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Abstract: The study investigated Einstein Curvature Tensor 𝐺𝜇𝑣  using 

Schwarzschild Metric Tensor and the Howusu Metric Tensor. It involved the 

comparison between Einstein Curvature Tensor 𝐺𝜇𝑣 derived from the 

Howusu Metric Tensor and Einstein Curvature Tensor derived from the 

Schwarzschild Metric Tensor. Results of the analysis indicated that unlike 

the Schwarzschild 𝐺𝜇𝜈,  the Howusu 𝐺𝜇𝜈 gave a non zero answer.Comparing 

the  Howusu 𝐺𝜇𝜈  and the Schwarzschild 𝐺𝜇𝜈,they behaved differently as 

𝑟 → 0; thus, as 𝑟 → 0, Howusu 𝐺𝜇𝜈 → ∞  while Schwarzschild 𝐺𝜇𝜈 → 0 but 

as 𝑟 → ∞, the two Metric Tensors were observed to be averagely similar. 

Keyword: Einstein Curvature Tensor, Schwarzschild Metric Tensor, 

Howusu Metric Tensor  

1.  Introduction 

The assumption was that Riemannian geometry was rather more general than the 

Euclidean geometry after the German mathematician, George Riemann published his 

geometry for space-time known as Riemannian geometry in 1854 (Howusu, 2009). The 

belief was that the Riemannian geometry has the potential of providing a more general 

foundation for theoretical physics (Howusu & Uduh, 2003; Howusu, 2013). However, 

the problem with the Riemannian geometry was the fact that it was based on an 

unknown metric tensor, and therefore, its exploitation and possible applications to 

theoretical physics eluded the world (Howusu 2007). Einstein tried to solve this 

problem in his contribution to classical mechanics: Einstein’s Geometrical Gravitational 

Field Equations (Einstein, 1905; Einstein, 1915).  

The first major breakthrough in developing the Einstein’s Geometrical Theory of 

classical mechanics in the gravitational field known as General Relativity was achieved 

in 1916 by Schwarzchild (Schwarzschild, 1916) when he introduced a metric tensor 

called the Schwarzchild metric  for all gravitational fields due to static homogeneous 

spherical distribution of mass.(Schwarzschild, 1916; Heinzle & Steinbauer, 2002) In 

spite of the great fame since 1915, Einstein’s Geometrical Gravitational field equations 
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cannot be applied to generate any natural metric tensor for the gravitational fields due to 

any distribution of mass in nature. 

In the year 2009, Howusu (Howusu, 2009) came up with a new metric tensor which 

he claims to be valid for gravitational field which is regular everywhere, continues 

everywhere including all boundaries, continues normal derivative everywhere including 

all boundaries and its reciprocal decreases at infinite distance from source in his book 

entitled: ‘Riemannian Revolution in mathematics and Physics I” based upon the 

following criteria (Howusu, 2009): 

1) It should contain the phenomenon of gravitational space contraction for 

which there is experimental evidence. 

2) It should contain the phenomenon of gravitational time dilation for which 

there is experimental evidence. 

3) It should contain the phenomenon of singularity in the gravitational field in 

nature for which there is experimental evidence. 

4) It should reduce to the pure Euclidean metric tensor in all space-times 

without gravitational field in all orthogonal curvilinear coordinates. 

5) It should contain the Schwarzschild metric tensor in the space-times exterior 

to all static homogenous spherical distributions of mass in all orthogonal 

curvilinear coordinates. 

6) It should make the Riemann’s Tensorial Energy for all particles of non-zero 

rest masses in all gravitational fields to reduce to the corresponding pure 

Newton’s Lagrangian energy in the limit of 𝑐𝑜, in the orthogonal curvilinear 

coordinates. 

7) It should make the three space parts of the Riemann’s Tensorial Geodesic 

equation of motion for particles of non-zero rest masses in all gravitational 

field in nature, in all orthogonal curvilinear coordinates to reduce to the 

corresponding pure Newton’s equation of motion in limit of 𝑐𝑜. 

