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Abstract: The rigid deformed nucleus of minimal length effect is
investigated using the Bohr-Mottelson equation that influenced by cotangent
hyperbolic potential. The Bohr-Mottelson equation in effect a minimum
length resolved hypergeometric method for determining the energy spectrum
and the wave functions. Energy spectrum was calculated using Matlab
software and the wave function is displayed in the form of hypergeometric.

Keywords: Bohr Mottelson, minimum length, hypergeometric

1. Introduction

The Bohr-Mottelson equation is used to explain the behavior of nucleus such as the
rigid deformed nucleus (Alimohammadi et al.: 2017; Chabab et al.: 2015; Chabab et al.:
2016). The rigid deformed nucleus occur nucleus rotation motion at low excitation
energy (Alimohammadi et al.: 2017; Chabab et al.: 2015; Chabab et al.: 2016). The
Bohr-Mottelson for various potential has been solved using Super Symmetric Quantum
(SUSY QM) for Davidson potential (Bonatsos et al, 2011), Nikiforov-Uvarov for
Eckart potential (Naderia ef al, 2016) and Asymptotic Iteration Method (AIM) for
Hulthen and Ring Shape potential (Chabab et al., 2015).

The concept of minimal length is connected by commutation relations between
position and momentum operators in Heisenberg Uncertainty Principle. The minimal
length occur at Heisenberg Uncertainty Principle is influenced by gravity quantum
which is called General Uncertainty Principle (GUP) (Alimohammadi et al.: 2017,
Chabab et al.: 2015; Chabab et al.: 2016; Hossenfelder.: 2004; Garay.: 1994). The
General Uncertainty Principle modify Heisenberg Uncertainty Principle with additional
a small constant (Chabab et al., 2015).

In this paper, equation Bohr-Mottelson in length at least to the potential effects of
Hyperbolic cotangent solved using hypergeometric method. Energy spectrum and the
wave functions obtained using methods hypergeometric. Hyperbolic cotangent
potentially be used to describe the core excitation (Cari et al.: 2013; Suparmi et al.:
2017). This paper consists of four parts, the second part describes the Bohr-Mottelson
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equation in effect a minimum length and hypergeometric method. Furthermore, in
Section 3 describes the results and discussion and final section 4 contains conclusions.

2. Research Methods

2.1. The Bohr-Mottelson equation in minimal length effect

The general canonical commutation between position and momentum is expressed
(Hossenfelder.: 2004; Garay.: 1994)

[X,P]>in M

where X is a position, P is a corresponding momentum. Then, the general canonical
commutation between position and momentum is influenced by quantum gravity, it is
becomes (Alimohammadi et al.: 2017; Chabab et al.: 2015; Chabab et al.: 2016;
Hossenfelder.: 2004; Garay.: 1994),
X,P]>in(l+a(AP)’
[X,P2infa(4P) ) o
The equation (2) is called General Uncertainty Principle, where & was a minimal
length parameter that has very small positive values. The uncertainty relation is caused
by commutation relation. The equation (2) can be reduced becomes (Alimohammadi et
al.: 2017; Chabab et al.: 2015; Chabab et al.: 2016; Hossenfelder.: 2004; Garay.: 1994)

X =%
i i (3)
P=(1+ap?)p
Then, equation (4) can be written (Alimohammadi et al.: 2017; Chabab et al.: 2016)
2
p? :_2h|3 (1-2aA)A
" (5)

where A is Laplacian operator for nucleus that has three degrees of freedom :
q, =¢,q9, =0,d, = S, the Laplacian operator as follow (Alimohammadi et al.: 2017,
Chabab et al.: 2016)

4 0

\/—gu A
o ©)

with g and gif are determinant and inverse of the matrix §;, respectively. We get
Laplacian operator, is given as (Alimohammadi et al.: 2017; Chabab et al.: 2016)

11 0. ,0 1 &
A= ——ﬁ — SN+ ————
B op 6ﬂ 35| sing o0 060 sin“d op
Then equation (5) is inserted in Hamiltonian equation which is expressed,
2

H=T+V(ﬁ)=%+V(ﬂ) ©

where P is momentum operator, V(/)is potential energy in g function and By is a

(")

mass parameter. We obtain,
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h? ah* ,
~38 A+ B A +V(,B,«9,¢)—E ‘P(ﬁ,0,¢):O

9)

The equation (9) is Bohr-Mottelson equation in minimal length effect. In the case of

Bohr-Mottelson equation without the minimal length effect with o =0 (Elviyanti et
al.: 2017) for equation (9), so yields square term is given as (Alimohammadi et al.:
2017),

AZ

4B 2 2
=—0(V -E°
<-(V(B)-F) 10

Equations (7) and (10) are inserted in equation (9) and multiplied by — 2;“ and n=1

(natural unit) , is yields

(L2 0
pop" op 2
_Lisinei +28m(4aMLBm(V('B)E )J ¥ (B,0,0)=0
1 |sing oo 00 +(V(ﬂ)—E)
35° N 1 o
sin® @ 0¢°

L : | (11)
By setting ¥ (,0,¢)=R(8)0(6)®(p) which is the separation variable method that used

to solve equation (11), we have Euler angles part of Bohr-Mottelson Hamiltonian with
minimal length,

