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Abstract: In the general theory of relativity (GTR), black holes are defined 

as objects with very strong gravitational fields even light can not escape. 

Therefore, according to GTR black hole can be viewed as a non-

thermodynamic object. The worldview of a black hole began to change since 

Hawking involves quantum field theory to study black holes and found that 

black holes have temperatures that analogous to black body radiation. In the 

theory of quantum gravity there is a term of the minimum length of an object 

known as the Planck length that demands a revision of Heisenberg's 

uncertainty principle into a Generalized Uncertainty Principle (GUP). Based 

on the relationship between the momentum uncertainty and the characteristic 

energy of the photons emitted by a black hole, the temperature and entropy 

of the non-stationary black hole (Vaidya-Bonner black hole) were 

calculated. The non-stationary black hole was chosen because it more 

realistic than static black holes to describe radiation phenomena. Because the 

black hole is dynamic then thermodynamics studies are conducted on both 

black hole horizons: the apparent horizon and its event horizon. The results 

showed that the dominant correction term of the temperature and entropy of 

the Vaidya-Bonner black hole are logarithmic. 
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1.  INTRODUCTION 

One of the exotic phenomena that directly formulated through the general theory of 

relativity (GTR) is a black hole. In GTR, black hole can be defined as a region of space-

time with very strong gravity so that incoming light will not escape from it (Frolov & 

Novikov, 1998). So in a classical theory, it is safe to say a black holes can not radiate or 

emite any particles (Tiandho, 2017). However, by using the quantum mechanics,  

Hawking has proved that black holes are not so black. This is because a black hole have 

different properties, unlike those depicted in GTR. Through his research, Hawking has 

shown that the black hole can radiate particles like a black body radiation with 

temperature (in a natural unit) as (Hawking, 1975), 
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In a recently decades the study of black hole thermodynamics has been a hot topic in 

quantum gravity. One type of black hole that is interesting to discuss is the Vaidya-

http://dx.doi.org/10.20961/jphystheor-appl.v1i2.19308
mailto:yuant@ubb.ac.id


Journal of Physics: Theories and Applications http://jurnal.uns.ac.id/jphystheor-appl 

J. Phys.: Theor. Appl.  Vol. 1 No. 2 (2017) 127-136 doi: 10.20961/jphystheor-appl.v1i2.19308 

 

128 Thermodynamics of a Non-Stationary Black Hole Based on … 

 

Bonner black hole. The Vaidya-Bonner black hole is a non-stationary black hole. The 

non-stationary of the Vaidya-Bonner black hole is represented by its mass and charge 

that depend on space and time. So the Vaidya-Bonner black hole is expected to provide 

a more realistic picture of the black hole radiation process. Some methods that can be 

used to calculate the temperature of thermodynamic black holes are the Damour-Ruffini 

method (Liu, 2011), Teukolsky's method  (Kim, Choi, Kim, & & Yang), second 

quantization method (Yang, 1995), radial method null geodesic (Parikh, 2000), complex 

path method (Srinivasan & Padmanabhan, 1989), and according to relation between 

Heisenberg's uncertainty principle with the energy-momentum dispersed particle. The 

latter method is a relatively simple method compared to the others. However, since the 

black hole thermodynamic study is one of the topics studied in quantum gravity theory 

it should be calculating the temperature of black holes using the basic principles in the 

theory. This is because in theory quantum gravity is known the minimum length limit of 

an object called the Planck length. So in the theory of quantum gravity the principle of 

uncertainty must be modified into a generalized uncertainty principle (GUP). The much-

studied GUP form contains the momentum as the quadratic term (L.J. Garay, 1995), 

 

2

2pl
x p p


      (2) 

with x  and p  each of which is the uncertainty of the position and momentum of the 

quantum particles, 
pl  is the length of Planck and   are constants that are not 

dimensionless and depend on the model that used.  

Therefore, for the study of black hole temperatures can accommodate the Planck 

lenght correction factor in quantum gravity theory, a study of black hole temperatures 

that previously used the Heisenberg uncertainty principle should be corrected. In this 

paper will be calculated thermodynamic black hole by using GUP correction. The black 

hole studied is the Vaidya-Bonner black hole with its radius should be much larger than 

the length of Planck. This approach is done because most black holes found in the 

universe have a very large size, for example the holes found in the center of the galaxy 

have a radius of about 1,25×10
10 

m. 

2.  Vaidya-Bonner Black Hole 

The Vaidya-Bonner black hole is a non-stationary black hole in which its mass and 

charge are generally a function of advanced time (u) (Ibohal & Kapil, 2010), 

 

    ;M M u Q Q u    (3) 

The solution of the space-time metrics of Vaidya-Bonner is,  

 

 
2 2 2 22ds fdu dudt r d       (4) 

where 
   

2
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M u Q u
f

r r
    and 

2 2 2 2sind d d     . When mass and charge are 

not functions u or a constant value, the above metrics will reduce to the Reissner-

Nordstrom metric. As for if 0Q   it is clear that the metric will reduce to Vaidya's 
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metrics for  M M u  or would be a Schwarzschild metric if its mass is constant. 

