6 

Jupiter 1191266.3760 131037.2995 7.4556 x 10-4 

Moon 2.3807 0.0576 5.7995 x 10-8 
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2) The gravitational scalar potential for non-homogeneous elliptical bodies can also 

be obtained and thereby the magnetic field around such planet or bodies could be 

obtained.   
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