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Abstract: The energy eigenvalues and eigenfunctions of Dirac equation for 

Rosen Morse plus Rosen Morse potential are investigated numerically in 

terms of finite Romanovsky Polynomial. The bound state energy eigenvalues 

are given in a closed form and corresponding eigenfunctions are obtained in 

terms of Romanovski polynomials. The energi eigen value is solved by 

numerical method with Matlab 2011. 
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1.  Introduction 

It is well known that the exact energy eigenvalues of the bound state play an 

important role in quantum mechanics. In particular, the Dirac equation which describes 

the motion of a spin-1/2 particle has been used in solvingmany problems of nuclear and 

high-energy physics (Azizi & Rajabi, 2013). The exact solution of some non-central 

potentials for l-wave have been investigated intensively by some authors (Cari & 

Suparmi, 2012). For example on 2004, Reity, Rubish and Myhalyna was investigated 

Dirac equation for vector and scalar potential (Reity & Myhalyna, 2014), Victor M. 

Villalba find the solution in the presence of a gravitational instanton on 2005 (Villaba, 

2005), and Bakkeshizadeh and Vahidi solving the Dirac equation for Coulomb and 

NAD potential (Bakkeshizadeh & Wahidi, 2012). 

In general the non-central potential is a potential as a function of radial and angular 

positions simultaneously. These potentials is constructed by combination of radial shape 

or nonshape invariance. The potentials that can be used sucs as hyperbolic Scarf 

Potential, Manning Rosen, Rosen Morse, etc. The bound state energy spectra of these 

potentials have been investigated by Supersymetri method (Cari, Suparmi & H. Marini, 

2012), Nikivorof-Uvarof (Ikot & Akpabio, 2010), Laplace Transformation Method 

(Eshghi, Hamzavi & Ikhdair, 2012). Romanovsky polynomials (David, 2009), WKB 

Method (Sadeghi, Pahlavani, Naderi, et al., 2005). 
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2 Analytical solution of energy eigen value, eigen function… 

 

In this paper will be solved the the Dirac equation for non-central potential in term of 

Romanovski polynomials by numerical method. The Dirac equation of non-central 

potentials are solved using separation variable method when the non-central potential is 

separable. We must set the Dirac equation like hypergeometric term and then make a 

differential equation in term of Romanovsky polynomials. The last we will get a 

complicated equation of energi eigen value that can’t be solved by analitical method so 

we must use numerical method to find of solution. Beside that we also get angular wave 

function and that must be solved by Matlab 2011. 

2.  Basic Theory 

2.1.  Dirac Equation 

The relativistic Dirac equation is a covariant first order differential equation in a four 

dimensional space-time representation. In The one dimensional Dirac equation , 

Solution can be simplified by adopting of two components approach. These components 

contain solution for positive and negative energy spinors (Weber, 2007). Dirac equation 

with the scalar potential 𝑆(𝑟)dan vector potential 𝑉(𝑟) is given as, 

{𝑐𝜶. 𝒑 + 𝛽(𝑚𝑐2 + 𝑆(𝒓))}𝜓(𝒓) = {𝐸 − 𝑉(𝒓)}𝜓(𝒓)         (1) 

Where M is rest mass of particle, E is the total energy, and p is the momentum 

operator. By setting 𝜓(𝒓) = (
𝜁(𝑟)

𝜒(𝑟)
) and using Puli’s matrices, we can get the form of 

equation (1) equal, 

 

𝑐𝜎. 𝒑𝜁(𝑟) = {𝑀𝑐2 + 𝑆(𝒓) + 𝐸 − 𝑉(𝒓)}𝜒(𝑟)         (2) 

When scalar potential is equal to vector potential, 𝑆(𝑟) = 𝑉(𝑟) we get corelation, 

𝑐𝜎. 𝒑
𝑐𝜎.𝒑𝜁(𝑟)

𝑀𝑐2+𝐸
= {−𝑀𝑐2 + 𝐸 − 2𝑉(𝒓)}𝜁(𝑟)          (3) 

By applying Pauli matrices it is simply shown that (𝜎. 𝑝)(𝜎. 𝑝) = 𝑝2 and if ℏ, 𝑐 = 1 so 

equation (3) can be rewriten as, 

{𝑝2 − 2𝑉(𝑀 + 𝐸)(𝒓)}𝜁(𝑟) = {𝐸2 − 𝑀2}𝜁(𝑟)         (4) 

Equation (3) is Dirac equation where scalar potential is similar to the vector 

potential, M is the relativistic mass and E is relativistic energy. In non relativistic limit, 

𝐸 − 𝑀 → 𝐸𝑁𝑅, 𝐸𝑁𝑅 is non relativistic energy, 𝐸 + 𝑀 → 2𝜇, where 𝜇 is the non 

relativistic mass. By applying that condition into equation (4) so that equation can be 

reduced to, 

{𝑝2 − 2𝑉2𝜇(𝒓)}𝜁(𝑟) = {𝐸 − 𝑀}2𝜇𝜁(𝑟) 

