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Abstract: Present study focuses on some foundational problems of quantum 

theory specifically deals with the concept of probability density and relating 

introductory problems. In this sense, the work initially investigates the origins 

of the general probability theory and re-examines the concepts of spatial and 

temporal probability densities based on genuine epistemological and 

ontological arguments. In order to tackle the foundational problems, standard 

theory is primarily memorised and criticized scientifically and philosophically 

in terms of foundationally disappearing term of time dependent potential 

energy within the time and space dependent Schrödinger wave equation. 

Based on those arguments, the problematic inconsistency between the spatial 

and temporal probability density functions is underlined. Given the problem, 

an original approach previously suggested, is concisely described and 

extended to resolve the existing problem. The novel approach, based on a 

novel time dependent Schrödinger wave equation, resolves the discrepancy 

with the classical wave equation and also leads to time dependent temporal 

probability densities even for the time free potential energies. Novel temporal 

probability density function is also normalized and has a fluctuation period of 

around 10-16 s which is very short compared to the atomic time scales. 

Keyword: Foundations of quantum theory, probability density, temporal 

probability density, quantum dynamics, quantum philosophy. 

1.  Introduction 

Quantum theory, in spite of outstanding achievements, surprisingly faces some 

foundational complications such as probability density, quantization, meaning of the 

wave function, de Broglie’s wave-particle duality and Heisenberg’s uncertainty principle 

in addition to time evolution of quantum systems (Kleppner et al.,2000; Temark et al., 

2001; Leifer, 2014; Davies et al., 1993; Omnes, 2018). Inherent paradoxes have 

additionally led to some disparagements, such as Einstein, Podolsky, Rosen (EPR) 

Paradox or Quantum Entanglement (Einstein et al., 1935; Horodecki et al., 2009), 

Quantum Decoherence (Zurek, 2003) and Quantum Zeno Effect (Misra et al., 1977), all 

to some extent challenge the theory both scientifically and philosophically. Therefore, 

quantum theory persistently faces certain amount of criticism and counterintuitive results 

due mostly to foundational problems and famous debate between Einstein and Bohr does 

not seem to be terminated and no consensus about essential questions about probabilistic 
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structure of the quantum theory has been reached by the scientific community 

(Schlosshauer et al., 2013; Sommer, 2013).  

Quantum theory was founded on the assumptions that time and space are infinitely 

continuous, which is rather questionable and completely independent variables and also 

quantum particles are unbreakable solid spheres and their motion are characterised by 

matter/Schrödinger waves (Von Neumann, 2018). Consequently, physical existence of a 

quantum particle and also dynamical variables such as velocity, momentum, energy etc. 

are all determined by those spatially and temporally distributed Schrödinger waves. 

Therefore, motion of any quantum particle is fully governed by spatially and temporally 

distributed matter waves and the wave nature of the quantum motion naturally leads to 

extra difficulties (Griffiths et al., 2018). Especially immeasurability of the actual wave 

functions stands as a fundamental problem of the theory and the physical link between 

the quantum theory and the real atomic world was set by defining the probability density 

function foundationally suggested by Born (Born, 1955). Hence, any set of experimental 

measurements can only be linked to the theory statistically through the well-known 

concept of probability density function. 

Probability theory naturally plays a central role in understanding and interpreting the 

probability density functions in quantum mechanics. The probability concept, based on 

the standard probability theory, originates from firstly insufficient information about the 

deterministic physical laws or mechanisms or/and secondly inability of controlling 

external mechanisms and parameters that influence the specific measurement/outcome. 

Thus, it is essential to go deeper and re-examine the origins of quantum probability 

density functions in terms of the standard probability theory (Erol, 2020).  

Mathematical foundations of quantum theory are also based on two distinct operators, 

firstly time dependent Hamiltonian operator, �̂� = 𝑖 ℏ
𝜕

𝜕𝑡
, which by definition has no 

separable potential or kinetic energy components and secondly space dependent linear 

momentum operator, �̂̂�𝑥 = −𝑖 ℏ
𝜕

𝜕𝑥
, which leads to the space dependent kinetic energy 

and consequently space dependent Hamiltonian operator. Space dependent Hamiltonian 

and consequently Space Dependent Schrödinger Wave Equation (SDSWE) governs space 

dependent Schrödinger waves with the influence of the position dependent potential 

energy term, V(r). Similarly, time evolution of the wave functions/state vectors is 

governed by the well-known Time Dependent Schrödinger Wave Equation (TDSWE), 

however, problematically for only systems with time free potential energies, V(r, t)=V(r). 

Nevertheless, due to not including time dependent potential energy term, V(t), time 

dependent Schrödinger equation cannot possibly be taking into account the influence of 

the time dependent potential energies. This fundamental and foundational problem was 

later partially resolved by developing the well-known Perturbation Theory which 

considers the time dependent potential energies, V(t), as small perturbations over the total 

mechanical energy, E (Griffiths, 2018).  