In this paper, we constructed a solution to Einstein curvature tensor using the 

Howusu metric tensor and compared it with the already established results from the 

Schwarzschild metric tensor, if the Howusu Metric Tensor can conveniently replace the 

Schwarzschild Metric Tensor. However, the scope has been limited to Spherical 

coordinates. The summarization of the Schwarzschild metric can be:   

 𝑔µ𝑣 =

(

 
 
−(1 −

2𝑀

𝑟
)

0
0
0

0
1

(1−
2𝑀

𝑟
)

0
0

0
0
𝑟2

0 

0
0
0

𝑟2𝑠𝑖𝑛2𝜃
)

 
 

 (1)  

where M is the mass of the object and r is the distance away from the object (Kumar, 

2009; Obaje, 2022) and the Howusu metric tensor: 

𝑔𝜇𝜈 =

(

  
 

−𝑒𝑥𝑝(2𝐺𝑀
𝑐2𝑟
) 0 0 0

0 𝑒𝑥𝑝(−2𝐺𝑀

𝑐2𝑟
) 0 0

0 0 𝑟2𝑒𝑥𝑝(−2𝐺𝑀

𝑐2𝑟
) 0

0 0 0 𝑟2𝑠𝑖𝑛2𝜃𝑒𝑥𝑝(−2𝐺𝑀

𝑐2𝑟
))

  
 
  (2) 
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where c is the speed of light; G is the universal constant of gravitation; M is the mass of 

object and r is the distance away from the object (Howusu, 2012; Obaje, 2022) 

2.  MATHEMATICAL METHOD 

The Einstein curvature tensor used to determine the space-time curvature of objects; 

the tensor: 

 𝐺𝜇𝜈 = 𝑅𝜇𝜈 −
1

2
𝑔𝜇𝜈𝑅                                                 (3) 

Where   𝐺𝜇𝜈 is the Einstein Curvature Tensor,  𝑔𝜇𝜈   is the metric tensor,  𝑅𝜇𝜈  is the 

Ricci Curvature Tensor and R is the Ricci Scalar. The Christoffel symbols, Riemannian 

Curvature Tensor, Ricci Curvature tensor, Ricci Scalar, and the Einstein Curvature 

tensor were all derived from the Howusu metric tensor (Obagboye & Howusu, 2013; 

Abalaka & Ekpe, 2021). 

2.1.  Christoffel Symbol 

The formula below gave rise to the Christoffel Symbol (Koffa & Omonile, 2016; 

Obaje, 2020):   

                       𝑔αδГ𝛽𝛾
𝛿 =

1

2
(
𝜕𝑔𝛼𝛽

𝜕𝑥𝛾
+
𝜕𝑔𝛼𝛾

𝜕𝑥𝛽
−
𝜕𝑔𝛽𝛾

𝜕𝑥𝛼
),                        (4) 

the non-zero terms are: 

 Г10
0 = Г01

0 =
𝐺𝑀

𝑐2𝑟2
                                                        (5) 

 Γ00
1 = − 

𝐺𝑀

𝑐2𝑟2
                                                           (6) 

 Г11
1 = −

𝐺𝑀

𝑐2𝑟2
                                                            (7) 

 Г22
1 =

𝐺𝑀

𝑐2
− 𝑟                                                            (8) 

 Г33
1 =

𝐺𝑀

𝑐2
𝑠𝑖𝑛2𝜃 − 𝑟𝑠𝑖𝑛2𝜃              (9) 

 Г21
2 =

1

r
−

𝐺𝑀

𝑐2r2
                                                          (10) 

 Г33
2 = −cos 𝜃 sin 𝜃       (11) 

 Г13
3 =

1

𝑟
−

𝐺𝑀

𝑐2r2
                                                          (12) 

 Г23
3 =

cos𝜃

sin𝜃
= cot 𝜃                                      (13) 

2.2.  Riemannian Curvature Tensor 

The formula below can give rise to the Riemannian Curvature Tensor (Obaje & 

Ekpe, 2021): 