{
𝑝2

2𝜇
− 2𝑉(𝒓)} 𝜁(𝑟) = 𝐸𝑁𝑅𝜁(𝑟)                (5) 

2.2.  Rosen Morse Potential 

Rosen Morse potential given as, 

𝑉(𝑟) = (
𝜐(𝜐+1)

𝑠𝑖𝑛2𝑟
− 2𝑞 𝑐𝑜𝑡 𝑟)             (6) 

Where 𝜐 and q is constant. If 𝑟 → 𝑖𝑟, 𝑞 → 𝑖𝑞 so equation (6) can be rewriten as, 

𝑉(𝑟) = (−
𝜐(𝜐+1)

𝑠𝑖𝑛ℎ2𝑟
− 2𝑞 𝑐𝑜𝑡ℎ 𝑟)           (7) 
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Equation (7) is Eckart potential. Is showed that Rosen Morse potential is compleks form 

of Eckart potential. 

3.   Analysis Method 

The method that be used is Romanovski polynomials. Romanovski polynomials were 

discovered in 1884 by Routh in the form of complexified Jacobi polynomials on the unit 

circle in the complex plane and were then rediscovered as real polynomials by 

Romanovski in a statistics framework (Ikot & Akpabio (2010). The Romanovski 

polynomials are built from The generalized hypergeometric equation is given, 

𝜎(𝑥)
𝑑2𝑦𝑛(𝑥)

𝑑𝑥2 + 𝜏(𝑥)
𝑑𝑦𝑛(𝑥)

𝑑𝑥
− 𝜆𝑦𝑛(𝑥) = 0          (8) 

where 

𝜎(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐;    𝜏 = 𝑑𝑥 + 𝑒  and   𝜆𝑛 = −(𝑛(𝑛 − 1) + 2𝑛(1 − 𝑝))      (9) 

For Romanovski polynomial, the values of parameters in equation (8) are, 

𝑎 = 1, 𝑏 = 0, 𝑐 = 1, 𝑑 = 2(1 − 𝑝); 𝑒 = 𝑞,  𝑝 > 0;  𝑦𝑛(𝑥) = 𝐷𝑛
(𝑝,𝑞)(𝑥); 𝑝 = −𝛽 > 𝑛      

So we get the new type of differential equation is caled Romanovski polynomials. 

(1 + 𝑥2)
𝑑2𝐷𝑛

(𝑝,𝑞)
(𝑥)

𝑑𝑥2 + (2𝑥(1 − 𝑝) + 𝑞)
𝑑𝐷𝑛

(𝑝,𝑞)
(𝑥)

𝑑𝑥
− {𝑛(𝑛 − 1) + 2𝑛(1 − 𝑝)}𝐷𝑛

(𝑝,𝑞)(𝑥) =

0                   (10) 

The weight function obtained by solving the Pearson differential equation is 
𝑑

𝑑𝑥
(𝜎(𝑥)𝑤(𝑥)) = 𝜏(𝑥)𝑤(𝑥)           (11) 

And 

𝑤(𝑥) = exp (∫
(𝑑−2𝑎)𝑥+(𝑒−𝑏)

𝑎𝑥2+𝑏𝑥+𝑐
𝑑𝑥)           (12) 

The corresponding polynomials to the weight function equation (12) are built up from 

the Rodrigues representation that is given as, 

𝐷𝑛
(𝑝,𝑞)(𝑥) =

1

𝑤(𝑥)

𝑑𝑛

𝑑𝑥𝑛
((1 + 𝑥2)𝑛𝑤(𝑥))           (13) 

By inserting all the parameter into equation (12) we obtain the weight function as, 

𝑤(𝑥) = (1 + 𝑥2)−𝑝 𝑒𝑞 𝑡𝑎𝑛−1(𝑥)           (14) 

The Romanovski polynomials obtain by inserting equation (14) in to equation (13) as, 

𝐷𝑛
(𝑝,𝑞)(𝑥) =

1

(1+𝑥2)−𝑝 𝑒𝑞 𝑡𝑎𝑛−1(𝑥)

𝑑𝑛

𝑑𝑥𝑛
((1 + 𝑥2)𝑛(1 + 𝑥2)−𝑝 𝑒𝑞 𝑡𝑎𝑛−1(𝑥))       (15) 

4.  Solution of Radial Dirac Equation for Non-central Potential using Romanovsky 

Polynomials 

One dimension of Dirac equation with Rosen Morse potential plus Rosen Morse 

potential with the centrifugal term is showed in equation (16), 
𝜕

𝜕𝑟
(𝑟2 𝜕𝑅(𝑟)

𝜕𝑟
) − 𝑟2 {(𝐸 + 𝑀)𝛾2 (

𝑣(𝑣+1)

