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Abstract: The correction factor must be derived from the results of the 

linear thermal expansion experiment. We have two ways to address 

this problem: we use the form of polynomials for the linear thermal 

coefficient, and one must solve the one-dimensional heat diffusion 

equation. The temperature function that we obtained is the solution for 

the inhomogeneous differential equation. Using those two, then 

combine them into a modified linear thermal expansion equation, i.e., 

the infinitesimal form of the equation, so that we could find the 

expression for the time-dependent expansion for the metal rod, Δ𝐿(𝑡). 

We should attempt to reduce the higher-order terms by taking the 

approximation as our first step in this paper. Finally, the observer may 

choose a suitable boundary condition for the formula and use the 

resulting equation as the correction factor.       

Keywords: linear expansion coefficient, heat diffusion, inhomogeneous 

boundary condition, Fourier series solution   

1.  Introduction  

The thermal expansion experiment is one of the modules frequently conducted in 

Basic Physics laboratories to observe the physical properties of a one-dimensional metal 

rod. The physical property studied is the ability of an object to expand when heated. 

This property is determined by the linear thermal expansion coefficient (LTEC). This 

experiment can be performed with a simple apparatus, which only requires a metal rod, 

a heater, and a set of sensitive length measurement tools. Several applications of the 

linear expansion set and its modifications to support technological advancements in 

teaching materials have been previously carried out, such as utilizing the Internet of 

Things as a basis for linear expansion experiments (Santoso et al., 2023) and thermal 

expansion of solids (Drebushchak, 2020; Zorzi & Perottoni, 2021). Means that the 

theoretical basis for determining the coefficient is always assumed to be a constant 

value for the coefficient of expansion. A model that uses a polynomial function for the 

coefficient of linear expansion has already been done by other studies. As a result, it is 
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necessary to examine how the elongation of a heated metal rod depends on time. The 

previous argument is reinforced by the following experimental set. 

 
Figure 1. The experiment set that utilized for the addressed linear thermal expansion 

problem. 

From the figure above, linear expansion happened when the hot water steam flowed 

through the tube from the right end to the left end, then condensed. At the middle point 

of the tube, we can see the thermometer, which is used to measure the supposed average 

temperature inside the tube. Here, we have, for example, some data results obtained 

from the apparatus. 

Table 1. Average temperature achieved from 10 experiments of thermal expansion for 

an iron rod, with six different elongations. 

No. ∆𝐿 (m) Temperature(°C) 

1 0 25 

2 0.00005 26 

3 0.0001 27 

4 0.00015 27 

5 0.00002 27 

6 0.00025 63 

 

Using the constant thermal expansion coefficient model, we can find the error ranged 

from 7 to 20 %. Therefore, a modification of the theory regarding linear thermal 

expansion is needed to find its time dependency. This study will involve  using the heat 

diffusion equation to produce the temperature dynamics solution along the rod, and also 

the polynomial model of the LTEC to enhance the modification. The expression 

obtained will be used in the expansion equation, and one can get the equation for time-

dependent elongation for the metal rod.  

2.  Analysis Setup 

2.1.  Determining generalized linear thermal expansion 

A heated 1-D metal rod satisfies the following infinitesimal equation  (Drebushchak, 

2020) 
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𝛼 =
1

𝐿0

𝑑𝑥

𝑑𝑇
, (1) 

with 𝛼, 𝐿0, and 
𝑑𝑥

𝑑𝑇
 are the linear thermal coefficient, the initial rod length, and the rate of 

change of length over temperature. If we integrate equation (1), we can get 

∫ 𝑑𝑥 = ∫ 𝛼𝐿0𝑑𝑇 (2) 

𝛿𝐿 = 𝛼(𝑇)𝛿𝑥Δ𝑇. (3) 

The integration of equation (2) into equation (3) makes it clear that we take into 

account the coefficient of linear expansion as a function of time, 𝛼(𝑇), and the initial 

length 𝐿0 as a temperature-dependent partition of the rod's length, 𝛿𝑥. In the meantime, 

the division of length expansion caused by a temperature change, Δ𝑇, is represented by 

𝛿𝐿. 

2.2.  Determining 1-D time-dependent linear thermal expansion 

To generate a suitable expression for the modified linear thermal expansion, we can 

look at the equipment setup below 

 

 
Figure 2. The hot steam enters from a single point on the right end, whereas condensed 

at the opposite end.  