Fundamental outcomes of the standard quantum theory point out that quantum systems 

having time free potential energies, V (r, t) =V(r), demonstrate strongly position 

dependent probability densities, P(r), however time free temporal probability densities, 
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P(t)= constant. Nevertheless, given the time dependent potential energies, V(r, t), 

temporal probability densities turn out to be dynamic, P(t), similar to the spatial 

probability density. This fundamental and important issue seems to be effectively ignored 

by the founders of quantum mechanics. The fundamental question at this point is; how is 

it possible that a single quantum particle could be having a space probability density 

continuously changing while the time probability density stays uniform? Ontologically 

and epistemologically speaking, if and when a probability density is dynamic in space, it 

must be dynamic in time. This foundational problem, to our view, originates from the 

order of the governing differential equations and tackled previously by the author Erol 

(Erol, 2020). TDSWE basically governs the time evolution of the Schrödinger waves and 

because of being a first order differential equation it leads to uniform temporal probability 

densities, in other words, it leads to stationary states. The SDSWE, on the other hand, is 

a second order differential equation and leads to continuously varying space probability 

densities. The concept of time is, on its own, a complicated concept in the sense that 

genuinely speaking, it is not reversible, not controllable and not stoppable. Unlike the 

spatial issues, quantum particles cannot be confined in time or their motion cannot be 

limited to a certain time period by setting some boundary conditions (Griffiths, 2018). 

Ontological and epistemological approaches to the subject of matter frontward that a 

quantum particle must exist at a specific point at a particular time therefore the actual 

existence probability densities ought to be the same in character in space and time. In 

other words, should the existence probability density vary with position, for the same 

quantum particle, ought to change with time as well.  

Foundational complexities and problems of quantum theory are being continuously 

debated and no resolutions have been achieved so far on many points. In order to obtain 

a full and complete picture of the atomic world, alternative approaches should 

unquestionably be developed. Therefore, it seems quite legitimate to re-consider the 

foundations of the quantum theory both philosophically and scientifically to search for 

answers for particular conceptual difficulties and paradoxes as well as searching for the 

possibility of some alternative approaches relating to the lack of some obvious 

components (Zeilinger, 1999; Wallace, 2001; Schlosshauer, 2005). Present work, 

therefore, initially and philosophically questions present standard quantum theory in 

terms of spatial and temporal probability densities of the quantum particles. Clear 

discrepancy between spatial and temporal existence probability densities of the same 

quantum particle is tackled and re-examined. A novel approach is underlined and 

described in order to overcome the discrepancy and certain ontological and 

epistemological problems. The novel approach suggested also leads to the undiscovered 

field of temporal probability densities of quantum particles. 

2.  The Concepts of Probability and Existence Probability Density 

The concept of probability, in general, is valid for the situations for which outcome of 

any specific measurements/event cannot be known before the actual event occurs 

(Kolmogorov, 1933). Therefore, the outcome of any probabilistic event is assumed to be 

determined randomly/stochastically by chance. Probability theory and therefore 
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incapability of predicting any specific outcome, in fact, originates from firstly lack of 

knowledge that fully governs the outcome and/or secondly inability to control 

environmental effects that influence the specific outcome (Jaynes, 2003). The first term 

of lack of knowledge means specific/deterministic physical laws or governing parameters 

are not known and the second term of uncontrollable environmental effects means the 

governing parameters or physical laws are known however cannot be fully controlled. In 

other words, if one knew the deterministic physical laws and additionally if one could 

fully control the environmental effects then no probabilistic structure could be appearing. 

Classical mechanics is obviously deterministic in character hence the outcome of any 

specific event can perfectly be predicted beforehand. However, for every individual 

measurement, environmental effects cannot be fully controlled so the outcome of the 

measurement may lead to a negligible difference which is only the problem of the 

measurement system. Quantum mechanics is, on the other hand, foundationally 

probabilistic theory which, based on the origins of probability theory, means firstly 

deterministic physical laws or governing parameters are not discovered yet or/and 

secondly environmental effects that determine the outcome of any specific 

measurement/event cannot be controlled. This is why quantum theory ought to be handled 

very carefully and the foundations of the theory must be re-examined and studied with 

exceptional attention (Afshar et al., 2007). 

In order to resolve the spatial and temporal probability functions for a general physical 

case, it is considered that a particle, under full control of deterministic physical laws, 

relentlessly moves within the spatial distance of L and within an overall time period of T. 

Additionally, it is assumed that this particle moves a position interval of dx within the 

time interval of dt. Then existence probability within the time interval of dt can be defined 

as p=dt/T and similarly existence probability within the position interval of dx can be 

defined as p=dx/L. At this stage, for the same particle and for the same motion, spatial 

existence probability density can be defined as probability per unit length, in 1 dimension, 

which can mathematically be modelled as, 

 𝑃(𝑥) =
𝑑𝑡/𝑇

𝑑𝑥
 (1) 

For the same particle and situation, temporal probability density which can similarly 

be defined as existence probability per unit time, can be defined formulised as, 

 𝑃(𝑡) =
𝑑𝑥/𝐿

𝑑𝑡
 (2) 

Obviously, by definition, the sum of the probability densities must be equal to unity 

for the overall motion, that is the normalisation of the probability functions. Therefore for 

the case described above, both temporal probability density, P(t), and spatial probability 

density, P(x), must be normalised by the following equations, P= ∫
𝑇

0
𝑃(𝑡) 𝑑𝑡 =1 and 

P= ∫
𝐿

0
𝑃(𝑥) 𝑑𝑥 =1.  

The basic approach described above clearly demonstrates that any particle existing in 

space must also be appearing in time. In other words, if the physical particle is in motion 

in space must be moving in time too. Therefore, if and when the spatial probability density 
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changes, for the same particle, temporal probability density must be changing in 

accordance with the equations (1) and (2).  

