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Abstract: The purpose of this study is to provide systematic information 

through micromagnetic simulations related to the impact of particle size on 

the magnetic characteristics of Cobalt-ferrite MNP. The micromagnetic 

computations performed were based on LLG equation. The MNPs sample 

was simulated in the form of a rectangular parallelepiped with a thickness of 

20 nm and square surface with lateral length varies from 10 to 80 nm at an 

interval of 10 nm. The results of this study indicate that the size changes in 

Cobalt-ferrite MNP have a significant impact on various magnetic 

properties, such as the magnitude of the barrier energy, coercive and 

nucleation fields, magnetization rate, magnetization curve profile, and 

magnetization mode. Cobalt-ferrite MNP with a size of 10 nm shows a 

single domain with a relatively short magnetization reversal time and high 

coercive field. 
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1.  Introduction 

The nanotechnology industry is growing rapidly and promises significant changes in 

various fields in the present, such as aerospace engineering, environmental 

improvement, health, and nano-electronics (Amiri & Shokrollahi, 2013). Magnetic 

nanoparticles (MNPs) have numerous unique properties and offer exciting new options 

in many applications. These properties of MNPs are categorized into three, namely 

macroscopic, intrinsic magnetic and physical structure properties. Macroscopic 

properties include coercive field, nucleation field, and energy density. Intrinsic 

properties include magnetization, magneto-crystalline anisotropy, and exchange 

constant. Physical structure properties are characterized by particle size and shape. 

These properties determine the performance of MNPs, both in terms of the intensity of 

magnetic field it can produce, and the sensitivity of its response to external magnetic 

field (Fischbacher et al., 2018). These properties can be controlled through modification 
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of its synthesis method (Ganachari et al., 2017; Houshiar et al., 2014; Purnama et al., 

2015). The one of the fundamental aspects of MNPs in its application is its particle size. 

In terms of size, potential MNPs are those that have strong magnetic properties even 

though they are extremely small. 

MNPs which in the last two decades has been considered by many researchers to be 

used is Cobalt-ferrite (CoFe2O4). The unique physical and mechanical characteristics of 

Cobalt and Ferrite are the key factors in the development of nanotechnology. Cobalt-

ferrite is mechanically durable (Srinivasan et al., 2018) and has strong coercivity despite 

its small size (Limaye et al., 2009), and its Curie temperature is quite high (Mohamed, 

2010). This material is also chemically stable, electrical insulating, and easy to 

synthesize (Amiri & Shokrollahi, 2013). 

The micro structure of Cobalt-ferrite MNP greatly influences its magnetization 

reversal behavior. This behavior determines the important extrinsic properties of 

Cobalt-ferrite MNP. In the effort to improve the performance of Cobalt-ferrite MNP, it 

needs not only research regarding synthesis and characterization processes, but also 

computation, specifically micromagnetic computation. This micromagnetic numerical 

simulation is one of the pillars in the development of material physics, in addition to 

experiments and theoretical studies (Bedanta et al., 2013). In addition to being used to 

understand its magnetization reversal mechanism well (Bance et al., 2015), 

micromagnetic computation method can also be used to study the effects of 

microstructure on the magnetic properties of a material, so that the simulation results 

can be used as a reference for MNPs development (Fischbacher et al., 2018). However, 

there are only few micromagnetic studies of nano-Cobalt-ferrite. 

Before realizing nanoparticles, including Cobalt-ferrite MNP, a comprehensive 

understanding of various aspects is needed to encourage extensive fundamental research 

(Guo et al., 2018). However, fundamental research related to magnetic characteristics is 

rarely noticed (Ghazanfari et al., 2016). Therefore, this work will complement 

fundamental information related to the magnetic features of Cobalt-ferrite MNP. The 

purpose of this study is to provide a systematic basic understanding through 

micromagnetic simulations related to the magnetic characteristics of Cobalt-ferrite 

MNP. In particular, we will discuss the relationship between changes in particle size 

and magnetic features of Cobalt-ferrite MNP. The characteristics studied focus only on 

the critical properties in applications, such as energy density, material coercivity, 

nucleation field, magnetization reversal rate, and magnetization behavior. 

