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Abstract: The purpose of  this paper is to show some improvements of the 

finite-difference time domain (FDTD) method using Numerov and non-

standard finite difference (NSFD) schemes for solving the one-dimensional 

Schrödinger equation. Starting with results of the unmodified FDTD method, 

Numerov-FD and NSFD are applied iteratively to produce more accurate 

results for eigen energies and wavefunctios. Three potential wells, infinite 

square well, harmonic oscillator and Poschl-Teller, are used to compare 

results of FDTD calculations. Significant improvements in the results for the 

infinite square potential and the harmonic oscillator potential are found using 

Numerov-NSFD scheme, and for Poschl-Teller potential are found using 

Numerov scheme. 

Keywords:  Finite difference time domain method, Time-dependent 

Schrodinger equations, Non-standard scheme, Numerov scheme 

1.  Introduction 

The time-dependent Schrӧdinger equation is one of fundamental equations in 

quantum mechanics that is used for many problems in physics  chemistry and the other 

natural sciences (Chen, Xu, & Sun, 1993; Sullivan & Citrin, 2001). Many methods have 

been developed to solve the time-dependent Schrodinger equation. Namely Monte Carlo 

(Winstead & Ravaioli, 2003; Asparu-Guzik, William, & Lester, 2003), DMRG (Chan & 

Head-Gordon, 2003), Supersymmetri Quantum Mechanics (Koc & Tutunculer, 2003), 

finite difference scheme (Simon & Williams, 1999; Chen, Xu, & Sun, 1993; Cooper, 

Valavanis, Ikonik, Harisson, & Cunningham, 2010), non-standard finite difference 

scheme (Kalogiratou, Monovasilis, & Simos, 2004), and finite difference time domain 

(Sudiarta & Geldart, 2007; Sullivan & Citrin, 2001). Each method focuses on speed and 

high numerical accuracy to determine the Schrodinger equation.  

A well known class of method to solve the Schrodinger equation is finite difference 

scheme (FDS’s). Chen et al (1993) was applied the finite difference schemes as a 

numerical solution of the Schrodinger equation. Simons and Wiliams (1999) used the 

finite difference scheme to solve the radial Schrodinger equation. Cooper et all (2010) 
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studied the finite difference scheme to solve the Schrodinger equation with band non 

parabolicity in mid-infrared quantum cascade laser. 

The another way to use the finite difference scheme for solving the Schrodinger 

equation is to modify the finite difference scheme using the nonstandard techniques 

(Mickens, 1999). The nonstandard finite difference scheme has a most important 

property is, in many cases, the method can eliminate the elementary numerical 

instability which plague the usual finite difference scheme (Mickens, 1999). Mickens 

and Ramadhani (1992) used the nonstandard techniques for constructing the finite 

difference model of differential equation. It was showed that the nonstandard finite 

differential scheme (NSFD) performs better than the standard method to solve the 

general case of finite potential range in radial Schrodinger equation (Kalogiratou, 

Monovasilis, & Simos, 2004).  

Recently, the finite difference time domain (FDTD) method has been applied for 

solving the Schrodinger equation (Sullivan & Citrin, 2001). The FDTD method has 

been given for the accurate solution of the Schrodinger equation to determine the 

energies and the eigen function (Sudiarta, & Geldart, 2007). Sudiarta and Geldart 

(2007) have used the FDTD method to compute the single density matrix particle. 

Sudiarta and Angraini (2016) have also applied the FDTD method with the symmetry 

quantum mechanics to obtain the ground and the excited state of particle in one 

dimensional (1D) potential. The FDTD method have been also used by Sudiarta and 

Angraini (2018) to determine energies and wave functions of two –electron quantum 

dots that was modeled by three dimensional (3D) oscillator harmonic potential.  Subhan 

et all (2018) computed two particle thermal density matrices using finite difference time 

domain method. 

Application of nonstandard finite difference time domain (NSFDTD) method is an 

alternative method to increase the speed and numerical accuracy of solving the 

Schrodinger equation. Sudiarta (2018) showed that the standard numerical scheme for a 

second derivative in spatial domain is replaced by a non-standard numerical scheme. It 

is shown the significant improvements using the NSFDTD method.  