Probabilistic structure of quantum mechanics is problematic in two ways: Firstly, 

quantum theory productively resolves highly complicated behaviour of particles or 

ensemble of particles at atomic scales by assuming that the quantum particles are 

unbreakable objects and accompanied by physical waves within the space-time geometry 

which means that the quantum particles relentlessly move in space-time geometry like 

waves or in wave character (Afshar et al., 2007; Yang, 2005). Resolution of the motion 

of a single atomic particle by means of physical waves inevitably introduces certain 

complications and interpretation problems since physical waves spread through space and 

time however a single particle does not (Rauch et al., 2015). In this sense, it is quite 

demanding to understand and visualise the case physically and also philosophically. The 

second fundamental problem arises from the immeasurability of the actual wave functions 

and consequently lack of connection between the real world and quantum theory. How 

can a single particle can be moving with wave nature in space-time geometry is very 

confusing and tackling for the majority of physicists (Schlosshauer, et al., 2013; Sommer, 

2013). The probabilistic structure of quantum theory, to our view, clearly originates from 

the wave nature of the motion of the quantum particles.  

The general definitions of temporal and spatial probability densities and the physical 

case described above can surely be employed for the quantum particles. Following 

scheme is standard in quantum mechanics in extracting the probability densities (Griffiths 

et al. 2018). It is well-known that the physical concepts or so-called dynamic variables in 

quantum mechanics are characterised by operators. The operators subsequently determine 

the wave functions through the well-known Eigen value- Eigen function equation, that is 

simply written as, �̂� 𝛹(𝑥, 𝑡) = 𝑎 𝛹(𝑥, 𝑡). The wave character of the motion of the 

particles is described by the mathematical wave function , 𝛹(𝑥, 𝑡) , called as the Eigen 

function of the operator �̂�  and a denotes the Eigenvalue of the operator. The wave 

function, 𝛹(𝑥, 𝑡), mathematically describes time and space evolutions of the physical 

waves accompanying the quantum particle and is extracted from a deterministic equation. 

The expression above is also very important in the sense that it connects the theory and 

measurement/real world. The equation more clearly means that if one measures the 

dynamical variable or operator �̂�, the Eigenvalue of  “a” should be obtained. Application 

of time and space dependent total mechanical energy operator, Hamiltonian operator, to 

the equation which means �̂� = �̂� , leads to the well-known Time and Space Dependent 

Schrödinger Wave Equation (TSDSWE) which in 1 dimension is formulated by, 

 𝑖 ℏ
𝜕

𝜕𝑡
 𝛹(𝑥, 𝑡)=[

−ℏ2

2𝑚

𝜕2

𝜕𝑥2 + 𝑉(𝑥)]  𝛹(𝑥, 𝑡) (3) 

where ℏ denotes reduced Planck’s constant, i denotes the complex number operator, 

m denotes the mass of the particle, 𝑉(𝑥) denotes the only space dependent potential 

energy of the particle and finally 𝛹(𝑥, 𝑡) denotes the space and time dependent wave 

function. Please problematically note at this point that space and time dependent wave 

function, 𝛹(𝑥, 𝑡), is governed by only space dependent potential energy, 𝑉(𝑥). The 

solution of TSDSWE , 𝛹(𝑥, 𝑡) , smoothly and deterministically leads to mathematical 

https://dx.doi.org/10.20961/jphystheor-appl.v6i1.58494


Journal of Physics: Theories and Applications E-ISSN: 2549-7324  /  P-ISSN: 2549-7316    

J. Phys.: Theor. Appl.  Vol. 6 No. 1 (2022) 1-16 doi: 10.20961/jphystheor-appl.v6i1.58494 

 

6 Foundational Problems of Quantum Theory: Novel Approach to Temporal Probability Density 

 

expressions of the physical waves governing the motion of the quantum particle. 

However, the wave function itself is not a measurable quantity since it accompanies the 

quantum particle hence physical connection to the real/physical world is not possible as 

it stands. This fundamental problem is famously tackled and resolved by the definition of 

the Born who suggested and introduced the concept of probability as the existence 

probability density symbolised by 𝑃(𝑥, 𝑡) and defined as 𝑃(𝑥, 𝑡) = 𝛹∗(𝑥, 𝑡)𝛹(𝑥, 𝑡)  

(Born, 1955). It is clear that the probabilistic structure of the quantum theory initiates at 

this point from the wave nature of the motion of the quantum particles.  Assuming that 

space and time as independent variables one can substitute the expression of  𝛹(𝑥, 𝑡) =

𝛹(𝑥)𝛹(𝑡), then TSDSWE can obviously be separated into two parts, namely only space 

dependent part and only time dependent part. Space Dependent Schrödinger Wave 

Equation (SDSWE) in one dimension is then simply given by, 
𝜕2𝛹(𝑥)

𝜕𝑥2 +
2𝑚

ℏ2
[𝐸 −

𝑉(𝑥)]𝛹(𝑥) = 0 , which is identical to the classical counterpart and is a second order 

differential equation. The solution of the SDSWE gives only space dependent wave 

functions, 𝛹(𝑥), which clearly leads to space dependent probability densities, 𝑃(𝑥) =

𝛹∗(𝑥)𝛹(𝑥), which has equivalent meaning with the equation (1). The second part of the 

TSDSWE is given by, 
𝜕𝛹(𝑡)

𝜕𝑡
+ 𝑖𝜔𝛹(𝑡) = 0 , which is known as time dependent 

Schrödinger Wave Equation (TDSWE). This equation is very interesting in the sense that 

it clearly contradicts with the classical counterpart and basically gives only the time 

dependent wave functions, 𝛹(𝑡) , and temporal probability density 𝑃(𝑡) = 𝛹∗(𝑡)𝛹(𝑡), 

which is equivalent to the equation (2).  