2.  Numerical Method 

In this micromagnetic study, the MNPs was simulated in the form of a rectangular 

parallelepiped with a thickness, D, of 20 nm and square surface with lateral length of L. 

This sample consisted of elements that were also rectangular parallelepiped with a 

thickness of D and square surface with lateral length of l, where L = nl with n is the 

number of elements. To make it smaller than the width of the domain wall (Shir, 1978), 

l was set to be 3.3 nm.  
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Figure 1. Magnetic nanoparticle model. 

The thin layer consisted of n2 elements. In this study, n was varied from 3, 6, 9, 12, 

15, 18, 21, to 24, so that the surface areas of the layers were 10 × 10 nm2, 20 × 20 nm2, 

30 × 30 nm2, 40 × 40 nm2, 50 × 50 nm2, 60 × 60 nm2, 70 × 70 nm2, and 80 × 80 nm2. 

The size of L was designed in the order of tens of nanometers. In that order, the 

effective surface becomes wider (Akbarzadeh, 2012). Illustration of MNPs and its 

constituent elements is shown in Figure 1. 

The investigated MNPs have the characteristics of Cobalt-ferrite with the chemical 

structure of CoFe2O4. According to the experiment previously conducted by Houshiar et 

al., Amiri et al., and Rondinone et al., the magnetic parameters used in this simulation 

were magnetic saturation, 4πMs, of 3735 Gauss (Houshiar et al., 2014) with magnetic 

anisotropy, K, of 1.90×106 erg/cc (Amiri & Shokrollahi, 2013) and 2.23×106 erg/cc 

(Rondinone et al., 2000). The easy axis of the MNPs was set in the direction of the x-

axis, so that the magnetization direction was saturated perpendicularly to the surface of 

the layer. Each element contains magnetic moment, m. The magnetization of the MNPs 

is the resultant value of the magnetic moment of its constituent elements (M = (n2/V) 

m). Other material parameters used in this simulation included Curie temperature of 373 

K, exchange interaction constant of adjacent elements of 1.0×10-7 erg/cm, damping 

Gilbert constant of 0.3, and gyromagnetic ratio of 1.76×107 Oe-1.s-1. In the computation, 

the integration step used was 0.25 ps. 

To determine the impact of the size of Cobalt-ferrite MNP on its magnetic properties 

and reversal behavior, a micromagnetic computation approach was used. Computations 

were performed using a micromagnetic software by Konishi et al. (Purnama et al., 2009; 

Wibowo et al., 2014; Purnama et al., 2007; Wibowo et al., 2019; Wibowo et al., 2019). 

The basis of the work of this device is the Landau-Lifshift-Gilbert (LLG) equation 

(Azizah et al., 2017; Suess et al., 2002). In this simulation, the MNPs model, which was 

initially magnetized in the direction of the x-axis (+), was conditioned at room 

temperature (T = 298 K) while being induced by an external magnetic field towards the 

x-axis (−), so that the sample part exposed to the field was only the square surface with 

an area of L2. The intensity of this inducing magnetic field was increased linearly from 0 

to 2 Tesla for 2.5 ns. 
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Figure 2. Basic profile of, (a). Barrier energy, (b). Nucleation and coercive field. 

Some of the magnetic properties of Cobalt-ferrite MNP studied were barrier energy 

(∆E), nucleation field (Hn), coercive field (Hc), and reversal rate (∆M/∆t). The barrier 

energy was measured from the height of the energy densities of the sample during the 

induction using an external magnetic field (Figure 2(a)). This barrier separated two 

stable states of magnetization. The magnetic field needed to start the magnetization 

change is called the nucleation field. On the other hand, the field required to reverse half 

of the total magnetization is called the coercive field. The nucleation and coercive fields 

were determined from the formed magnetization curve while the sample was being 

induced, as shown in Figure 2(b) (Richter & Harkness, 2006). 

