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Abstract: Based on existing research, thermoelectric efficiency can be 

improved through material selection. In this study, the material used is CaCO₃ 
doped with Mn and Co₂O₃ to form CaCo3.5Mn0.5O9 material as a p-type 

thermoelectric material. The substrate used is glass. The stages in this research 

are material synthesis, sputtering process using DC Magnetron Sputtering 

machine to form thin films, and testing. The synthesis process includes 

grinding, calcination, and sintering. Grinding is done using a Ball Mill 

machine with a rotation speed of 250 rpm for 5 hours. Furthermore, the 

calcination step was carried out by heating the sample into a furnace at a 

temperature of 800°C for 10 hours. Then the sintering process was carried out 

at a temperature of 850°C for 12 hours. After the synthesis process is 

complete, enter the sputtering process using a DC Magnetron Sputtering 

machine for approximately 10 minutes. The gas used in this research is Argon 

(Ar). After the sputtering process was carried out, several tests appeared, such 

as the XRD test to determine the type of crystal, the ZEM-3 test to determine 

the Seebeck coefficient and resistivity, the thickness of the thin film formed, 

and the power factor test to determine the maximum voltage and power 

generated by the module formed. Several power factor test results were 

obtained, consisting of 107 μW/mK² at 100°C, 108 μW/mK² at 200°C, and 

332 μW/mK² at 300°C and a thickness of 90.34 nm. 

Keywords: DC magnetron sputtering, MCCO, thermoelectric, thin film. 

1.  Introduction 

The recent study finds the number of new materials used as thermoelectric module. 

Starting from inorganic materials to thermoelectric with organic materials (Jo et al., 2017; 

Zheng et al., 2017). Eco-friendly thermoelectric has attracted so much attention in recent 
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years (Mikami et al., 2005). Y. Miyazaki et al. and S. Li et al. have been reported a 

compound exhibiting large thermoelectric power as well as low resistivity and low 

thermal conductivity in Ca-Co-O system (S. Li et al., 1999; Miyazaki et al., 2000). 

The potential of a material for thermoelectric applications is determined in large part 

to a measure of the material’s dimensionless figure of merit: 

 𝑍𝑇 =
𝛼2𝜎𝑇

𝑘
=

𝛼2𝑇

𝜌𝑘
 (1) 

Where, α is the Seebeck Coefficient, σ the electrical conductivity, ρ the electrical 

resistivity, and k the total thermal conductivity, respectively (Alam, 2013). In general, for 

a good TE material with a high value of ZT, a high thermopower S, a high electrical 

conductivity σ and a low thermal conductivity κ are required. 

However, in semiconductor materials the σ and the S are generally related to the carrier 

concentration and the mobility in opposite ways, and hence it is hard to optimize them 

simultaneously (Kaur et al., 2021). An exception is the coexistence of a high S and a 

relatively high σ in single-crystal Ca3Co4O9, makes it a promising p-type TE material 

(Wang et al., 2010a; Pinitsoontorn et al., 2010; Shikano & Funahashi, 2003). D. Li et all. 

had been investigated that Mn doped Ca3Co4O9 would be a promising thermoelectric 

material at high temperature (D. Li et al., 2005b).  For practical applications, the ZT value 

must be greater than one. Sigiura K., et al. (Sugiura et al., 2007) have reported that the 

ZT value of Ca3Co4O9 (CCO) single crystal exceeds 0.8 at 1000 K. This value is very 

near the level required for practical application. 

Doping is one of the most important methods for improving the performance of 

semiconductors through modifying the carrier concentration (Pei, 2022). For n-type 

thermoelectric materials, (Cahyaningsih, 2020) found that Ag, WO3, and Al2O3 can 

reduce the resistivity of ZnO. As a p-type TE material, the carrier concentration of CCO 

can also be changed by doping with metallic elements (Moualhi et al., 2020). Wang et 

all. have reported that Ag, Fe, Mn, and Cu doping can improve the thermoelectric 

properties of CCO (Lee et al., 2010; Yin et al., 2017). The crystal structure of Ca3Co4O9 

has been described as two sub systems, CoO2 and Ca2CoO3 (Masset et al., 2000). The 

CoO2 sheets are believed to be conduction planes. Ca2CoO3 subsystem consists of two 

Ca–O planes and one Co–O plane, with the Ca–O planes playing a role of donors to the 

CoO2 metallic layers (Rebola et al., 2012). The studies showed that the substitutions at 

Ca and Co-sites with transition metals have different effects for TE properties (Huang et 

al., 2012). 

In general, doping on Ca-sites only changes the carrier concentration of the system and 

has less influence on the band structure (Yan et al., 2016). In contrast, doping on Co-sites, 

especially in the CoO2 layer, can cause a large change in the physical properties because 

the band structure and the transport mechanism are affected (Asahi et al., 2002; Wang et 

al., 2010b). For the substitutions at the Co-site mostly various transitional elements (Ti, 

Mn, Ni, Pt, Cu, Zn) were considered (Constantinescu et al., 2015; Fu et al., 2011; Huang, 

Zhao, Lin, Ang, Song, et al., 2014; Huang, Zhao, Lin, Ang, & Sun, 2014; D. Li et al., 

2005a; Xu et al., 2010). In order to improve the ZT of CCO compound this study is done. 
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2.  Methodology 

The stages in conducting this research include material synthesis, fabrication, and 

testing. 

2.1.  Synthesis 

Thin films having Mn-doped Ca3Co4O9 targets were prepared by DC magnetron 

sputtering method from a mixture of stoichiometric CaCO3 (18.0893 grams), Co2O3 

(1.6589 grams), and Mn (17.487 grams). The mixture was homogenized in a planetary 

ball mill for 2 hours, then calcined for 5 hours at 500°C. After that, the mixture was 

pressed using a pressure of 250 kPa into pellets with a diameter of 60 mm and a thickness 

of 3 mm, then sintered at 850°C for 12 hours in air. 