It is obvious that the wave nature of the motion of the quantum particles leads to the 

definition of the existence probability density for the motion, namely time dependent and 

space dependent probability densities (Born, 1955). Ontologically, any single quantum 

particle existing and relentlessly moving in space and time must continuously be existing 

in space-time geometry. Epistemologically, that quantum particle relentlessly moving in 

space-time geometry, ought to have definable temporal and spatial probability densities 

via the equations of (1) and (2) and varying as a function of time and space. At this stage, 

space and time are assumed to be no discrete and completely independent variables and 

also both considered to be unified concepts which means one cannot appear without the 

other (Saunders, 1998; Feynman, 2005). Nevertheless, standard quantum theory seems to 

be problematic on this matter because considering quantum particles having time 

independent potential energies, the theory concludes that the spatial probability densities 

are strongly position dependent, in contrast temporal probability densities are time free. 

Philosophically speaking and considering a single quantum particle, the physical 

existence of the same particle must be measurable in time and space, moreover if the 

physical existence of a particle varies with position it must also be varying with time 

unless the velocity of the particle approaches infinity. 

3.  Spatial Existence Probability Density 

In order to underline certain foundational problems of quantum theory, it is legitimate 

to discuss the spatial probability density for the quantum particles based on the present 
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standard theory. The simplest nevertheless a bit of a problematic case of the application 

of the SDSWE is the free particle situation. Space dependent potential energy of a particle 

freely moving in space is obviously zero, 𝑉(𝑥) = 0, then the expression of,  𝑘2 =
2𝑚𝐸

ℏ2  , 

within the SDSWE is apparently uniform and  expresses the accompanying waves via,  

𝑘 =
2𝜋

𝜆
. In this case, general solution of the SDSWE , in exponential form, is written by, 

𝛹(𝑥) = 𝐴𝑒𝑖𝑘𝑥 + 𝐵𝑒−𝑖𝑘𝑥, where A and B are generally complex constants and determined 

by the boundary conditions. Using Euler’s transformation and arranging the general 

equation leads to, 𝛹(𝑥) = (𝐴 + 𝐵)𝑐𝑜𝑠(𝑘𝑥)  + 𝑖(𝐴 − 𝐵)𝑠𝑖𝑛 (𝑘𝑥). Based on this 

equation, if one calculates the most general form of the spatial existence probability 

density by using the basic definition of Born, 𝑃(𝑥) = 𝛹∗(𝑥)𝛹(𝑥); it is straightforward 

to get, 

 𝑃(𝑥) = |𝐴 + 𝐵|2𝑐𝑜𝑠2(𝑘𝑥) + |𝐴 − 𝐵|2𝑠𝑖𝑛2(𝑘𝑥) (4) 

It is clear from the expression that the spatial probability density is sinusoidal and 

varies periodically even though the potential energy and therefore the overall mechanical 

energy of the quantum particle is considered to be zero, V(x)=0. Position dependent 

probability density, in fact, means that the velocity of the particle should be changing 

throughout, more specifically if a quantum particle is less likely to be at a point x, then 

the particle ought to be moving faster and where the existence probability is high then the 

velocity of the particle ought to be smaller in accordance with the equation (1). 

Consequently, it can be hypothesised that the spatial probability of the quantum particle 

changes as a result of the change in the velocity. However, this ordinary approach is also 

counterintuitive because any change in the probability density should be caused by the 

change in the velocity and consequently change in the kinetic and indeed overall 

mechanical energy (V(x)=0), which basically violates the conservation of energy. The 

other important point, of course, is that the spatial probability density cannot be 

normalised since the particle can freely move to the infinity in space. This fundamental 

and basic problem actually indicates certain foundational predicaments concerning the 

present theory.  

In order to further underline some basic properties of the spatial existence probability 

density, infinite potential well example is used as one of the most fundamental model 

problems of quantum physics. It is straightforward standard activity to resolve the 

quantised wave functions as follows (Merzbacher, 1970). Considering the infinite 

potential well, potential energy of the particle is considered to be zero, 𝑉(𝑥) = 0 inside 

the well between x=0 and x=L,  and outside of the well the potential energy goes to 

infinity, 𝑉(𝑥) = ∞ . In this case, the solution of the SDSWE and application of the 

boundary conditions leads to the result of 𝛹(𝑥) = 𝐶𝑠𝑖𝑛 (𝑘𝑥) , where  𝐶 = 𝑖2𝐴 can be 

written. Additionally, the boundary condition of , 𝛹(𝐿) = 0, leads to the quantisation 

through,  𝑘𝑛 =
𝑛𝜋

𝐿
  and normalisation of the wave function, P= ∫

𝐿

0
𝛹∗(𝑥)𝛹(𝑥) 𝑑𝑥 =1, 

also gives 𝐶 = √
2

𝐿
 . The normalised and quantised specific wave functions are then 
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expressed by, 𝛹𝑛(𝑥) = √
2

𝐿
  𝑠𝑖𝑛 (

𝑛𝜋

𝐿
𝑥). Based on this quantised solution, the spatial 

probability of a particle for the quantum state of n is given by, 

𝑃𝑛(𝑥) =
2

𝐿
𝑠𝑖𝑛2(

𝑛𝜋

𝐿
𝑥)  (5) 

The final expression clearly shows that even though the quantum particle has no 

potential energy the spatial existence probability is position dependent.   The plots of the 

spatial probability densities within the infinite potential well as a function of position x, 

for the states of n = 1,2,3 are given in the figure 1. 