Unlike in static black holes, event horizon and apparent horizon in a non-stationary 

black holes lies in different places. For Vaidya-Bonner's black hole, its apparent horizon 

lies on (Niu & Liu, 2010) 

 

 2 2

AHr M M Q     (5) 

 

While the event horizon lies on (Zheng & Xianxin, 1992), 
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where EH
EH

dr
r

du
 . It can concluded for conditions 0EHr   the location of event horizon 

and apparent horizon will be have same position and this is the fingerprint of a static 

black hole. Thus, since the event horizon and apparent horizon are located in different 

places, this paper we will study the thermodynamics of both horizons. 

 

3.  Formulation of Black Hole Entropy Based on Generalized Uncertainty 

Principle 

By slightly manipulating the GUP equation, then we can specify the variables in the 

GUP equation as follows (with 1 ), 
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The minus sign in the above equation is selected for 2 0pl   then the solution 

obtained will reduce to the classical uncertainty principle (Heisenberg’s principle). 

Because in this paper black hole to be analyzed has a very large mass, then the 

correction terms 2 2pl  it so small. So that the momentum in uncertainty formula can be 

expanded according to the Taylor series, 
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  (8) 

 

In previous research, it has been shown that momentum uncertainty is related to the 

particle characteristic energy that emitted from black holes. Some calculations in 

quantum gravity theory also support the study of the energy-moment dispersion 

relationship for high energy particles which can be expressed as (Camelia, Arzano, & 

Procaccini, 2004; Gambini. & Pullin, 1999) 
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where β is a coefficient of order 1. Since the particles emitted from the black hole are 

much smaller than the mass of the black hole (in some calculations also using massless 

particles), the particle emissions energy and momentum have a relationship E p . 

Thus expressing the energy of emitted particles can be expressed as, 
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  (10) 

 

This result is consistent with the results obtained in the quantum gravity loop theory 

and the particle dispersion energy can be expressed as  1 2 pE l x x     (Camelia, 

Arzano, & Procaccini, 2004). It appears that in a standard dispersion relationships 

(without Planck scale correction), eq. (10) will be reduced to the Heisenberg uncertainty 

principle (in natural unit). The standard dispersion relationship was then used by 

Bekenstein to calculate the entropy of black holes. When a black hole emits particles 

and absorbs particles whose energy E and size R, then the area change can be expressed 

as  (Medved & Vagenas, 2004) 

 

   2

min
8 pA l ER    (11) 

 

In classical studies we may use R = 0 but when involved in minimum lengths then 

quantum particles will never be smaller than x , which is the intrinsic uncertainty of 

the particle's position. Therefore, through the GUP we can write the change of the black 

hole area as, 

    2

min 8 pA l E x                      (12) 

 

Through substitution, eq. (12) into eq. (10) will be obtained, 
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  (13) 

 

In Hawking's temperature calculations by using the uncertainty principle, coefficient 

x  in Schwarzschild's black hole is related to the event horizon, 
hx r  , and γ is a 

calibration factor and can be determined from the relationship between Hawking 

temperature which obtained from the uncertainty principle and the conventional 

Hawking temperature, that is γ = 2π (Alder, Chen, & Santiago, 2001)  So, according to 

the definition of black hole area eq. (9) can be expressed in form, 
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Basically the entropy of a black hole is a measure of information about the interior of 

a black hole that is not accessible to an exterior observer (Bekenstein, 1973). So based 

on the notion of information theory, it may be argued that the increment of minimal 

entropy is independent on the area or it can be called as a "bit" information, and the 

entropy of the fundamental unit can be expressed as b. If the relationship between the 

change of area and entropy is, 
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Thus, according to the Taylor series the above expression can be expanded as, 
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If the entropy is in eq. (12) integration will be obtained, 
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Therefore if the corrected entropy is defined as, 
0 cS S S  , with 2

0 4 pS A l  is 

Bekenstein entropy (in natural unit) and Sc is a entropy correction term hence can be 

determined 2b  , so the result will reduce to Bekenstein entropy when it not involved 

Planck scale correction factor. Thus, the corrected entropy in explicit form is 

, 
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4.  Thermodynamics on Apparent Horizon 

By considering the definition of apparent horizon as in eq. (5) then entropy on eq. 

