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Abstract: The rigid deformed nucleus of minimal length effect is 

investigated using the Bohr-Mottelson equation that influenced by cotangent 

hyperbolic potential. The Bohr-Mottelson equation in effect a minimum 

length resolved hypergeometric method for determining the energy spectrum 

and the wave functions. Energy spectrum was calculated using Matlab 

software and the wave function is displayed in the form of hypergeometric. 
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1.  Introduction   

The Bohr-Mottelson equation is used to explain the behavior of nucleus such as the 

rigid deformed nucleus (Alimohammadi et al.: 2017; Chabab et al.: 2015; Chabab et al.: 

2016). The rigid deformed nucleus occur nucleus rotation motion at low excitation 

energy (Alimohammadi et al.: 2017; Chabab et al.: 2015; Chabab et al.: 2016). The 

Bohr-Mottelson for various potential has been solved using Super Symmetric Quantum 

(SUSY QM) for Davidson potential (Bonatsos et al., 2011), Nikiforov-Uvarov for 

Eckart potential (Naderia et al., 2016) and Asymptotic Iteration Method (AIM) for 

Hulthen and Ring Shape potential (Chabab et al., 2015).  

The concept of minimal length is connected by commutation relations between 

position and momentum operators in Heisenberg Uncertainty Principle. The minimal 

length occur at Heisenberg Uncertainty Principle is influenced by gravity quantum 

which is called General Uncertainty Principle (GUP) (Alimohammadi et al.: 2017; 

Chabab et al.: 2015; Chabab et al.: 2016; Hossenfelder.: 2004; Garay.: 1994). The 

General Uncertainty Principle modify Heisenberg Uncertainty Principle with additional 

a small constant (Chabab et al., 2015). 

In this paper, equation Bohr-Mottelson in length at least to the potential effects of 

Hyperbolic cotangent solved using hypergeometric method. Energy spectrum and the 

wave functions obtained using methods hypergeometric. Hyperbolic cotangent 

potentially be used to describe the core excitation (Cari et al.: 2013; Suparmi et al.: 

2017). This paper consists of four parts, the second part describes the Bohr-Mottelson 
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equation in effect a minimum length and hypergeometric method. Furthermore, in 

Section 3 describes the results and discussion and final section 4 contains conclusions. 

2.  Research Methods  

2.1.  The Bohr-Mottelson equation in minimal length effect 

The general canonical commutation between position and momentum is expressed 

(Hossenfelder.: 2004; Garay.: 1994) 

 
 ,X P i

 (1) 

where X is a position, P is a corresponding momentum. Then, the general canonical 

commutation between position and momentum is influenced by quantum gravity, it is 

becomes (Alimohammadi et al.: 2017; Chabab et al.: 2015; Chabab et al.: 2016; 

Hossenfelder.: 2004; Garay.: 1994), 

 
    2

, 1X P i P  
 (2) 

The equation (2) is called General Uncertainty Principle, where  was a minimal 

length parameter that has very small positive values. The uncertainty relation is caused 

by commutation relation. The equation (2) can be reduced becomes (Alimohammadi et 

al.: 2017; Chabab et al.: 2015; Chabab et al.: 2016; Hossenfelder.: 2004; Garay.: 1994) 

 
ˆ ˆ

i iX x
 (3) 

 
 2ˆ ˆ ˆ1i iP p p 

 (4) 

Then, equation (4) can be written (Alimohammadi et al.: 2017; Chabab et al.: 2016) 

 
 

2
2 1 2

2 m

P
B

    

 (5) 

where   is Laplacian operator for nucleus that has three degrees of freedom :

1 2 3, ,q q q     , the Laplacian operator as follow (Alimohammadi et al.: 2017; 

Chabab et al.: 2016) 

 

1

,

1
ij

i j i j

g g
q qg

 
 

 


 (6) 

with g and 
1

ijg
 are determinant and inverse of the matrix ijg , respectively. We get 

Laplacian operator, is given as (Alimohammadi et al.: 2017; Chabab et al.: 2016) 

 

2
2

2 2 2 2

1 1 1 1
sin

3 sin sin
 

        

      
     

        (7) 

Then equation (5) is inserted in Hamiltonian equation which is expressed, 

 

   
2

2 m

P
H T V V

B
    

 (8) 

where P is momentum operator,  V  is potential energy in   function and Bm is a 

mass parameter. We obtain, 
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   (9) 