 
Figure 1. Graphs of the spatial probability densities of finding a particle in the infinite 

potential well for the quantum states of n = 1, 2, and 3. 

In order to estimate the typical wavelength of the probability density waves, it is 

straightforward to use the spatial period of the first quantum state, that is  𝜆 = 𝐿 ≈

10−10𝑚 . Therefore, spatial probability density variation should be a definitive property 

at atomic scales and a very decisive concept for quantum theory. Following general 

problematic points concerning the space dependent probability density ought to be 

underlined on the basis of the elementary discussions summarised above. (1) The 

existence probability density of the free particles strongly varies with position indicating 

spatially dynamic states in spite of not having time or position dependent potential 

energies. (2) The standard quantum theory cannot normalise the spatial wave function for 

the free particles indicating some foundational problems of the theory. (3) The existence 

probability density of the confined particles, specifically quantum particles in infinite 

quantum well, also strongly varies as a function of the position. Those specific points 

given above are going to be tackled and tried to be resolved hereafter.  

4.  Temporal Probability Density 

In general the motion of quantum particles, in space-time geometry, ought to be 

defined by both space dependent, 𝛹(𝑥), and time dependent, 𝛹(𝑡), wave functions [26]. 

Standard quantum theory resolves time dependence of the wave functions initially by 

considering only the cases for which potential energy is time free. Hence, potential energy 

of the quantum particle is expressed by V=V(x), not by V(x ,t). In order to obtain 𝛹(𝑡),  

obviously only time dependent Schrödinger wave equation that is, 𝑖 ℏ
𝜕

𝜕𝑡
 𝛹(𝑡) = 𝐸𝛹(𝑡) 

, ought to solved and by doing so, general solution can be expressed as, 𝛹(𝑡) = 𝛹0𝑒−𝑖𝑤𝑡, 

where 𝛹0 denotes the initial value of the time dependent wave function. In order to obtain 

time dependent probability density for the free particle cases, basic expression of Born, 
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 𝑃(𝑡) = 𝛹∗(𝑡)𝛹(𝑡) = |𝛹(𝑡)|2, is employed. Then, temporal probability density for the 

free quantum particles can be found as,  

 𝑃(𝑡) = |𝛹0|2 (6) 

Elementary calculation, for the quantum particles having time free potential energies, 

leads to the temporal probability densities to be uniform. It is interesting to note, at this 

stage, that for the same particle, the spatial probability density was found to be strongly 

position dependent. To resolve a bit deeper one can employ the general wave functions, 

given by the well-known superposition principle. According to the superposition 

principle, general form of the time and space dependent Schrödinger wave function is 

given by, 𝛹(𝑥, 𝑡) = ∑∞
𝑛=1 𝑐𝑛𝛹𝑛(𝑥)𝑒−𝑖𝑤𝑛𝑡 . In the equation 𝛹0 is inserted into the 

coefficient 𝑐𝑛. Employing Born’s rule to the general wave function leads to the time and 

space dependent probability density function, that is,  

 𝑃(𝑥, 𝑡) = 𝛹∗(𝑥, 𝑡)𝛹(𝑥, 𝑡)=∑∞
𝑛=1 |𝛹𝑛(𝑥)|2|𝑐𝑛|2  (7) 

where the first term, |𝛹𝑛(𝑥)|2, represents the spatial probability density for the quantum 

state of n and has clear spatial dependence and the second term, |𝑐𝑛|2, represents 

corresponding temporal probability density which is quite interestingly time independent. 

This clear result epistemologically contradicts with each other and in fact originates from 

the foundational approaches. Fundamental question at this stage is: Considering a 

quantum particle and given the spatial probability density varies with position, how can 

possibly be the temporal probability density uniform?  

This basic discussion can also be extended to the more general case in classical 

physics. Any wave motion, in nature, is governed by the well-known classical time and 

space dependent wave equation, that is, 
𝜕2

𝜕𝑥2  𝛹(𝑥, 𝑡) =
1

𝜗2

𝜕2

𝜕𝑡2  𝛹(𝑥, 𝑡). General solution of 

this equation is given by, 𝛹(𝑥, 𝑡) = 𝐴𝑒𝑖(𝑘𝑥−𝑤𝑡) + 𝐵𝑒−𝑖(𝑘𝑥−𝑤𝑡). It is evidently seen from 

this expression that, in a wave motion, spatial changes are simultaneously accompanied 

by the temporal changes. As a result, there seems to be some problems with the 

foundations of quantum physics. More pronouncedly, the fundamental conclusion of 

standard quantum theory, which is that while spatial probability density of a particle 

changes its temporal probability density does not change, needs to be re-examined and 

resolved in a deeper manner. In summary, following fundamental issues seem to be 

problematic concerning the foundations of quantum theory and ought to be resolved and 

clarified. (1) Present TDSWE is a first order differential equation, in contradiction with 

the classical counterpart, and ought to be handled and re-examined. (2) Temporal 

probability density is uniform for any quantum particle having time free potential energies 

which contradicts with the spatial counterpart. (3) Temporal probability density cannot 

be normalised even though the particle cannot be confined or restricted in time.  

5.  Novel Approach to Temporal Probability Density 

Quantum theory resolves time dependence of the wave functions and consequently 

temporal existence probability densities in two steps. The first step deals only with the 

cases for which the potential energy of the particle is completely time free, hence overall 

potential energy is given by only the space dependent term, that is V (r, t) =V(r). The 
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second step deals with the time dependent potential energies, by employing the well-

known time dependent perturbation theory by considering time dependence of the 

potential energy, V(t), as a small term compared to the overall mechanical energy of the 

particle, E. In fact, foundational problems to our view start from this point by only 

considering time free potential energies in deriving time end space dependent 

Schrödinger wave equation, that is the equation (3). 