 𝑅𝜇𝛼𝜈
𝛼 = Г𝜇𝜈,𝛼

𝛼 − Г𝜇𝛼,𝜈
𝛼 + Г𝛽𝛼

𝛼 Г𝜇𝜈
𝛽
− Г𝛽𝜈

𝛼 Г𝜇𝛼
𝛽

           (14) 

In writing out all the non-zero terms of the Riemann curvature tensor, note that the list 

involved only half the amount of Riemann tensor because of the following property: 

 𝑅𝜇𝛼𝜈
𝛼 = −𝑅𝜇𝜈𝛼

𝛼                             (15)         

 𝑅101
0 = −

2𝐺𝑀

𝑐2𝑟3
                                                         (16)   

 𝑅202
0 =

𝐺𝑀

𝑐2𝑟
−
𝐺2𝑀2

𝑐4𝑟2
                                      (17)         
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 𝑅303
0 =

𝐺𝑀

𝑐2𝑟
𝑠𝑖𝑛2𝜃 −

𝐺2𝑀2

𝑐4𝑟3
𝑠𝑖𝑛2𝜃                      (18)      

 𝑅010
1 =

2𝐺𝑀

𝑐2𝑟3
                                                     (19)  

 𝑅212
1 = 1 −

𝐺𝑀

𝑐2𝑟
                       (20)   

 𝑅313
1 = −

𝐺𝑀𝑠𝑖𝑛2𝜃

𝑐2𝑟
            (21) 

          𝑅020
2 =

𝐺𝑀

𝑐4𝑟3
−
𝐺2𝑀2

𝑐4𝑟4
                                                      (22) 

     𝑅121
2 = −

𝐺𝑀

𝑐2𝑟3
                                                    (23) 

   𝑅323
2 =

2𝐺𝑀𝑠𝑖𝑛2𝜃

𝑐2𝑟
−
𝐺2𝑀2𝑠𝑖𝑛2𝜃

𝑐4𝑟2
− 𝑐𝑜𝑠2𝜃                         (24) 

         𝑅030
3 =

𝐺𝑀

𝑐4𝑟3
−
𝐺2𝑀2

𝑐4𝑟4
             (25) 

                                                       𝑅131
3 = −

𝐺𝑀

𝑐2𝑟3
                                                     (26) 

                                       𝑅232
3 = −

𝐺2𝑀2

𝑐4𝑟2
                                                  (27) 

2.3.  The Ricci Curvature Tensor  

To derive the Ricci tensor, which is a contraction of the Riemann tensor, we use 

(Kumar, 2009; Obaje et al, 2022a): 

 𝑅𝜇𝜈 = 𝑅𝜇𝛼𝜈
𝛼    (28) 

Where the explicit expression of 𝑅𝜇𝜈 is: 

 𝑅𝜇𝜈 = 𝑅𝜇0𝜈
0 + 𝑅𝜇1𝜈

1 + 𝑅𝜇2𝜈
2 + 𝑅𝜇3𝜈

3    (29) 

Thus, the below conveniently expresses the components of the Ricci curvature tensor: 

 𝑅00 =
2GM

c2r3
−
2G2M2

c4r4
+
2GM

c4r3
                           (30) 

                                           𝑅11 = −
4GM

c2r3
                                                           (31) 

 𝑅22 = 1 −
2G2M2

c4r2
             (32) 

  𝑅33 =
2GMsin2θ

c2r
−
G2M2sin2θ

c4r3
−
G2M2sin2θ

c4r2
− cos2θ        (33)  

2.4.  The Ricci Scalar 

The calculation of the Ricci curvature scalar, R, using the formula below will give 

the Einstein Tensor (Obaje et al, 2022b): 

 𝑅 = 𝑔𝜇𝜈𝑅𝜇𝜈 (34) 

where  𝑔𝜇𝜈 is the contravariant metric tensor; and the inverse of the Howusu Metric 

Tensor is: 