𝑠𝑖𝑛2𝛾𝑟
− 2𝑞𝑡𝑎𝑛 𝛾𝑟) − (𝐸2 − 𝑀2)} 𝑅(𝑟) = 𝜆𝑅(𝑟) (16) 

Where 𝜆 = 𝑙(𝑙 + 1) if we set that, 

 
1

𝑟2 ≅ 𝛾2 (𝑑0 +
1

𝑠𝑖𝑛2𝛾𝑟
)            (17) 

with 𝑑0 =
1

12
 , if we set R(𝑟) =

𝜒(𝑟)

𝑟
, equation (16) can be rewriten as, 
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4 Analytical solution of energy eigen value, eigen function… 

 

𝜕2𝜒(𝑟)

𝜕𝑟2 −

𝛾2 {(
𝑣(𝑣+1)(𝐸+𝑀)+𝑙(𝑙+1)

𝑠𝑖𝑛2𝛾𝑟
− 2(𝐸 + 𝑀)𝑞𝑐𝑜𝑡𝛾𝑟) −

(𝐸2−𝑀2)

𝛾2 + (𝑙(𝑙 + 1)𝑑0)} 𝜒(𝑟) = 0 (18) 

By making an approriate change of variable, cot 𝛾𝑟 = 𝑥, then equation (18) becomes 

(1 + 𝑥2)
𝑑2

𝑑𝑥2 + 2𝑥
𝑑

𝑑𝑥
− {

𝑙(𝑙+1)𝑑0𝛾

(1+𝑥2)
−

2(𝐸+𝑀)𝑞𝛾𝑥

(1+𝑥2)
−

(𝐸2−𝑀2)

𝜸(1+𝑥2)
+ (𝐸 + 𝑀)𝑣(𝑣 + 1)𝛾 +

𝑙(𝑙 + 1)𝛾} 𝜒(𝑟) = 0            (19) 

To solve equation (19) in term Romanovski polynomials, equation (14) suggest the 

substitution in equation (19) as, 

𝜒𝑛 = (1 + 𝑥2)
𝑝

2𝑒−
𝛼

2
𝑡𝑎𝑛−1𝑥𝐷𝑛

(𝛽,𝛼)(𝑥)          (20) 

By inserting equation (20) into (19) we obtain, 

(𝑥2 + 1)
𝜕2𝐷𝑛

(𝑝,𝑞)
(𝑥)

𝜕𝑥2 + (2𝑥(𝛽 + 1) − 𝛼)
𝜕𝐷𝑛

(𝑝,𝑞)
(𝑥)

𝜕𝑥
+

{(
−𝛽2−𝛼𝛽𝑥+

𝛼2

4
+(𝐸+𝑀)2𝑞𝛾𝑥+

(𝐸2−𝑀2)

𝜸
−𝑙(𝑙+1)𝑑0𝛾

(1+𝑥2)
) + 𝛽 + 𝛽2 − (𝐸 + 𝑀)𝑣(𝑣 + 1)𝛾 −

𝑙𝛾(𝑙 + 1)} 𝐷𝑛
(𝑝,𝑞)(𝑥) = 0            (21) 

By setting the coefficient of 
1

1+𝑥2 in equation (21) to be zero, that are 

−𝛼𝛽 + (𝐸 + 𝑀)2𝑞𝛾 = 0            (22a) 

−𝛽2 +
𝛼2

4
+

(𝐸2−𝑀2)

𝜸
− 𝑙(𝑙 + 1)𝑑0𝛾 = 0          (22b) 

Then equation (21) reduces to the Romanovski equation like in equation (10) and 

then comparing the parameters between equations (10) and (21) we obtain the relation, 

(𝛽 + 1) = (−𝑝 + 1) dan 𝛼 = −𝑞           (23a) 

𝑙𝛾(𝑙 + 1) + (𝐸 + 𝑀)𝑣(𝑣 + 1)𝛾 − [𝛽 +
1

2
]

2

+
1

4
= 𝑛(𝑛 − 1) + 2𝑛(1 − 𝑝)      (23b) 

From equation (23b) we have  

𝛽 = √𝑙𝛾(𝑙 + 1) + (𝐸 + 𝑀)𝑣(𝑣 + 1)𝛾 +
1

4
− 𝑛 −

1

2
         (24) 

And from equation (22b) we obtain 

𝛼2 = −2 (
(𝐸2−𝑀2)

𝜸
− 𝑙(𝑙 + 1)𝑑0𝛾) ± 2√(

(𝐸2−𝑀2)

𝜸
− 𝑙(𝑙 + 1)𝑑0𝛾)

𝟐

+ (𝐸 + 𝑀)24𝑞2𝛾2

              (25a) 

𝛽2 =
𝛼2

4
+

(𝐸2−𝑀2)

𝜸
− 𝑙(𝑙 + 1)𝑑0𝛾            (25b) 

Using equation (24) and (25b) we can obtain  

𝛼 = −
(𝐸+𝑀)2𝑞𝛾

√𝑙𝛾(𝑙+1)+(𝐸+𝑀)𝑣(𝑣+1)𝛾+
1

4
−𝑛−

1

2

           (26) 