The other method which has the good performance to solve the Schrodinger equation 

with the high speed and accuracy is Numerov method. The Numerov method is an 

efficiency algorithm to determine the solution of second derivative (Gonzalez & 

Thomposon, 1997). Kalogiratou et al (2004) is showed that the time-independent of the 

two dimensional Schrodinger depend on partial discretization. The partial discretization 

can be solved by differensial equation concept, and the Numerov method can be used to 

solve the problem. Pillai et al (2012) have used the matrix-Numerov to find the solution 

of Schrodinger equation, that it used to rekpresent the kinetic energy and discrete lattice. 

Chen et al (1993) have made the modification in the standard scheme with Numerov 

method to solve the Schrodinger equation solution, and the Numerov-finite difference 

scheme performs better than the standard method. Fack and Berghe (1987) is introduced 

an extended version of the well known Numerov method to obtain the numerical results 

for variety of potential with the high degree precision and accuracy. It is also found to 

be exact for the series expansion.  
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Application of the FDTD method with Numerov method and Numerov - NSFDTD  

have not been done previously. In this paper, the Numerov method is used to modify the 

standard FDTD method and nonstandard FDTD method such that both of methods can 

be used for large spatial grid spacing. 

This paper is organized as follows: the theory of the Numerov-FDTD method, 

Numerov-NSFDTD method, numerical results of eigen-energies for a particle in an 

infinite square well potential, oscillator harmonic, symmetric form of poschl teller 

potential and the conclusion.  

2.  Theory 

The one dimensional time-independent  Schrödinger equation (TISE) for a system 

with a particle in a potential well, 𝑉(𝑥),  using atomic units (ℏ = 𝑚 = 1) is given by  

𝜕2𝜓(𝑥)

𝜕𝑥2
= −2(𝐸 − 𝑉(𝑥))𝜓(𝑥) = − 𝑊(𝑥)𝜓(𝑥)                            (1) 

where  𝑊(𝑥) = 2(𝐸 − 𝑉(𝑥)) and E is the energy of the system. As shown by Sudiarta 

and Geldart (2007) that TISE can be solved by an iterative method which is derived 

from a finite difference scheme for a diffusion equation (or the time-dependent 

Schrödinger equation in imaginary time) given by 

𝜕𝜓(𝑥,𝑡)

𝜕𝑡
= 

1

2

𝜕2𝜓(𝑥,𝑡)

𝜕𝑥2
− 𝑉(𝑥)𝜓(𝑥, 𝑡)                                    (2) 

Starting with an arbitrary  initial wave function 𝜓(𝑥, 0), Eq. (2) is used to evolve the 

wavefunction. After large interval of time, the wave function approaches the ground 

state wavefunction of the system. Excited states of the system can be determined by 

similar procedure provided that the wave function is orthogonal to lower energy 

wavefunctions.  

After the wavefunctions are obtained, the energies are then computed by 

𝐸 =  
∫𝜓∗(𝑥)�̂� 𝜓(𝑥)𝑑𝑥

∫|𝜓(𝑥)|2𝑑𝑥
 (3) 

Because a finite computational domain is used, the outer computational boundary is 

terminated by a dirichlet boundary condition, 𝜓(𝑥 = 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦, 𝑡) = 0. 

3.  Numerical Method 

A numerical procedure known as the FDTD method (Sudiarta & Geldart, 2007) is 

applied to evolve the wavefunction using Eq. (2).  In the FDTD method, the numerical 

discretization for the second derivative of Eq. (1) is the central finite difference (FD) 

scheme given by 

[
𝜕2𝜓(𝑥)

𝜕𝑥2
]
𝑥=𝑖∆𝑥

 ≈  
𝜓(𝑖+1)−2𝜓(𝑖)+ 𝜓(𝑖−1)

(∆𝑥)2
           (4) 

Where a notation 𝜓(𝑖) ≡  𝜓(𝑖 ∆𝑥) is used and  ∆𝑥 is the spatial grid spacing.  