(18) can explicitly be expressed as, 

http://jurnal.uns.ac.id/jphystheor-appl
http://dx.doi.org/10.20961/jphystheor-appl.v1i2.19308


Journal of Physics: Theories and Applications http://jurnal.uns.ac.id/jphystheor-appl 

J. Phys.: Theor. Appl.  Vol. 1 No. 2 (2017) 127-136 doi: 10.20961/jphystheor-appl.v1i2.19308 

 

132 Thermodynamics of a Non-Stationary Black Hole Based on … 

 

 

   

 
 

2
2 2

2 2

2

1

2 2
2 2

2
2 21

2

ln 4

4
AH

p

i

p

i

ip

p

M M QM M Q
S

l

M M Q l
c

l M M Q

l





 








 
   

  

  
  
  

    
   

    
   
         



  (19) 

It appears that explicitly entropy on apparent horizon when involving GUP 

correction contains logarithmic correction terms (for the most dominant terms). The 

graph of the relationship between the black hole entropy with its mass and its charge 

can be seen in Figure 1. Through Figure 1 it can be seen that the greater black hole mass 

so the higher its entropy. As for the charge (at a constant mass) the greater black hole 

charge so the lower its entropy. Another interesting point is that there is an entropy 

condition that is not allowed in a black hole when the charge of a black hole is larger 

than its mass. This is related to extremal black hole conditions (M = Q). In extremal 

conditions, the entropy of the black hole on the apparent horizon will reduce in form 

(three terms correction), 
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Figure 1. Graph of relationship between entropy with mass and charge of black hole on 

apparent horizon based on GUP (for three correction terms and lp = α = 1) 

The temperature on the apparent horizon in the Vaidya-Bonner black hole can be 

determined by the first law of black hole thermodynamics (assuming emission particles 

are uncharged) 
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So with the definition of entropy as in eq. (19) then the temperature of the Vaidya-

Bonner black hole on the apparent horizon can be expressed as (three correction terms), 
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  (22) 

 

The graph of the relationship between black hole temperature and its mass and its 

charge is given by Figure 2. In Figure 2 it appears that the higher black hole mass the 

black hole's temperature on the apparent horizon will be smaller as well as the charge. 

When be carefully considered, there is a condition of the temperature drop to zero that 

occurs at the value M = Q. This can happen because the condition is an extremal black 

hole condition. So through this result it can be concluded that the temperature 

calculations using GUP corrections on apparent horizon still satisfy the third law of 

black hole thermodynamics. 

 
Figure 2. The relationship between black hole temperature on the apparent horizon with 

its mass and its charge based on the GUP correction (for three correction terms and lp = 

α = 1). 

5.  Thermodynamics on Event Horizon 

Through the formulation of event horizon on eq. (6) then the entropy on the horizon 

event can be expressed explicitly as (three corrected terms), 
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  (23) 

As with the entropy on the apparent horizon it can be seen that the most dominant 

correction term in the entropy on the event horizon is related to logarithmic functions. It 

can be seen that the entropy of black hole at the event horizon depends on its mass and 

its charge also depends on the speed of change of the event horizon. So that according 

to results, we need condition in order to the entropy is not to go infinite because 

basically the denominator contains the speed of event horizon change variable which 

should not be ½. To be able to do interpretation of the value then we require further 

study related to the process of changing event horizon radius, especially that involves 

aspects of the speed of change. 

As for the temperature of Vaidya-Bonner black hole on the event horizon can also be 

determined based on the first law of thermodynamics as in eq. (21) and it can be read as  

(three tems correction), 
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 (24) 

From the above equation it appears that the temperature of the black hole in the event 

horizon depends on the mass, the charge, and the speed of the event horizon change. If 

the speed of the event horizon change is zero then the above equation will reduce to 

temperature at the apparent horizon. As with the apparent horizon, in extremal 

conditions the temperature at the horizon will lead to zero to satisfy the third law of 

thermodynamic conditions. If we look at the formulation of entropy and temperature at 

the event horizon then we need further study either geometry or study of mechanism of 

tunneling particle emission black hole to be able to answer the special value of the 

speed of event horizon change. 

6.  Conclusions 

Based on the study that has been done can be concluded that the correction of the 

uncertainty principle into the GUP to calculate the entropy of black hole will modify the 

formulation of the conventional black hole entropy. The GUP correction results show 

that the dominant term on the entropy is a logarithmic functions. On the apparent 

horizon the incresing of black hole mass will be followed by the entropy. As for the 
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charge, the greater its charge hence the entropy on the apparent horizon gets smaller. 

The temperature on the apparent horizon is inversely proportional to the mass and 

charge of the black hole. Thermodynamics conditions on the event horizon depends on 

the speed of event horizon changes in the advanced time. There is a logarithmic 

correction term on the entropy on the event horizon such as the apparent horizon. There 

is a certain value in the speed of event horizon change which causes the entropy value 

and temperature at the event horizon to be unreal. So a follow-up study of these results 

is required. However, based on the assessment of the temperature on the apparent 

horizon and the event horizon it can be concluded that both results still satisfy the third 

law of thermodynamics black hole. 

7.  Suggestions 

Through the results, the suggestion for further research is to conduct a study related 

to the change of event horizon and to conduct study related to the effect of entropy and 

temperature correction on the characteristics of the remaining black hole. 
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