And finally we obtain the energy spectra as, 
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(𝐸2 − 𝑀2) = 𝛾 (√𝑙𝛾(𝑙 + 1) + (𝐸 + 𝑀)𝑣(𝑣 + 1)𝛾 +
1

4
− 𝑛 −

1

2
)

2

−

𝛾

4
(−

(𝐸+𝑀)2𝑞𝛾

√𝑙𝛾(𝑙+1)+(𝐸+𝑀)𝑣(𝑣+1)𝛾+
1

4
−𝑛−

1

2

)

2

+ 𝑙(𝑙 + 1)𝑑0𝛾2         (27) 

 

To find the energi eigen value from equation (27) we can’t use analitical method, but 

we must solve the equation by numerical method. By numerical method with variation 

of gamma and n value we get the energi eigen value that be showed at the table bellow, 

Table 1. Energi eigen value with n and 𝛾 variation 

v = 1, μ =1, M = 1, m =2 and γ = 1,0037 

n 1 2 3 4 5 

E (fm
-1

) 5.3924 6.4945 7.5211 8.6292 9.6785 

v = 1, μ =1, M = 1, m =2 and γ = 1,0503 

n 1 2 3 4 5 

E (fm
-1

) 4.5153 5.5153 6.4874 7.4422 8.3858 

v = 1, μ =1, M = 1, m =2 and γ = 1,1045 

n 1 2 3 4 5 

E (fm
-1

) 3.8309 4.7476 5.6355 6.5064 7.3655 

 

And with variation of  n,𝑣, and q we can see on the Table 2. 

Table 2. Energy eigen value with 𝜐 and n variation 

n 𝒗 𝒒 M 𝜸 E(fm
-1

) 

1 0.1 0 2 1 4.3966 

1 0.2 0 2 1 4.0012 

1 0.3 0 2 1 3.5876 

1 0.4 0 2 1 3.2185 

2 0.1 0 2 1 6.0956 

2 0.2 0 2 1 5.5301 

2 0.3 0 2 1 4.9456 

2 0.4 0 2 1 4.3809 

3 0.1 0 2 1 7.8766 

3 0.2 0 2 1 7.1464 

3 0.3 0 2 1 6.3936 

3 0.4 0 2 1 5.0034 

4 0.1 0 2 1 9.6894 

4 0.2 0 2 1 8.7949 

4 0.3 0 2 1 7.8762 

4 0.4 0 2 1 6.9902 

 

Beside using variation of  𝛾, 𝜐 and n value we can calculate the enrgy eigen value 

with q variation. The result is showed by Table 3. 
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Table 3. Energy eigen value with 𝑞 and n variation 

n 𝒗 𝒒 M 𝜸 E(eV) 

1 0 0.01 2 1 4.5979 

1 0 0.02 2 1 4.1954 

1 0 0.03 2 1 3.5859 

1 0 0.04 2 1 2.8955 

2 0 0.01 2 1 6.4173 

2 0 0.02 2 1 5.9308 

2 0 0.03 2 1 5.1475 

2 0 0.04 2 1 4.2377 

3 0 0.01 2 1 8.3101 

3 0 0.02 2 1 7.7075 

3 0 0.03 2 1 6.6709 

3 0 0.04 2 1 5.4624 

4 0 0.01 2 1 10.2320 

4 0 0.02 2 1 9.4778 

4 0 0.03 2 1 8.0960 

4 0 0.04 2 1 6.5254 

 

From Table 1 we can invetigated the graph relation of energy and n like figure 1. 

 
Figure 1. Graph of energy eigen value versus n 

From the graph can be showed that if the n value is increase so the energi eigen value 

also increase. The fact olso can be applied to 𝛾 value. With little increasing of 𝛾 can 

make large change of energy eigen value. The increasing of n show that if elektron stay 

far from the nucleus, it need the bigger energy. But if the electron distrubing by 𝜈 and q 

the energy is decrease. 

To determine the radial wave function, equations (23a), (24) and (26) are inserted in 

to equations (14) and (15) so that we obtain the weight function 𝑤(𝑥) and the 

Romanovski  polynomials 𝐷𝑛
(𝑝,𝑞)(𝑥) as 

𝑤(𝑥) = (1 + 𝑥2)
𝛽=√𝑙𝛾(𝑙+1)+(𝐸+𝑀)𝑣(𝑣+1)𝛾+

1

4
−𝑛−

1

2 𝑒

(𝐸+𝑀)2𝑞𝛾

√𝑙𝛾(𝑙+1)+(𝐸+𝑀)𝑣(𝑣+1)𝛾+
1
4

−𝑛−
1
2

 𝑡𝑎𝑛−1(𝑥)

 (28) 