 𝑔00 = −𝑒𝑥𝑝(2𝐺𝑀
𝑐2𝑟
)  (35) 

 𝑔11 = 𝑒𝑥𝑝(−2𝐺𝑀

𝑐2𝑟
)  (36)  

 𝑔22 =
1

𝑟2
𝑒𝑥𝑝(−2𝐺𝑀

𝑐2𝑟
)  (37) 

 𝑔33 =
1

𝑟2𝑠𝑖𝑛2𝜃
𝑒𝑥𝑝(−2𝐺𝑀

𝑐2𝑟
)  (38) 

 𝑔𝜇𝜈 = 0, otherwise  (39) 

https://dx.doi.org/10.20961/jphystheor-appl.v7i2.77212


Journal of Physics: Theories and Applications E-ISSN: 2549-7324  /  P-ISSN: 2549-7316    

J. Phys.: Theor. Appl.  Vol. 7 No. 2 (2023) 214-221 doi: 10.20961/jphystheor-appl.v7i2.77212 

 

V. O. Obaje  219 

 

Using the summation convention with the Ricci Scalar, one obtains the value of each 

coefficient in the expansion: 

 𝑅 = 𝑔00𝑅00 +⋯+ 𝑔
11𝑅11 +⋯+ 𝑔

22𝑅22 +⋯+ 𝑔
33𝑅33     (40) 

𝑅 =  exp (
2GM

c2r
) [
2G2M2

c4r4
−
2GM

c2r3
−
2GM

c4r3
 ] +  exp (−

2GM

c2r
) [−

2GM

c2r3
+

1

𝑟2
−
3G2M2

c4r4
−
G2M2

c4r5
−

cot2θ

r2
]         (41) 

2.5.  The Einstein Curvature Tensor 

Now all the components necessary to solve the Einstein tensor have been determined. 

The Ricci tensor 𝑅𝜇𝜈 is known alongside the Metric tensor 𝑔𝜇𝜈 (Howusu Metric Tensor) 

and the Ricci scalar R. Having obtained all these values, writing, and solving of the 

Einstein curvature tensor could be as follows:   

 𝐺𝜇𝜈 = 𝑅𝜇𝜈 −
1

2
𝑔𝜇𝜈𝑅  (42) 

To obtain: 

 𝐺00 =
GM

c2r3
−
G2M2

c4r4
+

GM

c4r3
−  exp (−

4GM

c2r
) [

GM

c2r3
−

1

2𝑟2
+
3G2M2

2c4r4
+
G2M2

2c4r5
+
cot2θ

2r2
]   (43) 

     𝐺11 = −exp (
4GM

c2r
) [
G2M2

c4r4
−

GM

c2r3
−

GM

c4r3
] –

5GM

c2r3
+

1

2𝑟2
−
3G2M2

2c4r4
−
G2M2

2c4r5
−
cot2θ

2r2
   (44)         

𝐺22 =
1

2
−
G2M2

2c4r2
+
GM

c2r
+
G2M2

2c4r3
+
cot2θ

2
− exp (

4GM

c2r
) [
G2M2

c4r2
−
GM

c2r
−
GM

c4r
] (45)      

𝐺33 = −cos
2θ − sin2θ exp (

4GM

c2r
) [
G2M2

c4r2
−
GM

c2r
−
GM

c4r
] − sin2θ [

1

2
−
G2M2

2c4r2
+
GM

c2r
−

3G2M2

2c4r3
−
cot2θ

2
]           (46) 

3.  Results and Discussion 

The mathematical results from the calculation of the Einstein Curvature Tensor using 

Howusu Metric Tensor is given by: 

        𝐺00 =
GM

c2r3
−
G2M2

c4r4
+

GM

c4r3
−  exp (−

4GM

c2r
) [

GM

c2r3
−

1

2𝑟2
+
3G2M2

2c4r4
+
G2M2

2c4r5
+
cot2θ

2r2
] (47) 