2
|1 _12 5@(2(p)+ 1 _1 isineae)(e) _,
D(p)sin®d op°  O(8)sind o0 20

(12)
and g — part of Bohr-Mottelson Hamiltonian with minimal length,
1 0 ,R(p)
——p"——=+2B (E-V R
7o’ gt n(E-V(B))R(8) :%R(ﬂ)
_ssmzaML(Eg-onv(ﬁ)+vz(ﬂ))R(ﬁ) 13)
By applying R(p)=F(B)/p and i=L(L+1) in equation (13) so we have,
d’F(B) L(L+1)
T )
+2B, (E-V (B))F(B) =0
-8B, ’ay, (E* —2EV (B8)+V*(B))F ()
(14)

The Bohr-Mottelson equation for a g — part in a minimal length effect for rigid
deformed nucleus case is expressed by equation.
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2.2. Hypergeometric method

The second-order differential equation of hypergeometric function as follow
(Suparmi.: 2011; Elviyanti et al.: 2017),

2
y(1-y) d ? +(c—(a+b+1)y)d—q)—ab¢> =0
The energy eigenvalue is obtained from the condition in equation (15) , (Suparmi.:
2011; Elviyanti et al.: 2017)

a=-norb=-n (16)
where n=0,1,2,3.... Equation (16) can be finite series of polynomials of rank n by
equation (15) . The solution of a wave function is given as

®(y)=, F(ab,c, y):Zm_OM m ab a(a+1)b(b+1)y?
17)

=l+—vy+ 4
(c)_n! Y ¢’ c(c+1) 2!
By applying the suitable variable change in equation and reduced to standard
hypergeometri equation, we get energy eigenvalue and wave function (Suparmi.: 2011;
Elviyanti et al.: 2017)

3. Result and discussion

Cotangent hyperbolic potential is expressed as follows:

V(B)=V,cothns+V, (18)

with Vo and Vi is a constant potential, andzn is a potential difference. Substituting
equation (18) into the equation (14) it is obtained

(pPL(L+1
7L(L+1) +8B,’aV,’ +
3 sinh®np
d?U
dﬂ(f) ~| -(16B,’aV,E, ~16B, ’aV, - 2BV, )cothnB |U (8) =0
16B,’aV,E, +8B,aV,’
L _8Bm2aV12 _SBmzanz o ZBmvl + 2BmE _ (19)
by setting,
L(L+1
Vv (V —1) = (%_F) + 8Bm2avozj
(20)
29 =(16B,°aV,E, ~16B,’aV, - 2BV, ) (21)
o 16B, ‘aV,E, +8B, ‘aV. 2
_8Bm2aV12 —8Bm2a E02 -2 BmV1 + ZBm E (22)
Equation (19) reduces to
d?U v(v-1
(zﬂ)_ ( - ) —2qcothnp+k* U (B)=0
dp sinh? B (23)
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Equation (23) is a differential equation that has been simplified to the form using the
hypergeometric differential equation coth(74)=(1-2y), We get

dU () du (B) { oy 4dl 4B }
1-y)———+(1-2y)————= -1)-————-\U =0
Y(A-y) =g A2y — = v (v-1) oy aay " o0
with
_qukz o 29 +2/<2 4 v (v'—1)= v(vz—l)
n o | n (25)
by inserting the following new wave function
U(B)=y™ (1-y)" f(y) (26)
in equation (24) we get
y(l—y)w+[(2a,4 +1)— (2, +28, +2)y]Ly)
dy? dy |=0
[V (v =1)= (e + By ) (@ + By +1) | T () e

Equation (27) is the hypergeometric differential equations are obtained following
hypergeometric parameter2

a=a,+p,+vV -1 b=a,+p,+v C=2a,+1 (28)
By inserting the equation (20) - (22), (25) and (28), we get

2
L(L+1) 8BaV,> 1) 1
+ ——+—|+-—-n
3 n 4) 2

2
’ L(lGBmzaVO E, —16B,2aV, ZBmVO)J +[4Bman +4B,aE;’

1 +V, 8B aV,E, — 4B V.2

- 2
L(L+1) 8B2aV, 1) 1
+ +—|+=—n
3 n’ 4) 2
- - (29)
Equation (29) is the equation of the energy spectrum of the Bohr-Mottelson in length at
least to the potential effects of Hyperbolic cotangent. Then, to get the wave function
using equation (17), (26) and coth(78)=(1-2y), We get

P LY S,

(30)
and by inserting equation (28) into the equation (30), we obtain
(1-coth(nB8))™ (1+coth (nﬁ))ﬁ”
V(p)= 2 2
31)
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1—cot;(nﬂ)J

ay B (_n)(aH + By +V_1)
_ (1-coth(np))™ (1+coth(np)) (
U(p)= > 5 L+ (201, +1)

Equation (31) and (32) is a function of the wave equation Bohr-Mottelson in effect a
minimum length for n = 0 and n = 1. The value of the wave function depends on the
value of the parameter hypergeomtric.

4. Conclusion

The Bohr-Mottelson equation in minimal length at least to the potential effects of
cotangent hyperbolic can be solved by using hypergeometric. Hypergeometric method
used to obtain the energy spectrum and the wave functions in the equation Bohr-
Mottelson in effect a minimal length. Energy spectrum and the wave functions equation
Bohr-Mottelson the minimal length effect can be shown by equation (29), (31) and
equation (32).
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