And 

𝐷𝑛
(𝑝,𝑞)(𝑥) = ℛ𝑛

(−𝛽,−𝛼)(𝑥) =
1

(1+𝑥2)𝛽𝑒−𝛼 𝑡𝑎𝑛−1(𝑥)

𝑑𝑛

𝑑𝑥𝑛
((1 + 𝑥2)𝛽𝑒−𝛼 𝑡𝑎𝑛−1(𝑥))         (29) 
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And the result of the wave function of the nth level is 

𝑋𝑛;𝑙 = √(1 + 𝑥2)𝛽𝑒−𝛼 𝑡𝑎𝑛−1(𝑥)  ℛ𝑛
(−𝛽,−𝛼)(𝑥)         (30) 

Some the solving of equation (29) and (30) are 

ℛ0
(−𝛽0,−𝛼0) = 1   

𝑋0;𝑙 = √(1 + 𝑥2)𝛽𝑒−𝛼 𝑡𝑎𝑛−1(𝑥)        

          ℛ1
(−𝛽1,−𝛼1) = 2𝑥(𝛽 + 1) − 𝛼  

𝑋1;𝑙 = √(1 + 𝑥2)𝛽𝑒−𝛼 𝑡𝑎𝑛−1(𝑥)  (2𝑥(𝛽 + 1) − 𝛼)    

            

ℛ2
(−𝛽2,−𝛼2) = 4(𝛽 + 2)2𝑥2 + 2(𝛽 + 2)(1 + 𝑥2) − 4(𝛽 + 2)𝑥2 − 4(𝛽 + 2)𝛼𝑥 + 2𝛼 +

𝛼2   

𝑋3;𝑙 = √(1 + 𝑥2)𝛽𝑒−𝛼 𝑡𝑎𝑛−1(𝑥)  (4(𝛽 + 2)2𝑥2 + 2(𝛽 + 2)(1 + 𝑥2) − 4(𝛽 + 2)𝑥2

− 4(𝛽 + 2)𝛼𝑥 + 2𝛼 + 𝛼2) 

The eigen function from ground state condition can be plot from the solution of  𝑋0;𝑙, 

the eigen function can be seen at Figure (1) bellow, 

 

 
Figure 2. Eigen function with when groundstate condition 

And the eigen function for first energy, can be seen at Figure (2) bellow, 

 
Figure 3. Eigen function with with 𝛾 variation 

Wave function explain about probability density to find of electron, because 

statistical interpretation about wave function basicly show that the result of measuring 

in the quantum system unpredictable. From the Figure (2) that explain about ground 
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state condition, we can see that with the increase of gamma, not give anychange for 

amplitude, but just there is displacement of phase. That means electron can be find on 

the groundstate condition. If the amplitude increase  that mean the probability to find 

electron of course increase. So from the graph we can say that if the value of gamma 

increase so the probability density also increase. Fom the graph can be know that by 

given a little perturbation, amplitudo increase only on the graph when the 𝛾 value equal 

1,1. But for 𝛾 value equal 1 and 1,05 only displacement happening without increasing 

amplitudo. 

5.  Solution of Angular Dirac Equation for Non-central Potential using 

Romanovsky Polynomials 

The angular dirac equation with non-central potential given as, 

− [
𝑐𝑜𝑡 𝜃

𝑃(𝜃)

𝜕𝑃(𝜃)

𝜕𝜃
+

1

𝑃(𝜃)

𝜕2𝑃(𝜃)

𝜕𝜃2 +
1

𝜙(𝜑)

1

sin2𝜃

𝜕2𝜙(𝜑)

𝜕𝜑2
] + (𝐸 + 𝑀) (

𝑣(𝑣+1)

𝑠𝑖𝑛2𝜃
− 2𝑞𝑐𝑜𝑡 𝜃) = 𝜆

      (31) 

Where, 

−
1

𝜙(𝜑)

𝜕2𝜙(𝜑)

𝜕𝜑2 = 𝑚2      (32) 

The solution of equation (32) given as, 

𝜙 = √
1

2𝜋
𝑒𝑖𝑚𝜑      (33) 

By inserting equation (33) into (34) and with 𝜆 = 𝑙(𝑙 + 1) we obtain 

𝜕2𝑃(𝜃)

𝜕𝜃2 + 𝑐𝑜𝑡 𝜃
𝜕𝑃(𝜃)

𝜕𝜃
− {

𝑚2

sin2𝜃
+ (𝐸 + 𝑀) (

𝑣(𝑣+1)

𝑠𝑖𝑛2𝜃
− 2𝑞𝑐𝑜𝑡 𝜃) − 𝑙(𝑙 + 1)} 𝑃(𝜃) = 0

      (34) 

By setting 𝑐𝑜𝑡 𝜃 = 𝑥 we have, 

(1 + 𝑥2)
𝑑2𝑃(𝜃)

𝑑𝑥2 + 𝑥
𝑑𝑃(𝜃)