According to the equipment above, means that the following equation can be 

formulated as a fundamental model for the modified theory 

 

 
Figure 3. Length element partition of a heated metal rod.  
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From the diagram above, it can be seen that the rod’s length is divided into 𝑛 

elements. For each element can be expressed as follows 

𝛿𝐿1 = 𝛼(𝑇)Δ𝑇𝛿𝑥1,

𝛿𝐿2 = 𝛼(𝑇)Δ𝑇𝛿𝑥2,

𝛿𝐿3 = 𝛼(𝑇)Δ𝑇𝛿𝑥3,
⋮

𝛿𝐿𝑛 = 𝛼(𝑇)Δ𝑇𝛿𝑥𝑛. (4)

 

Each element undergoes a change of temperature Δ𝑇 = 𝑇(𝑥 + 𝛿𝑥, 𝑡) − 𝑇(𝑥, 𝑡), 

which can be interpreted as the temperature difference between element 𝑛 and (𝑛 + 1) 

by a position-dependent heat source 𝑄(𝑥). If the maximum partition is set to be 𝑛 = 𝑁, 

then equation (4) can be written as 

∑ 𝛿𝐿𝑛

𝑁

𝑛=1

= ∑ 𝛼(𝑇)Δ𝑇𝛿𝑥𝑛

𝑁

𝑛=1

. (5) 

For 𝑁 → ∞, one can get the equation 

lim
𝑁→∞

∑ 𝛿𝐿𝑛

𝑁

𝑛=1

= lim
𝑁→∞

∑ 𝛼(𝑇)Δ𝑇𝛿𝑥𝑛

𝑁

𝑛=1

. (6) 

The equation above can be treated as an integral form as 

Δ𝐿 = ∫ 𝑑𝐿
𝐿

0

= ∫ 𝛼(𝑇)(𝑇(𝑥, 𝑡) − 𝑇0)𝑑𝑥.
𝐿

0

(7) 

 

The equation (7) is used to calculate the total elongation, which can be integrated 

along the rod as long as the expression for temperature-dependent LTEC is obtained. 

We also must have the form of the temperature function that depends on the position 

𝑇(𝑥) where the initial temperature 𝑇0 is to be given. 

2.3.  Choosing the generalized LTEC  

This study chooses the most general form for the LTEC, which is the power series as 

(Kostanovskiy et al., 2022) 

𝛼(𝑇) = ∑ 𝛼𝑝𝑇𝑝

∞

𝑝=0

= 𝛼0 + 𝛼1𝑇 + 𝛼2𝑇2 + ⋯ . (8) 

3.  Solution of Position-dependent Temperature Function 

The temperature function for equations (7) and (8) must be obtained from solving the 

differential equation of heat diffusion. We start by looking at the homogeneous 

boundary condition problem, which is a prerequisite for solving the inhomogeneous 

problem. 

3.1.   Diffusion equation: homogeneous boundary condition 

We consider a one-dimensional rod of total length 𝐿, where the temperature 

distribution along the rod  satisfies the following equation (Kolokolov, 2025) 

𝑇̇ = 𝑘𝑇′′. (9) 
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For the notation we used 𝑇̇ = 𝜕𝑇 𝜕𝑡⁄  as the change of temperature over time, 𝑇′ =

𝜕𝑇 𝜕𝑥⁄  as the changing temperature over position along the rod, and 𝑘 is the thermal 

diffusivity constant for the material. So, the euqtion above must be valid for 0 ≤ 𝑥 ≤ 𝐿 

and 𝑡 > 0. The initial condition is given by  

𝑇(𝑥, 0) = 𝑓(𝑥), (10) 

with 𝑓(𝑥) is a known function describing the initial temperature distribution profile 

along the rod. For homogeneous boundary conditions, we take the simplest form as 

𝑇(0, 𝑡) = 𝑇(𝐿, 𝑡) = 0, 𝑡 > 0. (11) 

An example of equation (11) is when a linear rod is heated, where both ends are 

connected to an extremely good heat sink. Solving the equation above, one can take the 

form of the solution of the temperature as 

𝑇(𝑥, 𝑡) = 𝜒(𝑥)𝜃(𝑡), (12) 

where 𝜒(𝑥) and 𝜃(𝑡) are the position and time-dependent functions. Subtituting 

equation (12) into (11) then we can get  

𝜒′′

𝜒
=

1

𝑘

𝜃̇

𝜃
= −𝜆. (13) 