This specific foundational problem recently tackled and resolved by Erol (2020) and 

explained in detail (Erol, 2020). The problem is resolved by initially defining a novel time 

dependent linear momentum operator, 𝑃�̂� = −𝑖 ℏ [
𝜕

𝜕𝑡

𝜕𝑡

𝜕𝑥
𝑖 +

𝜕

𝜕𝑡

𝜕𝑡

𝜕𝑦
𝑗 +

𝜕

𝜕𝑡

𝜕𝑡

𝜕𝑧
�⃗⃗�] and 

following that a novel time dependent Schrödinger wave equation, (NTDSWE) is derived 

as, 

 
𝜕2𝛹(𝑡)

𝜕𝑡2 + [
4

9ℏ2
[𝐸 − 𝑉(𝑡)]2 − 𝑖

2

3ℏ

𝜕𝑉(𝑡)

𝜕𝑡
] 𝛹(𝑡) = 0 (8) 

The derived NTDSWE is obviously identical to the classical counterpart with the 

consideration of 𝑤2(𝑡) =
4

9ℏ2
[𝐸 − 𝑉(𝑡)]2 − 𝑖

2

3ℏ

𝜕𝑉(𝑡)

𝜕𝑡
 , and smoothly resolving the 

apparent conflict. In the expression, 𝑤(𝑡) denotes the time dependent angular frequency 

of the Schrödinger waves, critically 𝑉(𝑡) denotes the time dependent potential energy and 

E denotes the total mechanical energy. NTDSWE obviously has some original and 

constructive properties. Firstly, it is a second order differential equation and secondly it 

is identical to the classical counterpart and thirdly it contains directly the term of time 

dependent potential energy, 𝑉(𝑡). Hence, the novel equation has no contradiction with 

the present quantum theory and additionally it resolves some of the foundational 

problems. It is interesting to note that the angular frequency is a complex function of t 

and can be resolved accordingly. Henceforth, it is possible to describe the squared angular 

frequency in the form of, 𝑤2(𝑡) = 𝐴 − 𝑖𝐵, where A and B are relevant parameters of the 

motion and can be expressed by 𝐴 =
4

9ℏ2
[𝐸 − 𝑉(𝑡)]2   and 𝐵 =

2

3ℏ

𝜕𝑉(𝑡)

𝜕𝑡
 . The standard 

complex analysis proposes that the squared angular frequency can alternatively be 

defined as  𝑤2(𝑡) = |𝑍|𝑒−𝑖𝛼(𝑡) , where the parameter of |𝑍| = √𝐴2 + 𝐵2  represents the 

magnitude and 𝛼(𝑡) = 𝑡𝑎𝑛−1 (
𝐵

𝐴
)  represents the relevant angle of the complex function. 

NTDSWE is obviously a second order differential equation, substantially different and 

more informative compared to the present TDSWE, including instantly varying potential 

energy term and therefore angular frequency. 

In order to obtain exact outcomes of this novel approach, based on previously given 

clarifications and explanations, approximate temporal wave function acquired from the 

second order NTDSWE is employed and temporal probability density function , 𝑃(𝑡) =

𝛹∗(𝑡)𝛹(𝑡), is generally found to be,  

  𝑃(𝑡) = 4𝐹0
2  |𝑍|−1/2  𝑐𝑜𝑠2 [𝜃(𝑡)]  (9) 

where the angle is given by  𝜃(𝑡) = ∫ 𝑤(𝑡)𝑑𝑡 and openly time dependent through the 

expressions of  𝑤(𝑡) = |𝑍|1/2  𝑒−𝑖
𝛼(𝑡)

2    and  𝛼(𝑡) = 𝑡𝑎𝑛−1 (
𝐵

𝐴
) . This expression of, 𝑃(𝑡), 

is the most general form of the time dependent probability density obtained by using the 
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second order NTDSWE without any restrictions and clearly shows the time dependence. 

NTDSWE clearly leads to results that are consistent with the present perturbation theory 

suggesting dynamic quantum states and resolves the apparent conflict.  

In order to compare the outcomes of the NTDSWE with the results of the current 

quantum theory, well-known model problem of infinite quantum well situation is resolved 

by basically substituting, V(t)=0, for the case the particle is in the potential well. In this 

case, the parameters transform into 𝐴 =
4

9ℏ2 𝐸2 ,  B=0 , |𝑍| = 𝐴  and  𝜃 = 𝑤0𝑡 where 

𝑤0 =
2

3ℏ
𝐸. In this case, the temporal probability density, for the infinite quantum well 

problem, can be given by, 

 𝑃(𝑡) = 4𝐹0
2  |𝐴|−1/2  𝑐𝑜𝑠2 [𝑤0𝑡] (10) 

where the term of   |𝐴|−1/2 =
3ℏ

2𝐸
  is constant and the expression is time dependent only 

through the 𝑐𝑜𝑠2 [𝑤0𝑡] expression. At this stage it seems legitimate to consider the 

apparent spatial quantisation of the overall mechanical energy. It is well-known fact that 

the spatial states are quantised due to the confinement of the particle within the well 

between x=0 and x=L. The overall mechanical energy quantisation is expressed by 𝐸𝑛 =
𝑛2𝜋2ℏ2