3.  Result and Discussion 

The total energy of the MNPs is determined by several forms of energy, namely 

Zeeman energy, anisotropic energy, exchange energy, and magnetostatic energy 

(Schrefl et al., 2006). Zeeman's energy appears because of the interaction of the external 

magnetic field with the magnetic moment of the elements and causes the direction of the 

rotating magnetic moment to adjust to the direction of the inducing magnetic field. 

Anisotropic energy appears because of the interaction between atoms and crystal 

structure, and causes the direction of the magnetic moment of the elements to tend to be 

parallel to the crystal orientation of the MNPs. Exchange and magnetostatic energies 

appear as the consequences of the interaction between the magnetic moments of 

neighboring constituent elements. The existence of exchange interaction causes the 

direction of the magnetic moment of adjacent elements tends to be parallel to each other 

(Schrefl et al., 2006). 

 

Figure 3. Energy of NPM Cobalt-ferrite for various sizes with the magnetic anisotropy 

constant as large as (a). 2.23×106 erg/cc, dan (b). 1.90×106 erg/cc. 
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While being induced by a magnetic field, the total energy of MNPs is determined by 

the magnetic moment polarization of its elements. The total energy adjustment during 

the magnetic fiel induction is shown in Figure 3. In this process, barrier energy was 

formed, which separated the two minimum states. The first minimum state is related to 

the stable circumstance of the initial magnetization, whereas the second minimum state 

is related to the stable circumstance of the magnetization of the MNPs when it had been 

saturated due to the guidance of the external magnetic field. If the surface lateral length 

of the MNPs is larger, then the peak of this barrier shifts towards the lower field. In 

addition, the height of the barrier energy was also different for each surface size. This 

barrier represents the thermal stability of a material. Materials with low barrier easily 

lose its magnetism. 

 

Figure 4. Size dependence of barrier energy. 

The dependence of the barrier energy on the surface lateral length is presented in 

Figure 4. The larger surface area of the MNPs is, the higher barrier energy is. In this 

study, the dependence of the barrier energy on the MNP size is in-line with the previous 

predictions which fit to the Equation 1 (Purnama, 2009; Xiang & Takeuchi, 2003; Liu et 

al., 2009). 

 ( )2 22 sE K M DL = −   (1) 

The first term of the equation includes the magnetic anisotropy parameter. The effect 

of anisotropy on the magnitude of ΔE is observed in Figure 4. The barrier energy was 

also lower for MNPs with small anisotropy. This magnetic anisotropy energy is the 

most dominant contributor in most particles in the form of thin layers. This parameter is 

the key to the properties of a magnetic material, which is a manifestation of the 

interaction between electron spins and orbital moments (spin-orbit coupling). Therefore, 

modification of the electronic structure on the surface and interface will have an impact 

on the strength of the magnetic anisotropy. This modification can be done by optimizing 

the particle synthesis process. On the other side, the second term comes from the 

magnetostatic energy because of the interaction between the magnetic moments of the 

adjacent elements. Modifications in the surface size of MNP determine the geometry 

ratio and the intensity of the magnetostatic field produced (Szambolics et al., 2009; 

Zeng et al., 2002). 

For Cobalt-ferrite MNP with a lateral length of 10 nm, the magnitude of the barrier 

energy can be compared to kBT. This indicates that in the absence of magnetic field, the 

magnetic strength of Cobalt-ferrite MNPs with L = 10 nm is relatively weak and will 
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even disappear completely at a certain temperature. The loss of MNPs' magnetic 

properties when it is not exposed to an external magnetic field is a key factor in the drug 

delivery system because the agglomeration process can be prevented (Arruebo et al., 

2007). 

