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Abstract. The equation of Klein-Gordon for Woods-Saxon potential was 

discussed in the minimal length effect. We have found the completion of this 

equation using an approximation by suggesting a new wave function. The 

Klein-Gordon equation in the minimal-length formalism for the Woods-Saxon 

potential is reduced to the form of the Schrodinger-like equation. Then the 

equation was accomplished by Nikiforov-Uvarov Functional Analysis 

(NUFA) with Pekeris approximation. This technique is applied to gain the 

radial eigensolutions with chosen exponential-type potential models. The 

method of NUFA is more compatible by eliminating vanishing the strict 

mathematical manipulations found in other methods. The energy calculation 

results showed that angular momentum, quantum number, minimum length 

parameter, and atomic mass influenced  it. The higher the quantum number 

and angular momentum, the lower the energy. In contrast to the minimum 

length, the energy spectrum will increase in value when the minimum length 

parameter is enlarged. An increase in atomic mass also causes energy to 

increase as the quantum  number and angular momentum are held constant. 

Keywords: Klein-Gordon equation, minimal length effect, Woods-Saxon 

potential, Nikiforov-Uvarov Functional Analysis (NUFA) method.  

1.  Introduction 

The equation of Klein-Gordon or Lorentz covariance equation belongs to the 

relativistic wave equation. This second order equation in time and space has a negative 

energy solution and a negative probability. This matter made the Klein-Gordon equation 

not immediately popular the year it was introduced. Accordingly, the Klein-Gordon 

equation is known for describing the relativistic particles dynamics with zero spin 

(Lutfuoglu et al., 2018). The Klein-Gordon equation with zero spin is very important in 

quantum mechanics for explaining complete information about quantum systems. This 

information can be obtained from the wave function (Badalov et al., 2010). 

In 2015, the equation of Klein-Gordon was accomplished for the Woods-Saxon 

potential (Olgar & Mutaf, 2015). Subsequently, thi equation also has been solved for 

Eckart potential [4], Kratzer potential [5], and hyperbolic potential (Onate et al., 2017). 
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The methods usually used to solve the Klein-Godon equation are Asymptotic Iteration 

Method (Elviyanti et al., 2018; Soeparmi et al., 2018), hypergeometric (Hou & Zhou, 

1999; Dianawati et al., 2018), Nikiforov-Uvarov (Ikot et al., 2021), and SUSY (Ikot et 

al., 2014). 

One of the substantial short-range potentials in physics is the Woods-Saxon. This 

potential is implemented to atomic physics, particle and nuclear physics, and condensed 

matter. The spherical potential of Woods-Saxon used as the main section of the nuclear 

structure model succeeded in deducing nuclear energy levels and was used for the 

interaction of neutrons with heavy nuclei. The potential of Woods-Saxon is also used as 

part of an optical instance in the elastic scattering of multiple heavy ions with a low energy 

target (Hamzavi & Rajabi, 2013). 

In quantum mechanics, the uncertainty of position and momentum is outlined using 

the commutation relationship between each operator. The commutation relationship 

between these two operators is explained in the Heissenberg uncertainty principle 

(Poojary, 2015). 

The principle of Heisenberg's uncertainty in the simultaneous measurement of the 

position and momentum quantities is that the more certain the result of one quantity is, 

the more uncertain the result of the measurement of another quantity. Heissenberg's 

uncertainty principle which is corrected for quantum gravity is called the Generalized 

Uncertainty Principle (GUP) which is formulated with a minimal length (Alimohammadi 

& Hassanabadi, 2017). The equation of Klein-Gordon in influence of minimum length 

has been explained for trigonometric cotangent potential (Cari et al., 2017) and Hulthen 

potential (Elviyanti et al., 2018). 

In this article, we delved into the wave function and energy of the Klein-Gordon with 

minimum length formalism for Woods-Saxon potential by menas of Nikiforov Uvarov 

Functional Analysis method. By adjusting new function, the Klein-Gordon equation with 

minimal length effect is reduced to a Schrodinger-like equation.  

The system of this article is as follows. In Chapter 2, the research method is brief, the 

Woods-Saxon potential and Pekeris approximation are also briefly described in this 

Chapter. The solutions of the energy spectra and unnormalized wave function are 

discussed in Chapter 3. Finally, conclusions are presented in Chapter 4. 

