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Abstract: The correction factor must be derived from the results of the
linear thermal expansion experiment. We have two ways to address
this problem: we use the form of polynomials for the linear thermal
coefficient, and one must solve the one-dimensional heat diffusion
equation. The temperature function that we obtained is the solution for
the inhomogeneous differential equation. Using those two, then
combine them into a modified linear thermal expansion equation, i.e.,
the infinitesimal form of the equation, so that we could find the
expression for the time-dependent expansion for the metal rod, AL(t).
We should attempt to reduce the higher-order terms by taking the
approximation as our first step in this paper. Finally, the observer may
choose a suitable boundary condition for the formula and use the
resulting equation as the correction factor.

Keywords: linear expansion coefficient, heat diffusion, inhomogeneous
boundary condition, Fourier series solution

1. Introduction

The thermal expansion experiment is one of the modules frequently conducted in
Basic Physics laboratories to observe the physical properties of a one-dimensional metal
rod. The physical property studied is the ability of an object to expand when heated.
This property is determined by the linear thermal expansion coefficient (LTEC). This
experiment can be performed with a simple apparatus, which only requires a metal rod,
a heater, and a set of sensitive length measurement tools. Several applications of the
linear expansion set and its modifications to support technological advancements in
teaching materials have been previously carried out, such as utilizing the Internet of
Things as a basis for linear expansion experiments (Santoso et al., 2023) and thermal
expansion of solids (Drebushchak, 2020; Zorzi & Perottoni, 2021). Means that the
theoretical basis for determining the coefficient is always assumed to be a constant
value for the coefficient of expansion. A model that uses a polynomial function for the
coefficient of linear expansion has already been done by other studies. As a result, it is
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necessary to examine how the elongation of a heated metal rod depends on time. The

previous argument is reinforced by the following experimental set.
[ q . - S == M e

Figure 1. The experiment set that utilized for the addressed linear thermal expansion
problem.

From the figure above, linear expansion happened when the hot water steam flowed
through the tube from the right end to the left end, then condensed. At the middle point
of the tube, we can see the thermometer, which is used to measure the supposed average
temperature inside the tube. Here, we have, for example, some data results obtained
from the apparatus.

Table 1. Average temperature achieved from 10 experiments of thermal expansion for
an iron rod, with six different elongations.

No. AL (m) Temperature(°C)
1 0 25
2 0.00005 26
3 0.0001 27
4 0.00015 27
5 0.00002 27
6 0.00025 63

Using the constant thermal expansion coefficient model, we can find the error ranged
from 7 to 20 %. Therefore, a modification of the theory regarding linear thermal
expansion is needed to find its time dependency. This study will involve using the heat
diffusion equation to produce the temperature dynamics solution along the rod, and also
the polynomial model of the LTEC to enhance the modification. The expression
obtained will be used in the expansion equation, and one can get the equation for time-
dependent elongation for the metal rod.

2. Analysis Setup

2.1. Determining generalized linear thermal expansion

A heated 1-D metal rod satisfies the following infinitesimal equation (Drebushchak,
2020)
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1 dx
=—— 1
TR (1)
with a, Ly, and Z—i are the linear thermal coefficient, the initial rod length, and the rate of

a

change of length over temperature. If we integrate equation (1), we can get

fdx =jaL0dT (2)

6L = a(T)SxAT. (3)

The integration of equation (2) into equation (3) makes it clear that we take into

account the coefficient of linear expansion as a function of time, a(T), and the initial

length L, as a temperature-dependent partition of the rod's length, §x. In the meantime,

the division of length expansion caused by a temperature change, AT, is represented by
6L.

2.2. Determining 1-D time-dependent linear thermal expansion

To generate a suitable expression for the modified linear thermal expansion, we can
look at the equipment setup below
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Figure 2. The hot steam enters from a single point on the right end, whereas condensed
at the opposite end.