Here, we introduce 𝜆 as a separation constant. This leads to two differential 

equaitions 

𝜒′′ + 𝜆𝜒 = 0;   𝜃̇ + 𝜆𝑘𝜃 = 0, (14) 

We use 𝜒(0) = 𝜒(𝐿) = 0, so these conditions must be an eigenvalue problem. The 

general solution is  

𝜒𝑛(𝑥) = A sin 𝑢𝑥 + 𝐵 cos 𝑢𝑥 . (15) 

With some proper boundary conditions, we can get the position function as  

𝜒𝑛(𝑥) = sin (
𝑛𝜋𝑥

𝐿
) . (16) 

Also, for the temporal function, we have  

𝜃𝑛(𝑡) = exp (−
𝑛2𝜋2𝑘𝑡

𝐿2
) . (17) 

Therefore, the complete solution for the temperture is 

𝑇𝑛(𝑥, 𝑡) = sin (
𝑛𝜋𝑥

𝐿
) 𝑒

−
𝑛2𝜋2𝑘

𝐿2 
𝑡

, (18) 

And finally, we have the general solution to the homogeneous linear differential 

equation, which is expressed as a Fourier series  

𝑇(𝑥, 𝑡) = ∑ 𝑏𝑛𝑇𝑛(𝑥, 𝑡)

∞

𝑛=1

, (19) 

where Fourier coefficients given by 𝑏𝑛 =
2

𝐿
∫ 𝑓(𝑥) sin

𝑛𝜋𝑥

𝐿
𝑑𝑥

𝐿

0
. 

 

3.2.  Diffusion equation: inhomogeneous boundary condition 

In this study, we examine the following form of the differential equation as a first 

step toward developing a more general class of boundary conditions as (Mustafa A. 

Sabri, 2022) 

𝑇̇ − 𝑘𝑇′′ = 𝑄(𝑡), (20) 

by boundary conditions where the temperature at one end is held constant  𝑇(0, 𝑡) = 𝑇1, 

while the temperature at the other end varies with time  𝑇(𝐿, 𝑡) = 𝑔(𝑡), and the initial 
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profile for temperature distribution as 𝑇(𝑥, 0) = 𝑓(𝑥). We already knew that, the 

general form of the temperature solution for equation (20) has the expression 

(Kolokolov, 2025) 

𝑇(𝑥, 𝑡) = 𝑃(𝑥, 𝑡) + 𝑅(𝑥, 𝑡), (21) 

where  

𝑅(𝑥, 𝑡) = 𝑇1 +
𝑔(𝑡) − 𝑇1

𝐿
𝑥. (22) 

The function 𝑃(𝑥, 𝑡) must satisfy the homogeneous heat diffusion equation as in 

equation (19).  

 

4.  Results  

By substituting equation (8) into (7), the total thermal expansion of the rod can be 

expressed as 

Δ𝐿(𝑡) = ∫ (𝛼0 + 𝛼1𝑇 + 𝛼2𝑇2 + ⋯ )(𝑇 − 𝑇0)𝑑𝑥.
𝐿

0

(23) 

For simplicity, the expression before can be rewritten as 

Δ𝐿 = ∫ ∑ 𝛼𝑝𝑇𝑝+1

∞

𝑝=0

𝑑𝑥
𝐿

0

− 𝑇0 ∫ ∑ 𝛼𝑝𝑇𝑝

∞

𝑝=0

𝑑𝑥
𝐿

0

. (24) 

To illustrate a simplified case, let us take 𝑇0 = 𝑇1 = 𝑘 = 𝐿 = 1,  𝑔(𝑡) = 𝑡, and the 

initial profile we choose can be represented by 𝑓(𝑥) = 1 + 𝑥 which corresponds to 

following graph  

 
Figure 4. A rod initially 30°C at the cold end (room temperature thermal quilibrium), 

with steam at 90°C induced at the hot end when 𝑡 = 0. 

