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Abstract: The Hypergeometry method can be used to solve the Schrodinger 

equation in bisperical coordinate for Kratzer potential. By substituting 

Laplacian in bisperical coordinate, the new wave function, and potential 

parameters, the Schrodinger equation was reduced to the second order of 

Hypergeometry function equation which is used to determine the energy and 

un-normalized wave function equation. Energy spectrum was calculated using 

Matlab software and the un-normalized wave function was expressed in 

hypergeometry form.  
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1.  Introduction 

An analytical solution of the radial Schrodinger equation is of high importance in 

quantum mechanics because the wave functions and energy contain all the important 

information needed to describe quantum systems (Bayrak et al., 2006). The solution of 

Scrodinger equation for some potential have been investigated by some authors using the 

factorization method (Sadeghi, 2007), supersymmetry of quantum mechanics 

(SUSYQM) (Ahmadov et al., 2017; Ahmadov et al., 2018), Asymptotic Iteration Method 

(AIM) (Bayrak et al., 2006; Falaye, 2012; Bayrak & Boztosun, 2007), Nikiforov–Uvarov 

method (NU) (Edet et al., 2019; Berkdemir & Han, 2005; Ikot et al., 2013; Okon et al., 

2017), and Hypergeometry (Hidayat et al., 2019). One method used in this study is the 

Hypergeometry method. The Hypergeometry method can be applied to several potentials, 

specifically for potential invariant forms, such as Kratzer, Gendenhstein, Morse, Pӧschl-

Teller, Morse Rosen, Scarf, Manning Rosen, Eckart, Wood-Saxon and Top Symmetrical 

potential (Suparmi, 2011). 

In this study, the potential is used the Kratzer potential. Kratzer potential is mostly 

applied in atomic physics, molecular physics, and quantum chemistry (Sadeghi, 2007). 

Kratzer potential is used to describing the interaction of molecular structures in quantum 

mechanics. Kratzer's potential consists of a long-range attraction and a repulsive part. The 

integration of the Kratzer potential can be used to determine the eigenvalues of vibrational 

and rotational energy. The Kratzer potential is known as the infinity approach when the 
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internuclear distance approaches are zero because the repulsion is between potential 

molecules. the distance of the internuclear molecule approaches infinity because the 

potential decomposes to zero (Bayrak et al., 2006). 

This paper covers several sections, the solution of Schrodinger equation in bispherical 

coordinate and Hypergeometry method in section 2, The result and discussion about the 

result energy spectrum and the unnormalized wave function were expressed in 

Hypergeometry terms in section 3, and conclusion in section 4. 

2.  Research Methods 

2.1.  The solution of the Schrodinger equation in bispherical coordinate 

The general of time-independent Schrodinger equation with mass ( )m  and vector 

potential ( )V   is given by (Taskin & Kocak, 2010) 

 ( )
2

2

2
V E

m
  

 
−  + = 
 

h
 (1) 

From the formulas for the gradient and divergence, we can form the Laplacian the 

Laplacian in curvilinear coordinate is given as (Arfken et al., 2005) 

 2 2 3 3 1 1 2

1 2 3 1 1 1 2 2 2 3 3 3

1 h h h h h h

h h h q h q q h q q h q
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 
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 =   = + +     
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 (2)  

The scale factor of the bisperical coordinates is defined as follows (Gongora & Rev, 1996; 

Gilbert & Giacomin, 2019) 

 
cosh cos

a
h h 
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−
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h



 
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−
 (3b) 

Equation (3a) and (3b) were inserted into equation (2), so we get operator Laplacian in 

bispherical coordinate is given as  
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Equation (4) will be simplified by introducing new wave function as 

cosh cos F  = − that it was reduced to 
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2 2 2 2

cosh cos 1 1
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sin 4sin
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 (5) 

Equation (5) and cosh cos F  = −  were inserted into equation (1) is given as 
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  (6) 
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Equation (6) is a Schrodinger equation in bispherical coordinate that can be solved 

analytically and exactly by introducing variable mass 

 
( )

2

0

2

cosh cosm
m

a

 −
=  (7) 

Where 0m  is reduced mass parameter. Equation (7) was inserted into equation (6), we get 

 ( )
2 2

0 0

2 2 2 2 2

2 21 1 1
sin 0

sin 4sin

m mF F F
V F E F 

    

      
+ + − − − =   
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 (8) 

Equation (7) can be solved using the variable separation method and setting the new 

wave function ( ) ( ) ( )F M H P  =  to obtain three parts with different direction as 

,  ,    in  Schrodinger equation in bispherical coordinates is gives as  
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The radial part of Schrodinger equation in bispherical coordinate in Equation (9) was 

simplified to 

 ( )
2

0

2 2

2
' 0

mM
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 (12) 

with 

 01

2

21 4
'

4

m
E E

+ 
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 (13) 

2.2.  Hypergeometry methods 

The principles of Hypergeometry method is substituted with new variable and 

parameter to obtain a second-order differential equation of Hypergeometry function 

which is expressed by (Suparmi, 2011; Suparmi et al., 2019). 