𝑑𝑥
− {𝑚2 + (𝐸 + 𝑀)𝑣(𝑣 + 1) −

(𝐸+𝑀)2𝑞𝑥

(1+𝑥2)
−

𝑙(𝑙+1)

(1+𝑥2)
} 𝑃(𝜃) = 0

      (35) 

By using equation (20) the solution of equation (35) is given as, 

(𝑥2 + 1)
𝜕2𝐷𝑛

(𝑝,𝑞)
(𝑥)

𝜕𝑥2 + (2𝛽𝑥 − 𝛼 + 𝑥)
𝜕𝐷𝑛

(𝑝,𝑞)
(𝑥)

𝜕𝑥
− [

𝛽2−𝛽−
𝛼𝑥

2
+𝛼𝛽𝑥−

𝛼2

4
−(𝐸+𝑀)2𝑞𝑥−𝑙(𝑙+1)

(𝑥2+1)
+

𝑚2 + (𝐸 + 𝑀)𝑣(𝑣 + 1) − 𝛽2] 𝐷𝑛
(𝑝,𝑞)(𝑥)      (36) 

By comparing equation (36) and equation (10) we obtain, 

−
𝛼

2
+ 𝛼𝛽 − (𝐸 + 𝑀)2𝑞 = 0      (37a) 

𝛽2 − 𝛽 −
𝛼2

4
− 𝑙(𝑙 + 1) = 0      (37b) 

2(−𝑝 + 1) = 2(𝛽 + 1)and 𝑞 = −𝛼      (37c) 

𝑚2 + (𝐸 + 𝑀)𝑣(𝑣 + 1) − 𝛽2 = 𝑛𝑙(𝑛𝑙 − 1) + 2𝑛𝑙(1 − 𝑝)      (37d) 

(𝛽 −
1

2
)

2

=
2𝑞2(𝐸+𝑀)2

−(𝑙(𝑙+1)+
1

4
)±√(𝑙(𝑙+1)+

1

4
)

2
+4𝑞2(𝐸+𝑀)2

      (37e) 

The value of 𝛽 and 𝛼 obtained from equation (37a) and (37b) are given as, 

𝛽 = √𝑚2 + (𝐸 + 𝑀)𝑣(𝑣 + 1) − 𝑛𝑙 −
1

2
      (38a) 
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𝛼 = −
(𝐸+𝑀)2𝑞

√𝑚2+(𝐸+𝑀)𝑣(𝑣+1)−𝑛𝑙−
1

2

      (38b) 

And the orbital momentum number found from equations (37c), (37d) and (37e) 

together with equation (38a) given as, 

𝑙 = √(√𝑚2 + (𝐸 + 𝑀)𝑣(𝑣 + 1) + 𝑛𝑙 +
1

2
)

2

−
2𝑞2(𝐸+𝑀)2

(√𝑚2+(𝐸+𝑀)𝑣(𝑣+1)+𝑛𝑙+
1

2
)

2 −
1

2
      (39) 

By using equation (15) and (20) we can find angular wave function, are showed bellow, 

𝑤(𝑥) = (1 + 𝑥2)√𝑚2+(𝐸+𝑀)𝑣(𝑣+1)−𝑛𝑙−
1

2 𝑒

(𝐸+𝑀)2𝑞

√𝑚2+(𝐸+𝑀)𝑣(𝑣+1)−𝑛𝑙−
1
2

 𝑡𝑎𝑛−1(𝑥)

       (40) 

And 

𝐷𝑛
(𝑝,𝑞)(𝑥) = ℛ𝑛

(−𝛽,−𝛼)(𝑥) =
1

(1+𝑥2)𝛽𝑒−𝛼 𝑡𝑎𝑛−1(𝑥)

𝑑𝑛

𝑑𝑥𝑛
((1 + 𝑥2)𝛽𝑒−𝛼 𝑡𝑎𝑛−1(𝑥))      (41) 

And the result of the wave function of the angular vave function is 

𝑋𝑛;𝑙 = √(1 + 𝑥2)𝛽𝑒−𝛼 𝑡𝑎𝑛−1(𝑥)  ℛ𝑛
(−𝛽,−𝛼)(𝑥)      (42) 

Some the solving of equation (41) and (42) are 

ℛ0
(−𝛽0,−𝛼0) = 1   

𝑋𝑛;𝑙 = √(1 + 𝑥2)𝛽𝑒−𝛼 𝑡𝑎𝑛−1(𝑥)        

          ℛ1
(−𝛽1,−𝛼1) = 2𝑥(𝛽 + 1) − 𝛼  

𝑋𝑛;𝑙 = √(1 + 𝑥2)𝛽𝑒−𝛼 𝑡𝑎𝑛−1(𝑥)  (2𝑥(𝛽 + 1) − 𝛼)    

            