 

As a result, we have 

𝑅(𝑥, 𝑡) = 1 + (𝑡 − 1)𝑥. (25) 

Then, as for the function 𝑃(𝑥) must satisfies the homogeneous heat diffusion 

equation and is given by 

𝑃(𝑥, 𝑡) = ∑ 𝑏𝑛 sin 𝑛𝜋𝑥 𝑒−𝑛2𝜋2𝑡

∞

𝑛=1

, (26) 

Where the Fourier coefficient  
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𝑏𝑛 = 2 ∫(1 + 𝑥) sin 𝑛𝜋𝑥

1

0

= 2 (
1 − 2(−1)𝑛

𝑛𝜋
) . (27) 

Thus, we have  

𝑃(𝑥, 𝑡) =
2

𝜋
∑ (

1 − 2(−1)𝑛

𝑛
) sin 𝑛𝜋𝑥 𝑒−𝑛2𝜋2𝑡

∞

𝑛=1

. (28) 

Combining both components, the complete form for the temperature solution is 

𝑇(𝑥, 𝑡) =
2

𝜋
∑ (

1 − 2(−1)𝑛

𝑛
) sin 𝑛𝜋𝑥 𝑒−𝑛2𝜋2𝑡

∞

𝑛=1

+ 1 + (𝑡 − 1)𝑥. (29) 

The equation (24) tells us the general formulation for total linear thermal expansion, 

assuming LTEC 𝛼𝑝 and temperature fuction 𝑇(𝑥, 𝑡) are known. However, to simplify 

the temperature function we have from equation (29), one can shorten the power series 

into two terms only by taking the assumption 𝛼𝑝 ≈ 0 for 𝑝 ≥ 2. This yields 

Δ𝐿 = ∫ (𝛼0𝑇 + 𝛼1𝑇2)𝑑𝑥
1

0

− ∫ (𝛼0 + 𝛼1𝑇)𝑑𝑥
𝐿

0

, (30) 

or 

Δ𝐿 = ∫ 𝛼0(𝑇 − 1)𝑑𝑥 + ∫ 𝛼1(𝑇2 − 𝑇)𝑑𝑥
1

0

.
1

0

(31) 

Higher order terms from equaiton (29) can be reduced by using observation time 𝑡 ≫
𝐿2

𝑘
= 1. So, the temperature can be approximated by 

𝑇(𝑥, 𝑡) ≈
2

𝜋
sin 𝜋𝑥 𝑒−𝜋2𝑡 + 1 + (𝑡 − 1)𝑥. (32) 

Substituting equation (32) into (31), yields the following integrals 

𝛼0 ∫ (𝑇 − 1)𝑑𝑥
1

0

= 𝛼0 ∫ (
2

𝜋
sin 𝜋𝑥 𝑒−𝜋2𝑡 + (𝑡 − 1)𝑥) 𝑑𝑥

1

0

= 𝛼0 (
4

𝜋2 
𝑒−𝜋2𝑡 +

𝑡 − 1

2
) , (33) 

And 

𝛼1 ∫ (
4

𝜋2
sin2 𝜋𝑥 𝑒−2𝜋2𝑡 +

4

𝜋 
(1 + 𝑡) sin 𝜋𝑥 𝑒−𝜋2𝑡

1

0

 

−
4

𝜋
𝑥 sin 𝜋𝑥 𝑒−𝜋2𝑡 + (1 + 𝑡)2 − 2(1 + 𝑡)𝑥 + 𝑥2) 𝑑𝑥 

= 𝛼1 (
2

𝜋2
𝑒−2𝜋2𝑡 +

4

𝜋2
(1 + 𝑡)𝑒−𝜋2𝑡 + 𝑡2 +

4

3
) . (34) 

Thus, the total thermal expansion is given by  

Δ𝐿(𝑡) = 𝛼0 (
4

𝜋2 
𝑒−𝜋2𝑡 +

𝑡 − 1

2
) + 𝛼1 (

2

𝜋2
𝑒−2𝜋2𝑡 +

4

𝜋2
(1 + 𝑡)𝑒−𝜋2𝑡 + 𝑡2 +

4

3
) . (35) 

Equation (35) is a unique solution under the particular circumstances specified by 

chosen boundary conditions, such as 𝑔(𝑡) and 𝑓(𝑥). Depending on the experimental 

setup, several boundary functions may be chosen. This formulation (35) demonstrates 

how the thermal expansion coefficients 𝛼0 and 𝛼1 affect the total expansion, which is 

time-dependent. To analyze the time-dependency for the elongation, we may look at the 

following graphs 
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Figure 5. Time-dependent parameterization for expansion Δ𝐿(𝑡) with: 𝛼0 = 0.000174; 

𝛼1 = 0  (left) and 𝛼0 = 0.000174; 𝛼1 = 0.000056 (right) with time 0 ≤ 𝑡 ≤ 100. 