2.  Research Methods 

2.1.  The esimate solution of Klein-Gordon Equation with minimal length 

The uncertainty of position and momentum is an important principle in quantum 

mechanics. This uncertainty is explained using the commutation relationship between the 

two operators as follows (Hassanabadi et al., 2017; 19) 

   ihpx =ˆ,ˆ
 
        (1) 

with x̂  represents the operator of position, p̂  represents the momentum, i is the 

imaginary number operator, and 2h= (h is the constant of Planck). The commutation 

relationship is shown by the Heisenberg uncertainty principle (Poojary, 2015). This 

uncertainty principle can be written as follows 
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
= xpx

                                                    (2)
 

The concept of minimum length is introduced as follows  

   ( )( )2
1ˆ,ˆ PiPX ML +=                                                      (3) 

with 
ML  is the minimum length factor with the interval 10  ML . The limit value 0→ML  

and 1→ML  accordance with normal quantum mechanics and extreme quantum gravity. 

Operators P̂  and p̂  represent momentum associated with low and high energy levels.The 

quantity of momentum for high energies is denoted by P̂  and for low energies it is denoted 

by p̂ (Garay, 1994).  

Equation (3) is also known as GUP where the parameter αML have to be calculated from 

the fundamental theory. The value of 
ML  will be close to zero when the energy is less 

than the Planck mass scale with the result that the Heisenberg uncertainty principle is 

recovered. Equation (3) gives the implied meaning that the minimum length is given as 
 

 
  ( )( )2

ˆ1
2

ˆ,ˆ pPX ML += 


                                                    (4)
 

The position and momentum operators that are in a commutation relationship with each 

other can be defined as follows: 

 

ii xX ˆˆ =
                                              (5) 

 

( ) iMLi ppP ˆˆ1ˆ 2+=                                             (6) 

The p̂  operator in quantum mechanic is expressed in terms of −= ip̂ , so the quadratic 

form is (Suparmi et al., 2020) 

 

−= 22ˆ p                                 (7) 

where   is the Laplacian operator. The substitution Eq. (7) into Eq. (6), then we get  

  

 
( )−−= 222 21ˆ  MLP                                                      (8) 

Equation (8) shows the quadratic momentum operator which is affected by the minimum 

length. 

The Klein-Gordon equation is expressed as follows (Chabab et al., 2012; Andaresta et 

al., 2020)  

 
( )( ) ( )( ) 

22222
ˆˆ rScMcPrVE o ++=−

                                              (9) 

The Klein-Gordon equation with the effect of minimal length is obtained by substituting 

equation (8) into equation (9), so that  

 

( )( ) ( )( )( ) ( )( ) 
222222

ˆ21ˆ rScMcrVE oML ++−−=−                                    (10) 

where E is the relativistic energy, ( )rV ˆ  is a vector component of potential, ( )rS ˆ  is a scalar 

component of potential, Mo is rest mass parameter, and P is a three-dimensional linear 

momentum. By setting V(r) = S(r), 1=  and c = 1, then 

 ( )( ) ( ) 222 22 −−=+−− MLoo VMEME                                       (11) 

and here we have set ( ) ( ) ( )rVrV 21→ . The approximation of the Klein-Gordon equation 

is gained by using a new wave function as below (Chabab et al., 2016) 
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( ) ( ) ( ) ,,21,, rr ML+=

                                                    (12) 

The equation (11) becomes 

 
( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) 0,,2,,4

222232 =+−−++−−−+−  rrVMEMErVMEMEr ooMLooML

 

(13)

 

 

The component of 3  is eliminated because the value ML
2   is get near to zero and the 

value of 
ML  is terribly small. The property showing that   is a scalar differential operator 

has been used in this case. If   operates to scalar fields   at a point ( ) ,,r , then   

will generate in another scalar field. It is known as scalar Laplacian (Elviyanti et al., 

2018). 