 ( ) ( )( )
2

2
1 1 0

d d
z z c a b z ab

dzdz

 
− + − + + − =   (14) 

Equation (14) has two regular singulars points at 0z =  and 1z = , and an irregular 

singular point in z = . By choosing a simple form, the solution of equation (14) is 

expressed in a series form around point 0z =  is given as (Suparmi, 2011; Suparmi et al., 

2019) 

 
s n

nz a z =   (15) 

The solution form of the Hypergeometry differential equation in Equation (14) is given 

as (Suparmi, 2011). 
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 ( ) ( )
( ) ( )

( )1 2 1

0

, , ;
!

nn n

n n

a b
z F a b c z z

c n


=

= =  (16) 

With, 

 ( ) ( )( )( ) ( )1 2 3 ..... 1
n

a a a a a a n= + + + + −  dan ( ) 1
o

a =  (17) 

The energy spectrum level is obtained when the solution of Equation (16) has form of 

polynomial rank a n= −  or b n= − . 

3.  Result and Disscussion 

Kratzer potential is defined by [7,17-18] 

 ( ) 1 2

2

V V
V 

 
= − +  (18) 

With 1 2 eV D a=  and 2

2 eV D a= . Where eD  is the dissociation energy and a  is the 

equilibrium internuclear separation. 

We employ the approximation scheme to get rid of the centrifugal barrier as (Edet et al., 

2019; Greene & Aldrich, 1976). 
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

−
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1

1 q

q
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−
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Equation (19) was inserted into Equation (18) was given as  
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( ) ( )
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2
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q q

V q V q
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 (20) 

Equation (20) can be changed using the hyperbolic function rule was given as (Spigel, 

1968) 
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Equation (21) and (22) were inserted into equation (12), we obtain 

0 1 0 1
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h
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 (23) 

Equation (23) can be solved by Hypergeometry method with variable and parameter 

substitution like using Manning Rosen potential. In equation (23) with approximation 

variable like in Manning Rosen, we have relationship equation (Suparmi, 2011): 

 ( )
2

0 2

2
1

2

m q V
v v − =

h
 (24a) 

https://doi.org/10.20961/jphystheor-appl.v3i2.42544


Journal of Physics: Theories and Applications E-ISSN: 2549-7324  /  P-ISSN: 2549-7316    

J. Phys.: Theor. Appl.  Vol. 4 No. 2 (2020) 48-58 doi: 10.20961/jphystheor-appl.v3i2.42544 

 

52 The solution of Schrodinger equation …. 
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'

m qV m q V
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Equation (24a)-(24c) were inserted into equation (23), we get 

 ( )
2

2 2
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Equation (25) can be solved by using variable and parameter approximation was given as  
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Equation (26)-(27) were applied in equation (25), we get 
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The left and right segments in Equation (28) was divided 
2 z(z 1)q − , we get  
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By setting 1 (1 )z z− = − −  and ( )2 1 1 2z z− = − −  in Equation (29) was given as 
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The left and right segments in Equation (30) was multiplied (−1) was given as 
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By setting the new parameters in Equation (31), we have 

 ( )
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
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2
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2

k
k

q
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Equation (32a)-(32c) were inserted into equation (31), we obtain  
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Equation (33) was simplified to 
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2 2 2
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2 2
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 By setting the new wave function and new parameter were given as 

 ( ) ( )1M z z f z
= − , (35a) 

 
2 22 k  − + = and 

2 22 k  + =  (35b) 

Equation (35a) and (35b) were inserted into Equation (34), we get the second-order 

Hypergeometry function like equation (14) is given as  
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By setting new parameter in Equation (36) like Equation (14), we have 
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Equation (35b) was inserted into Equation (38), we obtain 
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Equation (39) was simplified to 
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Equation (13), (24c), and (32c) were applied in Equation (40), we obtain 
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With, 
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−
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Equation (41) is the energy spectrum equation of the Kratzer potential in bispherical 

coordinates using the Hypergeometry method. 