 

4.1.  Parameterization: 𝜶𝟎 = 𝟎. 𝟎𝟎𝟎𝟏𝟕𝟒 and 𝜶𝟏 = 𝟎 

As shown in Figure 5 (left), the expansion curve Δ𝐿(𝑡) yields a linear line when 

𝛼1 = 0. This confirms that a constant thermal expansion coefficient yields a linear 

elongation profile, consistent with the standard theory of linear thermal expansion. For 

instance, from equation (1) we have  
𝑑𝑥

𝑑𝑡
~𝛼0 (

𝑑𝑇

𝑑𝑡
) , (36) 

with a constant temperature gradient (
𝑑𝑇

𝑑𝑡
), will show the same result as the figure 

mentioned.  In this case, we have a yielding equation as 

Δ𝐿(𝑡) = 𝛼0 (
4

𝜋2 
𝑒−𝜋2𝑡 +

𝑡 − 1

2
) . (37) 

At 𝑡 = 0, this simplifies to Δ𝐿(𝑡) =
𝛼0

2
(

8

𝜋2 − 1). Recalling that |𝛼0| ≪ 1, means  

Δ𝐿(𝑡) ≈ 0. This indicates that the chosen boundary functions are consistent with 

standard laboratory fact. 

 

4.2.  Parameterization: 𝜶𝟎 = 𝟎. 𝟎𝟎𝟎𝟏𝟕𝟒 and 𝜶𝟏 = 𝟎. 𝟎𝟎𝟎𝟎𝟓𝟔 

When the first-order coefficient satisfies 𝛼0 > 𝛼1, the second term of (35) can be 

interpreted as a correction term. The resulting non-traditional behavior in Figure 5 

(right) shows deviations from the standard linear expansion model. Again, if we take the 

initial value 𝑡 = 0, then we have 

Δ𝐿(0) = 𝛼0 (
4

𝜋2 
−

1

2
) + 𝛼1 (

6

𝜋2
+

4

3
) . (38) 

With |𝛼1| < |𝛼0| ≪ 1 , again validating the fact this is  Δ𝐿(𝑡) ≈ 0. We can see that the 

inclusion of the correction term increases the rate of expansion over time compared to 

the former one. This non-standard behavior implies that heat diffusion during thermal 

expansion with equipment like Figure 2, a single heat source, may be neglected, which 

could lead to inconsistencies in standard theory. 

 

  Incorporating temperature-dependent effects for LTEC is therefore essential for 

capturing the full diffusion-driven behavior of the linear thermal expansion. The LTEC 
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from equation (35) can be determined numerically from experimental data. Overall, the 

method described in equation (24), combined with the exact solution from differential 

equation (20), provides a modified expression that is still in line with the standard 

theory of linear expansion for the time-dependent total expansion Δ𝐿(𝑡). 

5.  Conclusion  

An alternative formulation of the thermal expansion equation in one-dimensional 

rods is derived using equations (7) and (8). The resulting expression for time-dependent 

elongation, as shown in Equation (35), is a correction to the standard linear expansion 

model. In order to obtain this corrected form, an inhomogeneous heat diffusion equation 

must be solved, which is consistent with experimental configurations frequently 

employed in laboratory settings. For example, a common experimental setup is to keep 

a steady heat source at one end of the rod while leaving the other end open to the 

environment or thermally insulated. Assuming that the rod initially displays a 

temperature distribution that may be linear, like Figure 4, observations are made for 𝑡 ≥

0. Additional generalization is possible based on this study. To get more representative 

expressions for thermal expansion, other researchers could use more complicated 

boundary conditions and numerical evaluations of the power series integral in equation 

(24). These methods provide improved accuracy in simulating real-world situations with 

temperature-dependent diffusivity and non-uniform heating while maintaining 

consistency with the conventional theory of one-dimensional thermal expansion. 
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