The accuracy of the FDTD method can be improved by modifying Eq. (4) using the 

non-standard FD scheme developed by Mickens (1992)[6] as follows 
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[
𝜕2𝜓(𝑥)

𝜕𝑥2
]
𝑥=𝑖∆𝑥

 ≈  
𝜓(𝑖+1)−2𝜓(𝑖)+ 𝜓(𝑖−1)

𝑔(𝑖)
 (5) 

For solving TISE, the appropriate function for 𝑔(𝑖) ≡ 𝑔(𝑖 ∆𝑥) = 𝑔(𝑥) is given by 

(Mickens & Ramadhani, 1992; Chen, Xu, & Sun, 1993, Sudiarta, 2018) 

𝑔(𝑥) =  

{
 
 

 
 
(∆𝑥)2                                           𝑓𝑜𝑟     𝑊(𝑥) = 0

4

𝑊(𝑥)
𝑠𝑖𝑛2 (√𝑊(𝑥)

∆𝑥

2
)           𝑓𝑜𝑟    𝑊(𝑥) > 0

4

−𝑊(𝑥)
𝑠𝑖𝑛ℎ2 (√−𝑊(𝑥)

∆𝑥

2
)   𝑓𝑜𝑟    𝑊(𝑥) < 0

                       (6) 

Besides the non-standard FD scheme, one can also use the Numerov finite difference 

scheme given by 

[
𝜕2𝜓(𝑥)

𝜕𝑥2
]
𝑥=𝑖∆𝑥

 ≈
1

(∆𝑥)2
[
𝜓(𝑖 + 1) (1 − 

ℎ2

12
𝑊(𝑖 + 1)) − 2𝜓(𝑖) (1 + 

ℎ2

12
𝑊(𝑖))

+𝜓(𝑖 − 1) (1 − 
ℎ2

12
𝑊(𝑖 − 1))

] (7) 

As proposed by Chen et. al (1993), the non-standard FD and the Numerov FD schemes 

can be combined as shown in Eq. (8). 

 

[
𝜕2𝜓(𝑥)

𝜕𝑥2
]
𝑥=𝑖∆𝑥

 ≈
𝜓(𝑖+1)(1− 

ℎ2

12
𝑊(𝑖+1))−2𝜓(𝑖)(1+ 

ℎ2

12
𝑊(𝑖))+𝜓(𝑖−1)(1− 

ℎ2

12
𝑊(𝑖−1))

𝑔(𝑖)(1+ ℎ
2

12
𝑊(𝑖)) 

 (8) 

  

Following Sudiarta and Geldart (2007), an explicit iterative formula for the non-

standard and the Numverov FDTD is found to be 

 𝜓𝑛+1(𝑖) =  𝛼 (𝑖)𝜓𝑛(𝑖) + 𝛽(𝑖) [
𝜕2𝜓(𝑥)

𝜕𝑥2
]
𝑥=𝑖∆𝑥

                                 (10) 

with 𝛼(𝑖) =  [1 − ∆𝑡 𝑉(𝑖)/2]/[1 + ∆𝑡 𝑉(𝑖)/2]  and 𝛽(𝑖) = ∆𝑡/[1 + ∆𝑡 𝑉(𝑖)/2].  

 

The energy of the system is then numerically determined by  

𝑬 = 
𝟏

∑ [𝝍(𝒊)]𝟐𝒊
∑{−

𝟏

𝟐
𝝍(𝒊) [

𝝏𝟐𝝍(𝒙)

𝝏𝒙𝟐
]
𝒙=𝒊∆𝒙

+ 𝑽(𝒊)𝝍(𝒊)𝟐}

𝒊

 

4.  Results and Discussion 

Three systems with three different potential wells are used to compare accuracies of the 

four FD schemes. The potentials are (1) infinite square well, (2) an harmonic oscillator 

potential and (3) a symmetric Poschl Teller potential. 

4.1.  Infinite Square Well Potential 

Following Sudiarta (2018)[5], the simplest potential 𝑉(𝑥) = 0 for the interval of 0 <

𝑥 < 1 and 𝑉(𝑥) = ∞ for 𝑥 < 0 and 𝑥 > 0 is used. This is the one-dimensional box 
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potential. The potential 𝑉(𝑥) = ∞ can be achieved by setting the wavefunctions at the 

boundaries to zeros, 𝜓(0) = 0 and 𝜓(1) = 0. 