ℛ2
(−𝛽2,−𝛼2) = 4(𝛽 + 2)2𝑥2 + 2(𝛽 + 2)(1 + 𝑥2) − 4(𝛽 + 2)𝑥2 − 4(𝛽 + 2)𝛼𝑥 + 2𝛼 +

𝛼2   

𝑋𝑛;𝑙 = √(1 + 𝑥2)𝛽𝑒−𝛼 𝑡𝑎𝑛−1(𝑥)  (4(𝛽 + 2)2𝑥2 + 2(𝛽 + 2)(1 + 𝑥2) − 4(𝛽 + 2)𝑥2

− 4(𝛽 + 2)𝛼𝑥 + 2𝛼 + 𝛼2) 

From the solve special function and by using the variation ov value 𝜈, q, and E we 

can get some angular wave function (Table. 5). The result of angular wave function can 

be visualizated on the form of angular wave function (Figure. 3) 

Table 5. Polinomial Romanovski and the corelation with angular wave function for non 

sentral potential 

No n m 𝜏 𝜎 E M l ℛ1
(−𝛽1,−𝛼1)(𝜃) 𝑃𝑙

𝑚 

1. 1 1 0 0 2 1 2 −3𝑐𝑜𝑡 𝜃 −3𝑐𝑜𝑡 𝜃(1 + 𝑐𝑜𝑡2𝜃)−1.25 

2. 1 1 0 1 -2.3 1 1.7 
−3𝑐𝑜𝑡 𝜃

− 1.05 

(−3𝑐𝑜𝑡𝜃 − 1.05) (1 +

𝑐𝑜𝑡2𝜃)−1.25𝑒−1.05 𝑡𝑎𝑛−1(𝑐𝑜𝑡 𝜃) 

3. 1 1 0 2 -0.8 1 0.5 
−3𝑐𝑜𝑡 𝜃

+ 0.27 

(−3𝑐𝑜𝑡 𝜃 − 1.05) (1 +

𝑐𝑜𝑡2𝜃)−1.25𝑒0.27𝑡𝑎𝑛−1(𝑐𝑜𝑡 𝜃) 

4. 1 1 1 0 5.4 1 4.7 −8.44𝑐𝑜𝑡 𝜃 −8.44𝑐𝑜𝑡 𝜃(1 + 𝑐𝑜𝑡2𝜃)−2.12 

5. 1 1 2 0 -1 1 2 −3𝑐𝑜𝑡 𝜃 −3𝑐𝑜𝑡 𝜃(1 + 𝑐𝑜𝑡2𝜃)−1.25 

6. 1 1 1 1 3.4 1 4.1 
−9.28𝑐𝑜𝑡 𝜃

+ 1.91 

(−9.28𝑐𝑜𝑡 𝜃 + 1.91) (1 +

𝑐𝑜𝑡2𝜃)−2.32𝑒1.91𝑡𝑎𝑛−1(𝑐𝑜𝑡 𝜃) 
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7. 1 1 2 2 -1.1 1 3.1 
−𝑐𝑜𝑡 𝜃

− 0.43 

(−𝑐𝑜𝑡 𝜃 − 0.43) (1 +

𝑐𝑜𝑡2𝜃)−0.75𝑒−0.43𝑡𝑎𝑛−1(𝑐𝑜𝑡 𝜃) 

The angular wave function can be showed by the picture bellow,  

 

 

 

 

  

 

 

 

𝓡𝟏
(−𝜷𝟏,−𝜶𝟏) = −𝟑𝒄𝒐𝒕 𝜽 𝑷𝟐

𝟏 = −𝟑𝒄𝒐𝒕 𝜽(𝟏 + 𝒄𝒐𝒕𝟐𝜽)
−𝟏.𝟐𝟓

 𝑷𝟐
𝟏 = −𝟑𝒄𝒐𝒕 𝜽(𝟏 + 𝒄𝒐𝒕𝟐𝜽)

−𝟏.𝟐𝟓
 

   

𝓡𝟏
(−𝜷𝟏,−𝜶𝟏) = −𝟑𝒄𝒐𝒕 𝜽 − 𝟏. 𝟎𝟓 

𝑷(𝟏.𝟕)
𝟏 = (−𝟑𝒄𝒐𝒕 𝜽 − 𝟏. 𝟎𝟓) 

(𝟏 + 𝒄𝒐𝒕𝟐𝜽)
−𝟏.𝟐𝟓

𝒆−𝟏.𝟎𝟓 𝒕𝒂𝒏−𝟏(𝒄𝒐𝒕 𝜽) 

𝑷(𝟏.𝟕)
𝟏 = (−𝟑𝒄𝒐𝒕 𝜽 − 𝟏. 𝟎𝟓) 

(𝟏 + 𝒄𝒐𝒕𝟐𝜽)
−𝟏.𝟐𝟓

𝒆−𝟏.𝟎𝟓 𝒕𝒂𝒏−𝟏(𝒄𝒐𝒕 𝜽) 

   