2.2.  Fabrication 

The DC magnetron sputtering system having a base pressure of 3x10-5 torr is used for 

thin film deposition. The target is placed on the cathode and the substrate is placed on the 

anode. Argon gas is used during the sputtering process, to make a plasma. Using 20 mm 

x 20 mm Glass which serves as the substrate. 

2.3.  Measurement 

Thin films are prepared to perform measurements such as crystal structure, thickness, 

and thermoelectric properties. The phase (target) and crystal (thin film) structures of the 

samples obtained were determined using an X-ray diffractometer (XRD-6100 Shimadzu) 

with Cu-Kα radiation. The Seebeck coefficient and electrical resistivity were determined 

using ZEM-3 (ULVAC-RIKO). Thin film thickness was determined using the Fizeau 

fringe Tolansky method. 

3.  Results and Discussions 

In this study, the following results were obtained. 

3.1.  Thin Film Thickness 

After the thin film is formed, it is necessary to know the thickness of the thin film 

formed. This test is performed using a device called the Tolansky Apparatus. This tool 

consists of a set of microscopes and halogen lamps. The resulting thin film was taken 

using a manual camera to calculate its thickness. Thickness measurements were carried 

out using Tolansky's formula as follows: 

 𝑡 =
∆𝑥

𝑥
(
𝜆

2
) (2) 

Based on the test results formed, this thin p-type film has a very thin size. The thickness 

of the film formed depends on the length of the sputtering process. Observation photos 

taken using the Tolansky Apparatus method can be seen in Figure 1. 
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Figure 1. Thickness Measurement 

After obtaining images from observations using Tolansky Apparatus, manual 

calculations are performed to determine the thickness of the thin film formed. The 

wavelength used in this measurement is 589 nm.  So the thickness of the thin film 

measured is: 

 𝑡 =
∆𝑥

𝑥
(
𝜆

2
) =

0.36

1.4
(
589

2
) = 75.73𝑛𝑚 (3) 

Thus, the thickness of the thin film formed is 75.73nm. The amount is so small that it can 

be said that the layer formed is very thin. In general, good thin films have a thickness of 

the micrometer type. 

3.2.  XRD Caracterization 

To verify the crystal structure and phase purity of the sample, XRD analysis was 

performed. XRD analysis was performed using XRD-6100 Shimadzu with Cu-Kα 

radiation. Figure 2 shows the results of the XRD analysis for the three samples, namely 

reference films, targets, and thin films. 

 
Figure 2. XRD Test Result 
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The Figure 2 shows that the target have relation with the reference. From the XRD test 

results, it can be seen that the phase formed is crystalline because there are many extreme 

peaks. To ensure that the phase formed corresponds to the reference, XRD peak matching 

is carried out between the sample made with the reference. The peaks formed have the 

same angle between this study and the reference so that the sample phase corresponds to 

the reference phase. However, the results of the thin film process did not show a 

significant peak, from this fact we suspect that the thin film consists of amorphous crystals 

which are glassy properties. 

3.3.  Thermoelectric Properties 

Measurements of thermoelectric properties include: 

3.3.1.  Resistivity 

The temperature dependence of the resistivity for Mn-doped CCO thin films on glass 

substrates is between 373–573 K as shown in Figure 3. 

 
Figure 3. Resistivity Measurement 

Resistivity exhibits metal-like behavior. For metals in general, the electrical resistivity 

increases with temperature. At high temperatures, the resistance of the metal increases 

linearly with temperature. As with previous studies for this type of material, the charge 

transport process in the semiconductor regime is determined by the mechanism by which 

the thermally activated hole jumps from Co4
+ to Co3

+ whereas in the metallic regime, the 

charge carriers are excited from the valence to the conduction band. 

3.3.2.  Seebeck Coefficient 

The results of the Seebeck coefficient measurement using ZEM-3 have been 

successfully carried out on MCCO thin films. Seebeck coefficient measurement using 

three temperature variations, 100℃, 200℃ and 300°C. Positive values of the Seebeck 

Coefficient (S) confirm the P-type of the MCCO sample determined that, the main charge 

carriers in MCCO are holes. In general, samples with higher electrical resistivity show a 
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higher Seebeck S Coefficient.  As we can see from Figure 4 it is determined that, the 

Seebeck coefficient increases with increasing temperature. 

 
Figure 4. Seebeck Coefficient 

The highest seebeck coefficient value was obtained at a temperature of 300℃ with a value 

of 344 μV/K. 

3.3.3.  Power Factor 

Figure 5 shows the temperature dependence of the power factor for MCCO thin films 

in the temperature range of 373–573 K. As we can see from Figure 5, when the 

temperatures are 373, 473 and 573 K, the MCCO thin films produce power factors of 107, 

108, 322 μW/mK, respectively. 

 
Figure 5. Power Factor Measurement 

Power Factor describes the ability of a material to be a good thermoelectric module. From 

the results of the tests that have been carried out, the MCCO material is good for use as a 

thermoelectric module at high temperatures. 
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4.  Conclusion 

The conclusion from these results, the thickness of the thin layer is 75.73 nm. The 

highest seebeck coefficient value was obtained at a temperature of 300℃ with a value of 

344 μV/K. The results showed that the resistivity value decreased with increasing 

temperature, while the Seebeck coefficient and power factor increased with increasing 

temperature. So it can be concluded that the MCCO thin film material is good for use as 

a thermoelectric at high temperatures. 
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