( ) ( ) ( )( ) ( ) ( )( )  ( ) 0,,2,,
22222 =+−−−+−−+  rrVMEMErVMEMEr ooMLoo

 

(14)  

The spherical Laplacian operator is expressed as 
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By applying Laplacian operator into equation (14) and by supposing the new wave 

function ( ) ( ) ( ) ( ) = rRr ,, , then we have two parts, namely radial and polar of the 

Klein-Gordon equation. The angular part is given:  
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(16)
 while the radial part is given: 

 

( ) ( )( ) ( ) ( )( )  ( ) ( )rR
r

rRrVMEMErVMEME
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rr
ooMLoo 2

222222

2
2

1 
 =+−−−+−−+









 

(17) 

where   is a constant variable separation method which accordance in the angular 

momentum (L). By setting  ( )
( )
r

r
rR


=

 
and ( )1+= LL , then 
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with 

 
( )1+= LL ; ( ) ( )22222 2 oMLo MEME −−−=  ;  

 ( ) ( )( )( )ooMLo MEMEMEV +−++−=
22

0 4 ; ( )22

02 oML MEV +=    (19) 

Equation (18) is the equation of Klein-Gordon with minimum length formalism. This 

equation can be solved for an exponential type potential such as the potential of Woods-

Saxon. 

2.2.  Woods-Saxon potential and Pekeris approximation 

The potential of Woods-Saxon is used as the basis for analyzing of the elastic 

scattering angular distribution of some stable systems (Hamzavi & Rajabi, 2013). This 

potential also has a fixed geometry (Freitas et al., 2016). The elastic scattering between 

the nuclei provides great flexibility so as information about nuclear interactions can be 

obtained. The appropriate solution from the wave equation of this potential provides a 

conceptual understanding of the resonance and bound states of the interactions between 
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nuclei (Suparmi et al., 2021). The average field perceived by the valence electrons in the 

Helium model can be described using the potential of Woods-Saxon (Dudek et al., 2004) 

The standard form of Woods-equation  is as determined as [3]: 

 

a

Rr

e

V
xV

−

+

−=

1

)( 0

 (19) 

where parameter R is defined as the core radius, parameter a represents a shallow layer 

thickness where the potential is  decreased from the value V = 0 outside the core to the 

value 
0VV −=  inside the core. A simple potential well is obtained by jumping on the 

surface of the core at a = 0. 

The equation of Klein-Gordon in the equation (18) for value of 0l  cannot be resolved 

because there is a 21 r centrifugal factor. We can use a Pekeris approximation  method to 

overcome this. The extension of the term centrifugal in exponential series forms the basis 

of this approach. This expansion depends on internuclear distance and only considered 

the second order term, because the next term has a very small value and causes the l-

dependent potential effectively retains its original shape (Badalov et al., 2010; Feizi et 

al., 2011), se we get the following notation 

 
( )1+= xRr

 

(20) 

 a

R
=

 

(21) 

However, it must be shown that this approach is only in effect for energy states with low 

vibration. The centrifugal potential is expanded into the Taylor series around x = 0 (r = 

R), the centrifugal factor can be approximated as follows 

 

( ) ( ) ( )+−+−=+==
− 32
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(22) 

We will replace the potential f(r) according to Pekeris approximation, with the expression 
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(23) 

The parameters d0, d1, and d2 can be determined by expanding f(x) in the Taylor series 

around the point x = 0 (r = R) 
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(24) 

We compare equal power of x in Eq. (22) and (24), so we get the constants d0, d1, and d2 
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Having inserted Eq. (24) into Eq. (18), we obtain 
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2.3.  The method of Nikiforov-Uvarov Functional Analysis (NUFA)  

A simple technique applying the NU concept, parameters of NU method, and function 

analysis method, was proposed by Ikot et al. (2021) to solve second-order differential 

equations of hypergeometric type. This method is known as Nikiforov-Uvarov Functional 

Analysis (NUFA). Unlike the NU method which uses polynomial squares and other types 

that make it more complicated, the NUFA method is more efficient. Once the wave 

equation is correctly transformed and the singularity is discovered, it will be easy to derive 

the wave function and energy equation. 

The NU method is utilized to solve second-order differential equations in the following 

form 

 

( ) ( )
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~~
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=++ s
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sd
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  (27) 

where ( )s  and ( )s~  are polynomials, generally second-degree, and ( )s~  is a first-degree 

plynomial. Then the parametric form of the NU method was introduced (Tezcan & Sever, 

2009) as follows:  
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where i
 and ( )3,2,1=ii  are all parameters. It can be noticed that the equation (28) 

has two points that take an infinite value at 0→s  and 
3

1


→s , so that we adjust a new 

wave function as below 
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By setting the new wave function into Eq. (28), then 
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The Gauss hypergeometric equation can be obtained from equation (30) if it complies the following function 