𝓡𝟏
(−𝜷𝟏,−𝜶𝟏) = −𝟑𝒄𝒐𝒕 𝜽 + 𝟎. 𝟐𝟕 

𝑷(𝟎,𝟓)
𝟏 = (−𝟑𝒄𝒐𝒕 𝜽 + 𝟎. 𝟐𝟕) 

(𝟏 + 𝒄𝒐𝒕𝟐𝜽)
−𝟏.𝟐𝟓

𝒆𝟎.𝟐𝟕𝒕𝒂𝒏−𝟏(𝒄𝒐𝒕 𝜽) 

𝑷(𝟎,𝟓)
𝟏 = (−𝟑𝒄𝒐𝒕 𝜽 + 𝟎. 𝟐𝟕) 

(𝟏 + 𝒄𝒐𝒕𝟐𝜽)
−𝟏.𝟐𝟓

𝒆𝟎.𝟐𝟕𝒕𝒂𝒏−𝟏(𝒄𝒐𝒕 𝜽) 

 

Figure 3. Visualisation of angular wave function on 3 and 2 dimension with the 

variation of 𝜇 

 

 

 

 

  

 

𝓡𝟏
(−𝜷𝟏,−𝜶𝟏) = −𝟑𝒄𝒐𝒕 𝜽 𝑷𝟐

𝟏 = −𝟑𝒄𝒐𝒕 𝜽(𝟏 + 𝒄𝒐𝒕𝟐𝜽)
−𝟏.𝟐𝟓

 𝑷𝟐
𝟏 = −𝟑𝒄𝒐𝒕 𝜽(𝟏 + 𝒄𝒐𝒕𝟐𝜽)

−𝟏.𝟐𝟓
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𝓡𝟏
(−𝜷𝟏,−𝜶𝟏) = −𝟖. 𝟒𝟒𝒄𝒐𝒕 𝜽 

𝑷(𝟒,𝟕)
𝟏 = −𝟖. 𝟒𝟒 𝒄𝒐𝒕 𝜽 

(𝟏 + 𝒄𝒐𝒕𝟐𝜽)−𝟐.𝟏𝟐 

𝑷(𝟒,𝟕)
𝟏 = −𝟖. 𝟒𝟒 𝒄𝒐𝒕 𝜽 

(𝟏 + 𝒄𝒐𝒕𝟐𝜽)−𝟐.𝟏𝟐 

   

𝓡𝟏
(−𝜷𝟏,−𝜶𝟏) = −𝟕. 𝟐𝟖𝒄𝒐𝒕 𝜽

+ 𝟏. 𝟗𝟏 

𝑷(𝟒,𝟏)
𝟏 = −𝟕. 𝟐𝟖 𝒄𝒐𝒕 𝜽 + 𝟏. 𝟗𝟏 

(𝟏 + 𝒄𝒐𝒕𝟐𝜽)
−𝟐.𝟑𝟐

𝒆𝟏.𝟗𝟏𝒕𝒂𝒏−𝟏(𝒄𝒐𝒕 𝜽) 

𝑷(𝟒,𝟏)
𝟏 = −𝟕. 𝟐𝟖 𝒄𝒐𝒕 𝜽 + 𝟏. 𝟗𝟏 

(𝟏 + 𝒄𝒐𝒕𝟐𝜽)
−𝟐.𝟑𝟐

𝒆𝟏.𝟗𝟏𝒕𝒂𝒏−𝟏(𝒄𝒐𝒕 𝜽) 

Figure 4. Visualisation of angular wave function on 3 and 2 dimension with the 

variation of 𝜎 

The form of angular wave function related with direction of angular momentum and 

discribing deppending of probability density to the angular. General definition of 

angular wave function same with radial wave function, but both have differences. 

Radial wave function about far or near electron from nucleus, if angular wave function 

corellation with around of electron. 

For the value of 𝑚𝑙 = 0, electron can be found on the z axis. But for the value 𝑚𝑙 =

±1, electron can be found on the x and y shape. If 𝑚𝑙 = 1, the electron counter clock 

wise, but if 𝑚𝑙 = −1 the electron opposite.  

The form of angular wave function it influenced by the value of 𝜈 and q that give 

different influence to form of angular wave function. Increasing q value but the  𝜈 is 

constan, the noise that be given by Rosen Morse potential can make smaller wave 

function on the x,y, and z direction. But if the increasing 𝜈 value with the q constan, the 

noise that be given by Rosen Morse potential can make biger wave function. If 𝜈 and q  

value not constan, all the wave funtion can be smaller.The changes of angular wave 

function to the 𝜈 and q value explained that the noise from Rosen Morse potential make 

change to probability on the angular function, but not influence to the direction of 

electron circle.  

6.  Conclusion 

In this paper be explained the numerical solution of Dirac equation for Rosen Morse 

potential plus Rosen Morse potential with the centrifugal term in term of Romanovski 
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polynomials. The energy spectrum is obtained in the closed form and the wave function 

obtained is expressed in terms of Romanovski polynomials. With a little increasing of of 

𝛾 can make large change of energy eigen value. 
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