According to the equipment above, means that the following equation can be
formulated as a fundamental model for the modified theory

Ax Az Az
N N
1 2 3 n
To T(z1) T(24-1) T(2,)
L() >/r
cold end Steam

Figure 3. Length element partition of a heated metal rod.
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From the diagram above, it can be seen that the rod’s length is divided into n
elements. For each element can be expressed as follows
8L, = a(T)AT6x,,
8L, = a(T)AT6x,,
6L; = a(T)AT5x,

SL, = a(T)AT6x,,. (4)

Each element undergoes a change of temperature AT = T(x + 6x,t) — T(x,t),

which can be interpreted as the temperature difference between element n and (n + 1)

by a position-dependent heat source Q(x). If the maximum partition is set to be n = N,
then equation (4) can be written as

N N
Z 5L, = Z a(T)ATx,, . (5)
n=1 n=1
For N — o0, one can get the equation
N N
Allim 6L, = I\IIim a(T)AT6x,, . (6)
n=1 n=1
The equation above can be treated as an integral form as
L L
aL= [ dL= [ are,o - T %
0 0

The equation (7) is used to calculate the total elongation, which can be integrated
along the rod as long as the expression for temperature-dependent LTEC is obtained.
We also must have the form of the temperature function that depends on the position
T (x) where the initial temperature Ty, is to be given.

2.3. Choosing the generalized LTEC

This study chooses the most general form for the LTEC, which is the power series as
(Kostanovskiy et al., 2022)

a(T) =Zapr =ag+ ;T + a,T? + . 8)
p=0

3. Solution of Position-dependent Temperature Function

The temperature function for equations (7) and (8) must be obtained from solving the
differential equation of heat diffusion. We start by looking at the homogeneous
boundary condition problem, which is a prerequisite for solving the inhomogeneous
problem.

3.1. Diffusion equation: homogeneous boundary condition

We consider a one-dimensional rod of total length L, where the temperature
distribution along the rod satisfies the following equation (Kolokolov, 2025)
T =kT". 9)
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For the notation we used T = 8T /0t as the change of temperature over time, T' =
0T /0x as the changing temperature over position along the rod, and k is the thermal
diffusivity constant for the material. So, the euqtion above must be valid for 0 < x < L
and t > 0. The initial condition is given by

T(x,0) = f(x), (10)
with f(x) is a known function describing the initial temperature distribution profile
along the rod. For homogeneous boundary conditions, we take the simplest form as

T(0,t)=T(L,t)=0,t > 0. (11)

An example of equation (11) is when a linear rod is heated, where both ends are
connected to an extremely good heat sink. Solving the equation above, one can take the
form of the solution of the temperature as

T(x,t) = x(x)6(), (12)
where y(x) and 6(t) are the position and time-dependent functions. Subtituting
equation (12) into (11) then we can get

¥ 16

7 = EE = —A. (1 3)

Here, we introduce A as a separation constant. This leads to two differential
equaitions

X"+Ax=0; 6+21k6 =0, (14)

We use y(0) = y(L) = 0, so these conditions must be an eigenvalue problem. The

general solution is

Xn(x) = Asinux + B cos ux. (15)
With some proper boundary conditions, we can get the position function as
. /mnux
xn(x) = sin (T) (16)
Also, for the temporal function, we have
n?m?kt
0,,(t) = exp (— Iz ) 17)
Therefore, the complete solution for the temperture is
nmxy _nmlk
— i 2
T,(x,t) = sm( 7 )e iz (18)

And finally, we have the general solution to the homogeneous linear differential
equation, which is expressed as a Fourier series

T(x,t) = Z b, T, (x, ), (19)
n=1

where Fourier coefficients given by b,, = % [ OL f(x)sin n_:er dx.

3.2. Diffusion equation: inhomogeneous boundary condition

In this study, we examine the following form of the differential equation as a first
step toward developing a more general class of boundary conditions as (Mustafa A.
Sabri, 2022)

T—kT" = Q(b), (20)
by boundary conditions where the temperature at one end is held constant T(0,t) = T,
while the temperature at the other end varies with time T(L,t) = g(t), and the initial
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profile for temperature distribution as T(x,0) = f(x). We already knew that, the
general form of the temperature solution for equation (20) has the expression
(Kolokolov, 2025)

T(x,t) = P(x,t) + R(x,t), (21)
where

R(x,t) = Ty + @x (22)

The function P(x,t) must satisfy the homogeneous heat diffusion equation as in
equation (19).

4. Results

By substituting equation (8) into (7), the total thermal expansion of the rod can be
expressed as

L
AL(E) = jo (o + arT + ayT? + -+ )(T — Ty)dx. (23)

For simplicity, the expression before can be rewritten as

L2 L2
AL = f z a, TP+ dx — Tof Z a, TP dx. (24)
0 p:O 0 p:O

To illustrate a simplified case, let us take To =Ty =k =L =1, g(t) =t, and the
initial profile we choose can be represented by f(x) = 1+ x which corresponds to
following graph

temperature
100

80
60 = o
40 i

20

cold end Steam

Figure 4. A rod initially 30°C at the cold end (room temperature thermal quilibrium),
with steam at 90°C induced at the hot end when t = 0.