     𝐺11 = −exp (
4GM

c2r
) [
G2M2

c4r4
−

GM

c2r3
−

GM

c4r3
] –

5GM

c2r3
+

1

2𝑟2
−
3G2M2

2c4r4
−
G2M2

2c4r5
−
cot2θ

2r2
   (48)         

 𝐺22 =
1

2
−
G2M2

2c4r2
+
GM

c2r
+
G2M2

2c4r3
+
cot2θ

2
− exp (

4GM

c2r
) [
G2M2

c4r2
−
GM

c2r
−
GM

c4r
]      (49)      

𝐺33 = −cos
2θ − sin2θ exp (

4GM

c2r
) [
G2M2

c4r2
−
GM

c2r
−
GM

c4r
] − sin2θ [

1

2
−
G2M2

2c4r2
+
GM

c2r
−

3G2M2

2c4r3
−
cot2θ

2
]           (50) 

Considering the Einstein Curvature Tensor 𝐺00 of the Howusu Metric 

 𝐺00 =
GM

c2r3
−
G2M2

c4r4
+

GM

c4r3
−  exp (−

4GM

c2r
) [

GM

c2r3
−

1

2𝑟2
+
3G2M2

2c4r4
+
G2M2

2c4r5
+
cot2θ

2r2
]      (51) 

It is clear from the above equation that, as 𝑟 → 0, 𝐺00 is −∞ and as  𝑟 → ∞, 𝐺00 tends 

to zero. Whereas in the case the Schwarzschild Metric Tensor the Einstein Curvature 

Tensor 𝐺00 is: 

 𝐺00 = 0      (52) 

Equating the Einstein Curvature Tensor of the Howusu Metric Tensor and the 

Schwarzschild Metric Tensor, we have 
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GM

c2r3
−
G2M2

c4r4
+

GM

c4r3
−  exp (−

4GM

c2r
) [

GM

c2r3
−

1

2𝑟2
+
3G2M2

2c4r4
+
G2M2

2c4r5
+
cot2θ

2r2
] = 0     (53) 

This is the condition for the Einstein Curvature Tensor  

𝐺00 to be equal both in the Howusu Metric Tensor and the Schwarzschild Metric 

Tensor. 

Looking at the Einstein Curvature Tensor 𝐺11 of the Howusu Metric 

 𝐺11 = −exp (
4GM

c2r
) [
G2M2

c4r4
−

GM

c2r3
−

GM

c4r3
 ] –

5GM

c2r3
+

1

2𝑟2
−
3G2M2

2c4r4
−
G2M2

2c4r5
−
cot2θ

2r2
        (54) 

It is clear from the above equation that, as 𝑟 → 0, 𝐺11 is −∞  and as  𝑟 → ∞, 𝐺11 tends 

to zero. Whereas in the case the Schwarzschild Metric Tensor the Einstein Curvature 

Tensor 𝐺11 is: 

 𝐺11 = 0   (55) 

Equating the Einstein Curvature Tensor for both Howusu Metric Tensor and the 

Schwarzschild Metric Tensor, we have 

 −exp (
4GM

c2r
) [
G2M2

c4r4
−

GM

c2r3
−

GM

c4r3
 ] –

5GM

c2r3
+

1

2𝑟2
−
3G2M2

2c4r4
−
G2M2

2c4r5
−
cot2θ

2r2
= 0         (56) 

This is the condition for the Einstein Curvature Tensor  

𝐺11 to be equal both in the Howusu Metric Tensor and the Schwarzschild Metric 

Tensor. 