Numerical results for eigen energies are shown in Table 1 for the parameters ∆𝑥 =

0.1 and ∆𝑡 = (∆𝑥)2/10. It is noted in Table 1 that NSFDTD and Numerov-NSFDTD 

produces the same as the exact results. The Numerov-FDTD gives better results than the 

FDTD but less accurate than the NSFDTD.  

Table 1. Numerical eigen-energies for a particle in an infinite square potential 

computed by the FDTD method, the non-standard FDTD (NSFDTD) method, the 

Numerov-FDTD method and Numerov-NSFDTD (modified Numerov) are compared 

with exact results, 𝐸𝑛 = 𝑛
2𝜋2/2. 

n FDTD NSFDTD Numerov - FDTD Numerov-NSFDTD Exact 

1   4.894348  4.934802 4.934601 4.934802  4.934802 

2 19.098301 19.739209 19.726195 19.739209 19.739209 

3 41.221475 44.413220 44.262411 44.413220 44.413220 

4 69.098301 78.956835 78.091632 78.956835 78.956835 

5 100.00000 123.37005 120.00000 123.37005 123.370055 

4.2.  Harmonic Oscillator Potential 

The second potential, also used by Sudiarta (2018), is an harmonic oscillator 

potential given 𝑉(𝑥) =
1

2
𝑥2. The eigen energies for this case are 𝐸𝑛 = (𝑛 + 

1

2
). 

Numerical eigenenergies for a grid spacing ∆𝑥 = 0.8  and a computational length of 16 

are given in Table 2.  

Table 2. The eigen energies for an harmonic oscillator potential for four FD schemes 

are compared with the exact results. 

n FDTD NSFDTD Numerov - FDTD Numerov-NSFDTD Exact 

0  0.479077  0.498019 0.498471 0.498430  0.500000 

1  1.391838  1.492586 1.489733 1.496356  1.500000 

2  2.188108  2.477781 2.459917 2.497042  2.500000 

3  2.954963  3.460975 3.406399 3.508486  3.500000 

4  3.236360  4.418670 4.182751 4.527097  4.500000 

 

4.3.  Symmetric Poschl Teller Potential. 

The third example of potentials is a symmetric Poschl Teller potential given by 

𝑉(𝑥) =  −
𝜆(𝜆−1)

2
 𝑠𝑒𝑐ℎ 2 (𝑥). For numerical calculations, λ = 5 is used such that 𝑉(𝑥) =

 −10 𝑠𝑒𝑐ℎ 2 (𝑥). The energy states for this case are 
21

(4 )
2

E n= − − for 4n  . 

Comparisons for the numerical results of eigen energies with the exact energies are 

shown in Table 3 for grid parameters ∆x = 0.5 dan N = 80. Similarly as in previous 

results that the NSFDTD, the Numerov-FDTD and the Numerov-NSFDTD methods are 
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generally give more accurate results than the stan;dard FDTD. The accuracy of 

Numerov method is comparable with other non-standar schemes for this case except for 

third excited state where the Numerov method performs better. This indicates that the 

performance of FD schemes depend on the potential used.  

Table 3. The eigenstate energies is for a symmetric Poschl Teller potential with 

computational parameters, grid spacing ∆𝑥 = 0.5 and number of grids 𝑁 = 0.8. 

n FDTD NSFDTD Numerov-FDTD Numerov-NSFDTD Exact 

0 -8.10688 -8.02505 -8.02395 -8.02121 -80 

1 -5.01409 -4.50844 -4.51665 -4.48821 -4.5 

2 -3.26980 -2.13147 -2.17337 -2.04094 -2.0 

3 -1.34050 -0.47285 -0.48409 -0.42118 -0.5 

5.  Conclussion 

Three finite difference (FD) schemes are used to modify the standard finite 

difference time domain (FDTD) method. It has been shown that the non standard FDTD 

and Numerov-NSFDTD  give generally more accurate results compared to the standard 

FDTD method. The Numerov-NSFDTD method  is generally shown to perform better 

than the standard FDTD method for all cases. 
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