The magnetization orientation of Cobalt-ferrite MNP while it was being induced by 

an external magnetic field is shown in Figure 5. MNPs’ magnetization which was 

initially saturated in the x (+) direction, gradually transformed and reversed towards its 

stable state, along with the increase in the intensity of the inducing magnetic field. For 

two different anisotropic values, the particle size greatly influenced the shape of the 

magnetization curve. The larger surface size of MNPs is, the greater slope of the 

magnetization curve is. This result is in line with the research previously conducted by 

Anderson (Andersson, 2013). 

 

(a) 

 
(b) 

Figure 5. (a). Magnetization curve of NPM Cobalt-ferrite for various sizes, (b). Micro 

structure visualization. 

The magnetization reversal mechanism of Cobalt-ferrite MNP with different surface 

sizes is presented in the form of micrograph in Figure 5(b). Black color represents the 

magnetic polarization of the elements in the x-axis direction (+) (initial direction), white 

color represents the opposite direction (in the direction of the inducing field), whereas 

gray color represents the polarization in the other direction. Both code S7 and code S14 

represent the stages during the magnetization reversal. This magnetization reversal 
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mode of MNPs was strongly influenced by the particle size. For large particles (L > 20 

nm), the magnetization reversal transpired in a non-uniform mode (Fischbacher et al., 

2018) with the formation of domain walls. On the other side, for small particles (L = 10 

nm), the reversal took place more uniformly through a spin rotation mechanism (Issa et 

al., 2013). The conversion in these reversal processes are related to the weakening of 

interactions between elements as a result of reducing the number of adjacent elements 

interacting with each other. This indicates that in small particles (L = 10 nm), a single 

domain starts to be formed. This size is in line with the experiment conducted by Xu et 

al., in which with the thermal decomposition of a metal-organic salt method, they 

successfully synthesized a single-domain Cobalt-ferrite MNP with a size of 9 nm, 13 

nm, and 16 nm (Xu et al., 2016). 

 

 

Figure 6. Surface size dependence of reversal rate. 

Measurement of reversal time is highly important in studying the magnetization 

behavior of nano-sized magnetic particles (Moon et al., 2018). The lateral size 

dependence of magnetization rate for nano-Cobalt-ferrite is presented in Figure 6. The 

observed rate is in the GHz order (Moon et al., 2018). The magnetization reversal rate is 

strongly depending on the particle size. A slight modification in the size will have a 

major impact on the stability of the magnetization direction (Majetich, 1999). These 

simulations reveal that the magnetization reversal rate of Cobalt-ferrite MNP is 

sensitive to its size according to the exponential function previously addressed by 

Arrhenius-Neel: 

 
B

~ exp
E

f
k T

 
− 
 

 (2) 

where the magnetic moment reversal rate, f, is determined by the magnitude of the 

barrier energy between two stable magnetic states (Majetich & Jin, 1999; Stier et al., 

2018; Chantrell, 1988). Referring to Equation 1, that the barrier energy is proportional 

to the particle volume (ΔE ~ DL2), the exponential decrease of the magnetization 

reversal rate against the surface area of Cobalt-ferrite MNP can be expressed in the 

following relation: 

 
( )2exp~

M
L

t



−

   (3) 

with β is a constant that depends on the particle thickness, temperature, and magnetic 

properties of a material, such as magnetic anisotropy and magnetic saturation. In the 
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prospect of its application, the use of 10 nm Cobalt-ferrite MNP, which has a reversal 

rate of up to ~ 12 GHz, is projected to be considerably useful in improving the sensors 

performance which based on the magnetic relaxation. 

The nucleation field as a function of the surface size for Cobalt-ferrite MNP is shown 

in Fig.7(a). The nucleation field strengthened as the particle size decreased. This result 

corresponds to the research that was previously conducted by Schmidts and Kronmüller. 