Taking the Einstein Curvature Tensor 𝐺22 of the Howusu Metric 

 𝐺22 =
1

2
−
G2M2

2c4r2
+
GM

c2r
+
G2M2

2c4r3
+
cot2θ

2
− exp (

4GM

c2r
) [
G2M2

c4r2
−
GM

c2r
−
GM

c4r
 ]        (57) 

It is clear from the above equation that, as 𝑟 → 0, 𝐺22 is ∞ and as  𝑟 → ∞, 𝐺22 tends to 

1

2
+
𝑐𝑜𝑡2𝜃

2
. Where as in the case of the Schwarzschild Metric Tensor, the Einstein 

Curvature Tensor 𝐺22 is: 

 𝐺22 = 0      (58) 

Equating the Einstein Curvature Tensor for both the Howusu Tensor and the 

Schwarzschild Metric Tensor, we have 

                       
1

2
−
G2M2

2c4r2
+
GM

c2r
+
G2M2

2c4r3
+
cot2θ

2
− exp (

4GM

c2r
) [
G2M2

c4r2
−
GM

c2r
−
GM

c4r
 ] = 0   (59) 

This is the condition for the Einstein Curvature Tensor  

𝐺22 to be equal both in the howusu Metric Tensor and the Schwarzschild Metric Tensor. 

Considering the Einstein Curvature Tensor 𝐺33 of the Huwosu Metric 

𝐺33 = −cos
2θ − sin2θexp (

4GM

c2r
) [
G2M2

c4r2
−
GM

c2r
−
GM

c4r
 ] − sin2θ [

1

2
−
G2M2

2c4r2
+
GM

c2r
−

3G2M2

2c4r3
−
cot2θ

2
]                (60) 

It is clear from the above equation that, as 𝑟 → 0, 𝐺33 is ∞ and as  𝑟 → ∞, 𝐺33 tends to 

−𝑐𝑜𝑠2𝜃 −
𝑠𝑖𝑛2𝜃

2
+ 𝑠𝑖𝑛2𝜃

𝑐𝑜𝑡2𝜃

2
. While in the case of the Schwarzschild Metric Tensor, 

the Einstein Curvature Tensor 𝐺33 is: 

 𝐺33 = 0   (61) 

Equating the Einstein Curvature Tensor of the Howusu Metric Tensor and the 

Schwarzschild Metric Tensor, we have 
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−cos2θ − sin2θexp (
4GM

c2r
) [
G2M2

c4r2
−
GM

c2r
−
GM

c4r
 ] − sin2θ [

1

2
−
G2M2

2c4r2
+
GM

c2r
−
3G2M2

2c4r3
−

cot2θ

2
] = 0    (62) 

This is the condition for the Einstein Curvature Tensor  

𝐺33 to be equal both in the Howusu Metric Tensor and the Schwarzschild Metric 

Tensor. 

The present work investigated Schwarzschild Metric Tensor and Howusu Metric 

Tensor with their comparison using computed values of Einstein Curvature Tensor 𝐺𝜇𝜈  

derived from both Metric Tensor as the bases for comparison. Results of the analysis 

indicated that Howusu 𝐺𝜇𝜈 and the Schwarzschild 𝐺𝜇𝜈 behaved differently as 𝑟 → 0; 

thus, as 𝑟 → 0, Howusu 𝐺𝜇𝜈 → ∞  while Schwarzschild 𝐺𝜇𝜈 → 0 but as 𝑟 → ∞, the two 

Metric Tensors appeared averagely similar. Although Howusu 𝐺𝜇𝑣 is slightly different 

from that of the Schwarzschild  𝐺𝜇𝑣, it is more generalized because there is no 

restriction on it unlike the Schwarzschild making it cover more areas. 

4.  Conclusion  

This paper has been able to derive the Einstein curvature tensor 𝐺𝜇𝜈 based on the 

Howusu Metric Tensor that describes the gravitational field which is regular 

everywhere, continues everywhere including all boundaries, continues normal 

derivative everywhere including all boundaries and its reciprocal decreases at infinite 

distance from source (Obaje & Ekpe, 2021b). Comparing these results with the well-

known values of the Einstein curvature tensor based on the Schwarzschild Metric 

Tensor, it is obvious that the two metric tensors were equal at some point. The Einstein 

Curvature Tensor (43) - (46) derived in this paper has pave way for the comparison of 

the Howusu  𝐺𝜇𝑣 with the 𝐺𝜇𝑣 derived from another known metric tensor. 
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