2𝑚𝐿2  . The energy quantisation ought to be influencing the vibrational modes of the 

quantum particle through the famous energy equation of Planck and  by employing the 

expression of 𝐸𝑛 = ℏ𝑤𝑛 one can straightforwardly obtain quantised angular frequency of 

the states as, 𝑤𝑛 =
2

3ℏ
𝐸𝑛 =

𝑛2𝜋2ℏ

3𝑚𝐿2  . Hence, temporal probability densities, for the infinite 

quantum well problem, can be expressed by, 

 𝑃𝑛(𝑡) = 𝐶𝑛   𝑐𝑜𝑠2 [𝑤𝑛𝑡]   (11) 

 

 
Figure 2. Graphs of the temporal probability densities for the infinite potential well for 

the quantum states of n = 1, 2 and 3. In the figure, 𝑇1 =
6𝑚𝐿2

𝜋ℏ
 denotes the period of the 

first quantum state, 𝑇2 =
𝑇1

4
  and  𝑇3 =

𝑇1

9
  represent the periods of second and third 

quantum states respectively. 
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where 𝐶𝑛 = 4𝐹0
2  |𝐴𝑛|−1/2 denotes the amplitude of the quantised probability density 

functions for the infinite quantum well with 𝐴𝑛 =
4

9ℏ2 𝐸𝑛
2. As a result, NTDSWE 

concludes that the temporal probability density, concerning quantum particles in the 

infinite quantum well, is clearly time dependent. Additionally, the period of the temporal 

probability density, for the quantised states, is given by 𝑇𝑛 =
𝑇1

𝑛2  where the period for the 

first quantum state is 𝑇1 =
6𝑚𝐿2

𝜋ℏ
 . Temporal probability amplitude of the first quantum 

state can easily be written by 𝐶1 =  
6 𝐹0

2ℏ

𝐸1
 and consequently the probability amplitudes, for 

the next quantum states, can be written as, 𝐶2 =
𝐶1

4
  and 𝐶3 =

𝐶1

9
. The graphs of the 

quantised probability densities are illustrated in the figure 2.  

The temporal probability density in real terms means that the quantum particles 

relentlessly moving in space must indeed be moving in time, hence, at any spatial fixed 

point of r, the particle may coincide at only certain times of the measurement and 

consequently may exist at other points for the rest of the time. For instance, consider that 

N simultaneous measurements are being carried out on N identical hypothetical quantum 

systems for a specific point of r, if the apparatus measures n simultaneous existence at the 

instant of t, then the existence probability can simply be estimated by, P= n/N. Therefore, 

the quantum particles never disappear in time and the probability density function must 

mathematically be continuous, just like the spatial case. Based on the definition of the 

temporal  probability density, exact physical meaning of the temporal wave function of  

𝛹(𝑡)  can be expressed as the square root of existence probability per unit time, at a fixed 

point of r. Therefore, the physical dimension of the temporal wave function is 

𝛹(𝑡)=[√
𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦

𝑇
= 𝑇−1/2]. 

It is important, at this point, to express that apparent time dependence of the temporal 

probability densities for quantum particles, concerning the time free potential energies, 

could not physically be observed so far because the period of the density probability 

waves is too short to observe. In order to estimate a typical value, one can consider the 

infinite potential well example and it is straightforward to estimate the time scale or the 

period of the probability waves for the infinite quantum well, that is, 𝑇1 =
6𝑚𝐿2

𝜋ℏ
≈ 10−16𝑠 

. This time scale is ultra-short and out of the range of current interest and time 

measurement limits. In order to just compare the typical wavelengths of the space 

dependent probability density waves, we simply look at the wavelength of the plane 

waves, that is, 𝜆 = 𝐿 ≈ 10−10𝑚 . This length scale is just around typical atomic scales 

hence space probability density variation is a definitive property at atomic scales and a 

very important concept for quantum theory.  

6.  Normalisation of Temporal Probability Density 

Quantum mechanics, instead of deterministically estimating the outcome of any event 

or measurement, only offers certain percentages of probability for that specific event or 
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measurement. The probability here means the existence probability which measures the 

physical presence percentage of the quantum particle at a certain point of x, at a certain 

time of t. Spatial probability density by definition refers to the overall existence 

probability per unit length in 1 dimension, P(x) and per unit volume in 3 dimensions, P(r). 

Temporal probability density similarly refers to the probability per unit time, P(t). Spatial 

and temporal joint probability density in 1 dimension, P (x, t), can be defined as the 

product of spatial and temporal probability densities, P (x, t) =P(x) P(t), which means the 

existence probability density of the quantum particle at a point of x and at a time of t.  

Present theory initially handles the temporal probability densities for the cases in 

which the quantum particle has completely time free potential energies, V (x, t) =V(x). 

Present theory leads to following fundamental conclusions; (1) Temporal probability 

density function is found to be uniform, which means static quantum states and for a 

certain point of x in 1 dimension the quantum particle can appear with same probability 

at any time. (2) The present theory cannot estimate the actual percentage of the constant 

temporal probability density.  

The first conclusion of the standard quantum theory is philosophically and 

scientifically problematic. It is highly counterintuitive to assume that a quantum particle 

relentlessly moving in both space and time, spatial probability varies however time 

probability does not change. This result of the present theory violates the philosophical 

approaches both epistemologically and ontologically. Because, given a single quantum 

particle characteristic motion of the particle obviously determines the existence 

probability and any change of the spatial probability density must be accompanied by the 

change in temporal probability density. Hence this is an open problem that ought to be 

handled. The second problem arises from the disability of the present theory on the 

calculation of the constant value of the temporal probability density. This is also a 

problem in the sense that the temporal probability density cannot be normalised therefore 

necessary physical meaning ought to be attributed to the particle cannot be managed. 