In the study, an increase in the intensity of the nucleation field was also observed due to 

the size of the reduced particles (Chmidts & Kronmüller, 1991). On the other hand, the 

magnitude of the coercive field of Cobalt-ferrite MNP on various surface sizes is shown 

in Figure 7(b). In the range of lateral lengths from 10 nm to 80 nm, the intensity of the 

coercive field of Cobalt-ferrite MNP was in the range of 5 – 20 kOe. The magnitude of 

the coercive field in this simulation is quite realistic compared to Limaye et al.'s 

research which found that the coercivity of Cobalt-ferrite MNP of ~ 20 nm was in the 

range of 930 – 9470 Oe with the annealing temperature variations reduced from 1473 K 

to 373 K (Limaye et al., 2009). In MNPs with a narrowed surface, the coercive field 

strengthened. This result confirms other studies. In the microstructure simulation study 

carried out by previous researchers, a strengthening of the coercivity towards the 

decreasing particle dimensions was also observed (Hadjipanayis & Kim, 1988; Durst & 

Kronmüller, 1987; Bance et al., 2014). This result was also supported by experimental 

data from several other studies. In his experiments on Cobalt nanowires, Zeng et al. 

observed that in the range of the decreasing diameter of nanowires from 20 to 10 nm, 

there was a strengthening of coercive field (Zeng et al., 2002). The same pattern was 

also observed experimentally by (Fukada et al., 2012), (Uestuener et al., 2006) and 

(Ramesh et al., 1988). There is no specific function that correlates particle size with 

magnitude of the coercive field. This is due to the large number of parameters, in 

addition to the particle size, which affect the microstructure of the particles, including 

the time and temperature of the sintering process, and the composition of the particle 

elements (Schmidts & Kronmüller, 1991). Referring to Figure 5, the increase in 

coercivity along with the reduction of the particle surface size can be attributed to the 

transformations of magnetization reversal modes from the domain wall nucleation to the 

rotation of magnetic moment (Issa et al., 2013) as the effects of the reduced interaction 

of the adjacent elements. 

 

 

Figure 7. Size dependence of (a). Nucleation field, dan (b). Coercive field. 
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In addition to the surface size impression in Figure 7, it was also observed that the 

magnetic anisotropy of the MNPs greatly influenced the magnitude of the nucleation 

and coercive fields. These two types of fields are interrelated (Fischbacher et al., 2018), 

where the magnitude of the nucleation field will never exceed the coercive field. Both 

of these fields had the same response to the material anisotropy. The material anisotropy 

induced an increase in the coercive field (Issa et al., 2013) as well as the nucleation field 

(Zhao et al., 2017). The result of this increase was the larger of the hysteresis curve, so 

that the dissipated energy was also getting higher (Salas-Solis et al., 2004). The high 

coercive field of Cobalt-ferrite MNP at L = 10 nm indicates that the superparamagnetic 

phenomenon had not been realized yet even though a single domain had been formed. 

This is confirmed by Kafrouni and Savadogo who stated that the maximum size of 

Cobalt-ferrite MNP is still superparamagnetic at 5 nm (Kafrouni & Savadogo, 2016). 

4.  Conclusion 

Micromagnetic simulation study was carried out on the magnetic properties of 

Cobalt-ferrite magnetic nanoparticles in its relation to modifications in the size of a 

square surface. It was observed that changes in particle surface size had a significant 

impact on various magnetic properties of Cobalt-ferrite MNP, which are the magnitude 

of barrier energy, coercive and nucleation fields, magnetization reversal rate process, 

magnetization curve profile, and magnetization reversal mode. 

From the results of these micromagnetic simulations, four characteristics of Cobalt-

ferrite MNP were observed with a lateral length of 10 nm. First, magnetism will lost 

easily due to the heat fluctuations when it was not exposed to the field. Second, a single 

domain was formed, so the magnetization reversal process during the induction with the 

external magnetic field took place in rotation. Third, magnetization reversal took place 

with a high frequency. Fourth, high coercivity was observed, which indicated that 

Cobalt-ferrite MNP of that size had not been in the superparamagnetic phase. The high 

coercivity can be correlated with the weakening of the interaction energy between 

elements as a result of reducing the number of adjacent elements interacting with each 

other. 
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