 ( ) 01 31 =−+− xxx

 

(31) 
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Thus, Eq. (30) becomes 
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(35) 

that gives 
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Eq. (35) is a type of hypergeometric of the form 
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By adjusting equation (36) and (37), we have the parameters of a’, b’, and c’  
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The equation of energy is gained from the last term in equation (36) . Parameters of a’ or 

b’ have negative integer –n values, then the function of hypergeometric  f(s) will be a 

polynomial of degree n. Therefore, the function of hypergeometric  verges the quantum 

state i.e. na −= , where 
max,,3,2,1,0 nn = . 
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(41) 

By substituting Eq. (33) and (34) into Eq. (29), the wave function for the NUFA method 

will be obtained as follows 
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3.  Result and Discussion 

Equation (26) is solved by substituting a new variable, 
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then we have 
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By inserting equation (46) and (47) into equation (26) and multiplied by 
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1 zz
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, we have  
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By comparing equation (28) and (48), we get 
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By using Eq. (41) we have the relativistic energy equation  
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By inserting equation (49) to equation (33) and (34) we gain  
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If we substitute equation (52) and (53) into equation (51), we have 
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with   
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By using equation (19) and (50) we obtain  
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By applying equation (52), (53) into equation (29) we get the radial wave function as 

follows 
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Table 1. The wave function of the Klein-Gordon equation with minimum length 

formalism for Woods-Saxon potential 
n Wave Function 
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The quantum number n = 0, 1, 2, 3 for the wave function are served in Table 1. From 

Table 1, we can see that the unnormalized wave function for ground state indicated by n 

= 0, energy extent 1 for n = 1, and energy extent 2 for n = 2. The unnormalized wave 

functions are shown in Figure 1 for different atoms. 

The atomic masses selected in this study were 48, 51, 52, and 55 and the energy 

spectrum shown in Tables 2, 3, and 4. It can be observed that the spectral energy decreases 

in value as the quantum number (n) and angular quantum number (L) for different atoms 
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increase. The increase in atomic mass number also makes the energy value bigger, 

although it can be seen in the table that the increase is not overly significant. 

 
  

(a) (b) (c) 
 

Figure 1 . The graph of unnormalized wave function with L = 1 for (a) n = 1, (b) n = 2, 

and (c) n = 3 

The energy equation of the Klein-Gordon equation for the Woods-Saxon potential with 

minimal length formalism is shown by equation (56). The energy result from equation 

(56) cannot be calculated analytically, so that the energy spectrum is calculated by the 

Matlab program numerically. The energy spectrum is calculated for variations of n, L, 

and αML which are the quantum number, angular momentum number, and minimum 

length parameter, respectively. The energy spectrum for the Woods-Saxon potential is 

presented in Table 2, 3, and 4. 

Table 2. The energy spectrum with αML = 0 and n = 1 for various L 

L 
E (MeV) 

A=48 A=51 A=52 A=55 

0 -1.460908 -1.460908 -1.460908 -1.460908 

1 -1.473512 -1.473084 -1.472691 -1.472326 

2 -1.497835 -1.496647 -1.495547 -1.494527 

3 -1.533009 -1.530804 -1.528758 -1.526853 

4 -1.578817 -1.575353 -1.572132 -1.569127 

5 -1.635785 -1.630777 -1.626116 -1.621765 

Table 3. The energy spectrum with αML = 0 and n = 3 for various L 

L 
E (MeV) 

A=48 A=51 A=52 A=55 

0 -1.892857 -1.892857 -1.892857 -1.892857 

1 -1.906399 -1.905891 -1.905423 -1.904992 

2 -1.931881 -1.930504 -1.929232 -1.928054 

3 -1.967330 -1.964873 -1.962594 -1.960475 

4 -2.011289 -2.007616 -2.004198 -2.001010 

5 -2.062947 -2.057941 -2.053274 -2.048910 

Table 4. The energy spectrum with αML = 0 and n = 5 for various L 

L 
E (MeV) 

A=48 A=51 A=52 A=55 

0 -2.983298 -2.983298 -2.983298 -2.983298 

1 -2.997685 -2.997082 -2.996529 -2.996021 

2 -3.024286 -3.022676 -3.021191 -3.019819 

3 -3.060342 -3.057522 -3.054910 -3.052485 

4 -3.103650 -3.099534 -3.095709 -3.092145 

5 -3.152758 -3.147308 -3.142229 -3.137483 
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(a) (b) (c) 

