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Abstract: Non-relativistic bound-energy of diatomic molecules determined 

by non-central potentials in five dimensional solution using AIM. Potential 

in five dimensional space consist of Kratzer’s potential for radial part and 

Tangent squared potential for angular part. By varying nr, n1, n2, n3, dan n4 

quantum number on CO, NO, dan I2 diatomic molecules affect bounding 

energy values. It knows from its numerical data. 
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1.  INTRODUCTION 

Non-relativistic energy solutions can be obtained from the Schrodinger equation. The 

Schrodinger equation is the basis for describing a physical event related to quantum 

mechanics. There are many types of equations that can be used to solve the case of 

quantum mechanics, such as: Dirac equation (Barakat & Alhendi, 2013), Klein-Gordon 

equation (Barakat, 2009), and Schrodinger equation (Arbabi, 2016). In this equation can 

be used interference of potentials for certain system, e.g. Poschl-Teller potential (Yahya 

& Oyewumi, 2015), Deng-Fan potential and Hulthen potential (Hassanabadi et al., 

2013). These equations can be applied to a higher dimension space (Dong, 2011) with 

the interference of a potential. Higher dimension is a space that has more than three 

dimensional space components. 

This study was to look for energy eigenvalues on Schrodinger equations in five-

dimensional space with Kratzer’s potential interference and trigonometric tangen 

squared potential. Kratzer’s potential (Bayrak et al., 2006) describes dissociation events 

in diatomic molecules. Kratzer’s potential is used in the radial part with variable r. 

Thus, Kratzer's potential is used for the radial part 
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where De is the dissociation energy, r is the distance between diatomic molecular nuclei 

and a is the distance between the nuclei in equilibrium. Potential tangent squared 
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(Ciftchi et al., 2013) describes a potential that is affected by the angular change. 

Potential tangent squared at the corner with variables θ1, θ2, θ3, and θ4. The potential 

used for the angular parts is represented in equations (2-5). 

   1
2

01 tan  VV  ,  
221 ,     (2) 

   2
2

02 tan  VV  ,  
222 ,  

 
 (3) 

   3
2

03 tan  VV  ,  
223 ,     (4) 

   4
2

04 tan  VV  ,  
224 ,     (5) 

with V0 is the initial potential used for each of the equally considered corner 

components and θ1, θ2, θ3, and θ4 are the elevation angle. This study was completed by 

AIM method (Falaye, 2012). In order to be solved with AIM, the Schrodinger equation 

is reduced to a hypergeometric type of two-order differential equation. Then the 

potentials in equations (1-5) are combined in form 
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with 0  1  2π and 0  2, 3, 4  π. 

2.  METHODOLOGY 

2.1.  Asymptotic Iteration Method 

From the second-order differential equation of the hypergeometric type, then a part 

of the differential equation which is of type AIM is taken. Two-order differential 

equations with type AIM is represented in equation (7) (Sari et al.,2015). 

  )()()(')(" 00 xyxsxyxxy     (7) 

From equation (7) we get the values of χ0 and s0, and then iteration is done with the 

pattern as in equations (8-9). 
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From equations (8-9) can be used to find the eigenvalues by equation (10) 
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with k = 1, 2, 3, ...  

Then to determine the eigen function of equation (7), we can use equation (11) 
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Parameter )'(x in equation (11) can be represented by equation (12). 
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From equation (11) can be generalized to equation (13) 
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Some parameter in equation (13) is described by equations (14-15). 
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Where n is a quantum number, C2 is the normalization constant, 2F1 is a hypergeometric 

function. While the other parameters in equations (14-15) are obtained by comparing 

equation (7) with equation (16) as follows 
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3.  SOLUTION AND DISCUSSION 

3.1.  Variable Separation 

Schrodinger equation by using natural unit (ħ  c 1) and in five-dimensional space, 

can be written by equation (17) 
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In equation (17) there is also a variable Ψ applied in five dimensions to 
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Then equations (18-19) are substituted into equation (17) to derive a Schrodinger 

equation for the radial, angular θ1, θ2, θ3, and θ4. 

From combining equations (17-19), we get the five dimensional Schrodinger equation. 

It can be separated into equations (20-24) 
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where λ, λ1, λ2, and λ3 are constants of variabel separation. 

3.2.  Solution of Radial Part 

The general solution for five dimensional Schrodinger equation in radial part is given 

by equation (20). Then use the equations (25-29) to reduce equation (20): 
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Equations (25-29) are substituted into equation (20), so that equation (30) is obtained. 
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Equation (30) to be applicable in AIM, must use transformation in equation (31). 
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So, equation (30) transform into equation (32) 

 
)(

1 2
)(' 

1
 2)('' rf

r

CD
rf

r

D
rf










 



  (32) 

By comparing equation (32) with equation (7), we get the values of χ0 and s0 for the 

radial part. 
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Equations (33-34) are iterated by using equations (8-9) to obtain the parameter values 

χ1, χ2, χ3, ...χk and s1, s2, s3, ... sk. These parameter values are used to find k. k is used 

to find energy, so we get the energy equation 
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The energy eigenvalue depends on the parameters of all components of the 

composed potential and also depend on the quantum number nr. It can be explained by 

equation (35). 

Then we find the wave function for radial part by using equations (11-12). So, we can 

resulting the ground state wave function that shown in equation (36). 
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3.3.  Solution of Angular Part 
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we can use transformation in equations (39-41) 
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By solving equation (42) using AIM, we have the ground state wave function in 

equation (43) and the constant λ1 in equation (44). 
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By setting  z2cos
 in equations (45-47), we obtain 
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Then we use transformation like equation (39) to equations (48-50). So, equations (48-

50) become 
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Parameter δ2, γ2, δ3, γ3, δ4 and γ4 is described by equations (54-59). 
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By equation (51-53), we can find the lowest level wave functions in equations (60-62) 

and the constant λ2, λ3, and λ in equation (63-65). 
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The lowest total wavefunction from equation (36), equation (43), and equation (60-62) 

is given as 
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with Cgab = C1 C2 C3 C4 which is normalization factor of the total lowest wave function. 