Therefore, the present theory has some apparent foundational problems.  

The present effort tries to address some of the foundational problems mentioned above. 

Given a quantum particle existing and moving continuously within time-space geometry, 

following critical conditions ought to normally be verified by the temporal probability 

density function; (1) Assuming time and space are totally independent and infinitely no 

discrete variables then temporal probability density function must be continuous similar 

to the spatial probability density. This means the quantum particle must be existing at 

every instant between the creation and annihilation moments. (2) Since spatial and 

temporal probability densities are defined for the same quantum particle then if the spatial 

density varies, accordingly temporal probability density ought to be varying and hence 

cannot be uniform. (3) Temporal probability density must obviously be normalised hence 

overall existence probability density must be equal to unity. 

This effort genuinely meets all the points briefly mentioned above. The first point is 

about the continuity of the physical existence of the quantum particle. The physical 

existence obviously must be continuous since the quantum particle cannot disappear in 
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accordance with the most fundamental physical conservation law that is the conservation 

of energy/matter.  

The other central problem was the uniformity of the temporal probability function even 

though the spatial probability density for the same particle varies with position. The 

present effort also solves this problem by offering the equations (9), (10) and (11) which 

obviously change with time by sinusoidal form. The change in the temporal probability 

in fact indicates certain variation of the velocity of the quantum particle, which would 

obviously result in continuously varying spatial and temporal probability densities.  

The third point, in quantum mechanics, both temporal and spatial probabilities of the 

particle must be normalized. Mathematical functions that cannot be normalized cannot 

normally express the presence of the particles. Spatial normalization condition states that 

the particle must exist somewhere (or must occupy any position) in all space. Likewise, 

the temporal normalization condition should state that the particle must exist 

hypothetically somewhere between 𝑡 = −∞ and 𝑡 = +∞ . Therefore, concerning a single 

quantum particle temporal probability density function can be normalised by the equation 

of, 𝑃 = ∫
+∞

−∞
|𝛹(𝑡)|2𝑑𝑡 = 1. However, in line with the inferences made in the previous 

sections, if the probability of finding a particle in time is examined, it is seen that the 

probabilities change sinusoidally and periodically. Based on this, it is quite consistent to 

say that all the physical information about the particle should exist in a period of time. 

When we think of an object making smooth circular motion, it is clearly understood that 

the motion of the object is periodic, this object returns to where it started again after a 

period of time and repeats its movement. Within these repetitions, the object is in a 

specific position within a period of each period and the probability of finding this object 

within a period of time ought to be equal to unity. Concerning periodic temporal 

probability densities, since all the necessary information is present within the first period 

of time then normalisation can be managed within the first period of time, that is, 

 𝑃1 = ∫
𝑇1

0
|𝛹1(𝑡)|2𝑑𝑡 = 1 (12) 

Similarly, it is obvious that the same amount of information is present within the 

second and third period of time hence for the second period of time and third period of 

time etc. 𝑃2 = ∫
𝑇2

0
|𝛹2(𝑡)|2𝑑𝑡 = 1,  𝑃3 = ∫

𝑇3

0
|𝛹3(𝑡)|2𝑑𝑡 = 1.  Then overall joint 

existence probability between 𝑡 = −∞ and  𝑡 + ∞ can be calculated, based on the 

standard probability theory, by multiplication of the probability densities for each period, 

which can be given by, 

 𝑃 = 𝑃1𝑃2𝑃3 … 𝑃∞ = 1  (13) 

The discussions of temporal probability density, based on the NTDSWE, is 

enlightening and could have significant implications and could open new routes for 

investigation within current quantum theory. Previously derived NTDSWE here 

originally leads to the dynamic temporal quantum states not only for the quantum particles 

having strongly time dependent potential energies, in agreement with the results of the 

PT, but also for the time free potential energies, in contrast to the TDSWE.  

7.  Conclusions 
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The present work has briefly tackled some aspects of the foundational problems of the 

current quantum theory, specifically investigating the concept of probability density 

functions. To do so, initially the origins of the standard probability theory is expressed by 

underlining the insufficient information and uncontrollable environmental effects. 

Consequently, spatial and temporal probability densities of quantum particles are re-

examined based on the present probability theory and on some epistemological and 

ontological arguments. In this sense, the present quantum theory is mainly criticized on; 

firstly, not containing time dependent potential energy term within the time dependent 

Schrödinger wave equation, secondly demonstrating completely time free temporal 

probability densities in spite of space dependent spatial probability densities. In order to 

overcome those foundational problems, a novel approach recently suggested by Erol 

(2020) is extended and employed to resolve the discrepancy between the temporal and 

spatial probability densities for the free particle and infinite quantum well cases. Novel 

approach shows no disagreement with the present quantum theory and smoothly resolves 

the discrepancy between the temporal classical and quantum wave equations and also 

resolves the discrepancy between the spatial and temporal probability densities. It is also 

interestingly concluded that temporal probability density is in fact strongly time 

dependent and can be normalised even for the free particles, nevertheless it has a 

fluctuation period of around 10-16s, which is too short to influence the fundamental 

outcomes of quantum theory. The approach suggested is significant in the sense that it 

simply leads to some new routes and some undiscovered regions of quantum dynamics, 

ought to be discovered in the future.  
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