Figure 2 . The energy graph for Woods-Saxon potential as a L function with 0=ML                       

for (a) 2=n , (b) 3=n , and (c) 5=n  

The results of the energy obtained are negative indicating that this equation is applied 

to single particles. There is a constant potential difference in single particles. The energy 

graph in Tables 2, 3, and 4 are presented in Figures 2(a), 2(b), and 2(c). Those figures 

show the energy spectrum without minimal length effect or for αML = 0, the energy value 

depends on the radial quantum number (n) and the orbital quantum number (L), we can 

see that the maximum energy for n = 2, 3, 5 is at lower L. 

Table 5. The energy spectrum with αML = 0.005 for various n and L 

n L 
E (MeV) 

A = 48 A = 51 A = 52 A = 55 

3 1 -1.520843 -1.521084 -1.521303 -1.521502 

 2 -1.523300 -1.523605 -1.523894 -1.524167 

 3 -1.552903 -1.549834 -1.547515 -1.545715 

4 1 -1.744252 -1.744609 -1.744934 -1.745231 

 2 -1.736349 -1.737310 -1.738186 -1.738988 

 3 -1.728320 -1.729875 -1.731305 -1.732622 

5 1 -2.003358 -2.003710 -2.004029 -2.004321 

 2 -1.994037 -1.995037 -1.995947 -1.996779 

 3 -1.981795 -1.983628 -1.985303 -1.986836 

Table 6. The energy spectrum with αML = 0.04 for various n and L 

n L 
E (MeV) 

A = 48 A = 51 A = 52 A = 55 

6 1 -1.994168 -1.994413 -1.994639 -1.787618 

 2 -1.788609 -1.788772 -1.981915 -1.982569 

 3 -1.958131 -1.792231 -1.961343 -1.792558 

 4 -1.801819 -1.801575 -1.801379 -1.932322 

7 1 -2.170922 -2.171128 -1.931895 -1.931943 

 2 -2.159428 -1.932647 -1.932792 -1.932921 

 3 -1.934469 -2.142582 -1.934953 -1.935157 

 4 -2.114564 -2.117042 -1.939868 -1.940035 

8 1 -2.341966 -2.079134 -2.079181 -2.079224 

 2 -2.331932 -2.332484 -2.332992 -2.080085 

 3 -2.316244 -2.081472 -2.318450 -2.319427 

 4 -2.084725 -2.085015 -2.085274 -2.085505 

9 1 -2.228623 -2.507920 -2.508068 -2.508204 

 2 -2.498750 -2.499240 -2.499691 -2.500108 

 3 -2.484754 -2.230977 -2.486699 -2.231359 

 4 -2.465009 -2.466791 -2.468430 -2.234531 

 

Tables 5 and 6 show the energy values with for variations n and L with the formalism 

of minimal length αML = 0.005  and αML = 0.04. In the table, it can be observed that the 
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energy value decreases with the increase in the quantum number and angular momentum. 

The energy value also shows a negative interpretation. The energy value increases slightly 

as the atomic mass number increases. It can be seen that the Klein-Gordon equation which 

is affected by the minimum length produces a larger energy value than that which is not 

affected by a small increase. 

4.  Conclusion 

The equation of Klein-Gordon with minimum length effect for Woods-Saxon has been 

solved in this paper. Energy spectra and non-normalized wave functions were gotten by 

implementing the NUFA method. The energy equation that we obtained can be seen in 

equation (56), while the wave function for variations in quantum numbers n can be seen 

in Table 1. The spectum energy is calculated numerically and the results can be seen in 

table 2, 3, 4, 5, and 6. The energy obtained is negative because the Klein-Gordon equation 

is affected by the constant Woods-Saxon potential. 

The energy calculation showed that the energy spectrum was influenced by angular 

momentum, quantum number, minimum length parameter, and number mass of atom. We 

can see in Table 2, 3, and 4 that the higher the quantum number and angular momentum, 

the lower the energy. In contrast to the minimum length in Table 5 and 6, it showed that 

the energy spectrum will increase in value when the minimum length parameter is 

enlarged. An increase in atomic mass also causes energy to increase as the radial quantum 

number and angular momentum are held constant. 
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