 

3.4.  Discussion 

Eigen value of energy in equation (35), and constants of variabel separation in 

equation (44) and equations (63-65) can calculated by using computational method. We 

can calculate numerical solution of the energy for diatomic molekul are listed in Table 

1. From Table 1 it can be seen if CO has greater dissociation energy than NO and I2. But 

CO has the lowest mass and equilibrium distance of nucleus. From parameters in Table 

1, numerical solution of energy are shown in Table 2. The negative value show that the 

energy is repulsive. Repulsive energy of CO and NO molecules decrease caused by the 

increase of quantum number n4 is more significant than the increase in energy caused by 

the increase of the quantum number nr and the decrease of energy due to the increase in 

n1, n2, n3. But for the diatomic molecule I2, the increase of all quantum numbers causes 

the value of the repulsive energy getting smaller. 

Table 1. Mass and Spectroscopic Properties of Diatomic Molecular Variations 

Parameter CO NO I2 

De (eV) 10.84514471 8.043782568 1.581791863 

a (eV
-1

) 5.7174×10
-4 

5.8319×10
-4 

13.000×10
-4

 

m (eV) 6.3904×10
9 

6.9566×10
9 

59.104×10
9 
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Table 2. The Energy Spectrum of Particles 

nr n1 n2 n3 n4 
E (eV) 

CO NO I2 

0 0 0 0 0 -0,620569 -0,316085 -0,1237857 

1 0 0 0 0 -0,624640 -0,318575 -0,1237739 

2 0 0 0 0 -0,628649 -0,321032 -0,1237617 

0 1 0 0 0 -0,620562 -0,316081 -0,1237856 

0 2 0 0 0 -0,620556 -0,316078 -0,1237854 

0 0 1 0 0 -0,620556 -0,316078 -0,1237854 

0 0 2 0 0 -0,620542 -0,316071 -0,1237852 

0 0 0 1 0 -0,616316 -0,312961 -0,1238835 

0 0 0 2 0 -0,611919 -0,309746 -0,1239813 

0 0 0 0 1 -0,610426 -0,310584 -0,1234873 

0 0 0 0 2 -0,600325 -0,305110 -0,1231891 

 

 

 
 

(a) (b) 

 
(c) 

Figure 1. Radial wave function with variation nr: (a) nr = 0, (b) nr = 1, (c) nr = 2 

Figure (1) is ilustration of equation (36).  At certain ranges the wave function looks 

constant and then at certain values the wave function toward infinity. When at a certain 

r value, nr = 2 has larger wave function than nr = 0 and nr = 1. If quantum number nr is 

getting greater, the wave function getting greater too. 
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(a) (b) 

 
(c) 

Figure 2. Wave function P1 on spherical coordinates with varying n1: (a) n1 = 0, 

(b) n1 = 1, (c) n1 = 2. 

Equation (43) is portrayed by Figure 2. It shows that the increase of the quantum 

number n1 affected to wave function. However the wave function of the quantum 

number n1 = 0 is greater than wave function of the quantum number n1 = 1, wave 

function of the quantum number n1 = 2 has the greatest of them. The shape of wave 

function in Figure (2) is faced-cone. The upper cone is bigger than a lower cone. This 

shape is represented a probability of diatomic molecule distribution. 

  
(a) (b) 

 
(c) 

Figure 3. Wave function P2 on spherical coordinates with varying n2: (a) n2 = 0, (b) 

n2 = 1, (c) n2 = 2. 
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(a) (b) 

 
(c) 

Figure 4. Wave function P3 on spherical coordinates with varying n3: (a) n3 = 0, (b) 

n3 = 1, (c) n3 = 2. 
 

 

  
(a) (b) 

 

(c) 

Figure 5. Wave function P4 on spherical coordinates with varying n4: (a) n4 = 0, (b) 

n4 = 1, (c) n4 = 2. 

Equation (60) portrayed by Figure (3), equation (61) portrayed by Figure (4), and 

equation (62) portrayed by Figure (5). All of them show that increasing own quantum 

number make an increasing own wave function. But all of them have a different at own 
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shape: Figure (3) is faced half-spheris, Figure (4) is faced-cone and Figure (5) is tilted 

circle. Their shape is affected by their wave function. 

4.  CONCLUSION 

In this paper, we have presented the solution of five dimensional Schrodinger for 

some diatomic molecule with disturbance Kratzer’s potential combined with 

trigonometric tangent squared potential used AIM. We have gotten eigen value of 

energy total from solution radial part. In eigen value energy, there are constants of 

variabel separation. It is resulted from all angular part. So, the eigen value energy 

depended on all quantum number. The radial wavefunctions and angular wavefunctions 

was obtained using wave function generator in equation (11) or equation (13). After we 

have had an eigen value energy and all wave function, we can result numerical solution 

for eigen value energy and plotting wave function in spherical coordinates. 

 

5.  FUTURE WORKS 

Suggestions can be given for further research: 

a. The variable equations used to reduce Schrodinger equations at the angle are 

made equal, so there is no difference in the shape of the probability of finding a 

particle or a diatomic molecule. 

b. More understanding of quantum mechanics, particle physics and the concept of 

plotting real and imaginary waves. 

c. Need to do research with the same case, but different methods to be able to 

compare energy value and wave function. 
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