Furthermore, the wave function equation for the Schrodinger equation in bispherical 

coordinate with Hypergeometry method for Kratzer potential has a solution with 

application Equation (16) in Equation (35a), we get (Suparmi, 2011; Spigel, 1968). 

 ( ) ( ) ( )' ' '

12
1 ( ) 1 , , ,M z z f z z z F a b c z

  = − = −  (44) 
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Equation (35b) was inserted into Equation (40), so we get new parameters   dan   as 

follows  
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Equation (45)-(46) in Equation (44), we obtain 
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Equation (47) was simplified to 
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With 
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
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
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h

h

 (50) 

Equation (45) was inserted into Equation (37), we get 

 
' 1a v n  = + − + = −  (51) 

 2 1b v v n  = + + = − −  (52) 

 ( )
( )

' ' 4
2 1 1 1

1
c c v n

v n




  
= + → = − − − +     − −  

 (53) 

Equation (52)-(53) was simplified using Equation (42)-(43), we get  

 0 2 0 2

2 2

2 21 1 1
2 1 2 1 2

4 2 4

m V m V
b v n n n

 
 = − − = + + − − = + −  

 h h
 (54) 
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h
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  (55) 

With, 

 0 2

2

2 1

4

m V
 = +

h
 (56) 

Equation (49)-(50) and equation (56) were inserted into Equation (54)-(55),  

so we get a simpler form as follows 

 'a n= −  (57) 

 2b n = −  (58) 

 4 1c  = − +  (59) 

By applying Equation (14), Equation (49)-(50) and Equation (57)-(59) in Equation (48), 

we get 
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 (60) 

with 
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 (61) 

The result of the un-normalized wave function equation for the Schrodinger equation 

in Bispherical coordinate with the Hypergeometry method for Kratzer potential with 

quantum number variation (𝑛) is shown in Table 1.  

Table 1. The un-normalized wave function equation for the Schrodinger equation in 

Bispherical coordinate with Hypergeometry method for Kratzer potential with quantum 

number variation (𝑛) 

 

𝑛 𝑀 

0 

( )
( )

1
2

2
0 4

cos
2

2

1

sinh cosh
2 2

q
ech

M
q q







 

 
+  

 


 
 
 
  
 

= −
 

− 
 

 

https://doi.org/10.20961/jphystheor-appl.v3i2.42544


Journal of Physics: Theories and Applications E-ISSN: 2549-7324  /  P-ISSN: 2549-7316    

J. Phys.: Theor. Appl.  Vol. 4 No. 2 (2020) 48-58 doi: 10.20961/jphystheor-appl.v3i2.42544 

 

56 The solution of Schrodinger equation …. 

 

1 

( )
( )

( )

( )( )

( )

1
2

2
1 4

cos
2

2 1 coth
2 2

1 1
4 1 2

sinh cosh
2 2

q
ech

q

n n
M

q q











 

 
+  

 


 
 
      
  −      − −       = − +

  −  + 
 −     

    

 

2 ( )
( )

( )

( )

( )( )

( )

( )( )( )( )

( )( )
1

2
2

2 4

2

1 coth
2 2

1
4 1 2

cos
2

2 1 2 2 1

1 4 1 4 2

sinh cosh
2 2 1 coth

2

2

2!

q

n n

q
ech

n n n n

M
q q

q











 

 
 



 
+  

 


    
−   − −    +

 −  + 
 

   
 
   − − + − − +  

  
= − −  + −  + 

   −        −   +     
  
  
  

 


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Table 1 is wave function ( 0M ) for ground state ( 0n ), wave function ( 1M ) for energy 

level 1 ( 1n ), wave function ( 2M ) for energy level 2 ( 2n ). 

4.  Conclusion 

The Schrodinger equation in Bispherical coordinate with Kratzer potential can be 

solved by using Hypergeometry. Hypergeometry method used to obtain the energy 

spectrum and un-normalized wave function for Schrodinger equation in Bispherical 

coordinate with Kratzer potential. The result of energy spectrum equation for Schrodinger 

equation in Bispherical coordinate with Kratzer potential can be shown in equation (41). 

The result of un-normalized wave function equation for Schrodinger equation in 

Bispherical coordinate with Kratzer potential can be shown in Table 1. 
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