The equation (9) is Bohr-Mottelson equation in minimal length effect. In the case of 

Bohr-Mottelson equation without the minimal length effect with 
0ML 

 (Elviyanti et 

al.: 2017)  for equation (9), so yields square term is given as (Alimohammadi et al.: 

2017), 

 
 

2
2

2 0

4

4
( )mB

V E  
 (10) 

Equations (7) and (10) are inserted in equation (9) and multiplied by 
2

2 mB
  and 1  

(natural unit) , is yields 
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(11) 

By setting        , , R          which is the separation variable method that used 

to solve equation (11), we have Euler angles part of Bohr-Mottelson Hamiltonian with 

minimal length, 
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           (12) 

and    part of Bohr-Mottelson Hamiltonian with minimal length, 
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By applying    R F    and  1L L    in equation (13) so we have,  
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   (14) 

The Bohr-Mottelson equation for a   part in a minimal length effect for rigid 

deformed nucleus case is expressed by equation. 

 

 

http://jurnal.uns.ac.id/jphystheor-appl
http://dx.doi.org/10.20961/jphystheor-appl.v2i1.28998


Journal of Physics: Theories and Applications http://jurnal.uns.ac.id/jphystheor-appl 

J. Phys.: Theor. Appl.  Vol. 2 No. 1 (2018) 12-18 doi: 10.20961/jphystheor-appl.v2i1.28998 

 

S. N. Fatimah, A. Suparmi, C. Cari, I. L. Elviyanti  15 

 

2.2.  Hypergeometric method 

The second-order differential equation of hypergeometric function as follow 

(Suparmi.: 2011; Elviyanti et al.: 2017), 

 
    

2

2
1 1 0

d d
y y c a b y ab

dy dy

 
       

 (15) 

The energy eigenvalue is obtained from the condition in equation (15) , (Suparmi.: 

2011; Elviyanti et al.: 2017)  

  or a n b n     (16) 

where n=0,1,2,3…. Equation (16) can be finite series of polynomials of rank n by 

equation (15) . The solution of a wave function is given as 
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 (17) 

By applying the suitable variable change in equation and reduced to standard 

hypergeometri equation, we get energy eigenvalue and wave function (Suparmi.: 2011; 

Elviyanti et al.: 2017)  

3.  Result and discussion 

Cotangent hyperbolic potential is expressed as follows: 

 
  1cothoV V V  

 (18) 

with V0 and V1 is a constant potential, and  is a potential difference. Substituting 

equation (18) into the equation (14) it is obtained 
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          (19) 

by setting, 
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Equation (19) reduces to 
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Equation (23) is a differential equation that has been simplified to the form using the 

hypergeometric differential equation    coth 1 2y   , We get 
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with 
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 (25) 

by inserting the following new wave function 

 
     1 HHU y y f y

  
 (26) 

in equation (24) we get 
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            (27) 

Equation (27) is the hypergeometric differential equations are obtained following 

hypergeometric parameter2 

 
' 1H Ha v     , 

'

H Hb v    , 
2 1Hc  

 (28) 

By inserting the equation (20) - (22), (25) and (28), we get 
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 (29) 

Equation (29) is the equation of the energy spectrum of the Bohr-Mottelson in length at 

least to the potential effects of Hyperbolic cotangent. Then, to get the wave function 

using equation (17), (26) and    coth 1 2y   , We get 

 
 

     
 2 1

1 coth 1 coth
 , , ,

2 2
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U F a b c z

 
 


 


 (30) 

and by inserting equation (28) into the equation (30), we obtain 

 

 
     1 coth 1 coth
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 (31)
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    (32) 

Equation (31) and (32) is a function of the wave equation Bohr-Mottelson in effect a 

minimum length for n = 0 and n = 1. The value of the wave function depends on the 

value of the parameter hypergeomtric. 

4.  Conclusion 

The Bohr-Mottelson equation in minimal length at least to the potential effects of 

cotangent hyperbolic  can be solved by using hypergeometric. Hypergeometric method 

used to obtain the energy spectrum and the wave functions in the equation Bohr-

Mottelson in effect a minimal length. Energy spectrum and the wave functions equation 

Bohr-Mottelson the minimal length effect can be shown by equation (29), (31) and 

equation (32). 
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