As a result, we have
R(x,t) =1+ (t — Dx. (25)
Then, as for the function P(x) must satisfies the homogeneous heat diffusion
equation and is given by

P(x,t) = Z b,, sin nmx e n'mt (26)
n=1

Where the Fourier coefficient
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g 1-2(-1)"
b, =2 j(l + x)sinnmx = 2 (—) (27)
nr
0
Thus, we have
2% (1-2(=1)"
P(x,t) = —z <#> sinnmx e VL, (28)
Lt n
Combining both components, the complete form for the temperature solution is
2 1-2(—1)"\ | 2,2
T(x,t) = ;z —, |sinnmx et 4+ 14+ (t— Dx. (29)

n=1

The equation (24) tells us the general formulation for total linear thermal expansion,
assuming LTEC a,, and temperature fuction T(x,t) are known. However, to simplify
the temperature function we have from equation (29), one can shorten the power series
into two terms only by taking the assumption a, ~ 0 for p = 2. This yields

1 L
AL = j (aoT + a;T?)dx — f (ap + a;T)dx, (30)
0 0
or
1 1
AL =f ao(T — Ddx +f @, (T2 — T)dx. 31)
0 0

Higher order terms from equaiton (29) can be reduced by using observation time t >

2
% = 1. So, the temperature can be approximated by

2
T(x,t) = ;sin mxe ™t + 1+ (t — Dx. (32)

Substituting equation (32) into (31), yields the following integrals
1

1 2 .

aof (T—1)dx=a0f ( sintxe™™ t+(t—1)x)dx = q <—e‘" t+—) (33)
0 o T 2

And

1
4 4
a —sin2mxe 2"t + —(1+t)sinmxe ™t
1 2 yis
0

4
——x sintxe ™+ (1+6)2—2(1+x + x2> dx

2 4 4
=a (—Ze—Z”Zt + A+ e ™™ +2 + —>. (34)
s s 3
Thus, the total thermal expansion is given by
4 t—1 2 4
AL(t) = aq (n—e_” f T) + a, (—e‘Z” t = (1 + e ™ 42 4 ) (35)

Equation (35) is a unique solution under the partlcular circumstances specified by
chosen boundary conditions, such as g(t) and f(x). Depending on the experimental
setup, several boundary functions may be chosen. This formulation (35) demonstrates
how the thermal expansion coefficients a, and a; affect the total expansion, which is
time-dependent. To analyze the time-dependency for the elongation, we may look at the
following graphs
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Figure 5. Time-dependent parameterization for expansion AL(t) with: g = 0.000174;
a; =0 (left) and g = 0.000174; a; = 0.000056 (right) with time 0 < t < 100.

4.1. Parameterization: ag = 0.000174 and a; = 0

As shown in Figure 5 (left), the expansion curve AL(t) yields a linear line when
a; = 0. This confirms that a constant thermal expansion coefficient yields a linear
elongation profile, consistent with the standard theory of linear thermal expansion. For
instance, from equation (1) we have

dx dT
Xo ( ) ’ (3 6)

de~ °\de
: . dr .
with a constant temperature gradient (E)’ will show the same result as the figure

mentioned. In this case, we have a yielding equation as

4 t—1
AL(E) = aq (n—ze—"zf +T)' (37)

At t =0, this simplifies to AL(t) = %(%— 1). Recalling that |ay| << 1, means

AL(t) = 0. This indicates that the chosen boundary functions are consistent with
standard laboratory fact.

4.2. Parameterization: ag = 0.000174 and a; = 0.000056

When the first-order coefficient satisfies ay > @, the second term of (35) can be
interpreted as a correction term. The resulting non-traditional behavior in Figure 5
(right) shows deviations from the standard linear expansion model. Again, if we take the
initial value t = 0, then we have

4 1 6 4
AL(0) = (0 (7'[_2_5) + aq (Fﬁ-g) (38)
With |a;| < |ag| « 1, again validating the fact this is AL(t) ~ 0. We can see that the
inclusion of the correction term increases the rate of expansion over time compared to
the former one. This non-standard behavior implies that heat diffusion during thermal
expansion with equipment like Figure 2, a single heat source, may be neglected, which
could lead to inconsistencies in standard theory.

Incorporating temperature-dependent effects for LTEC is therefore essential for
capturing the full diffusion-driven behavior of the linear thermal expansion. The LTEC

M. R. Taufani, A. H. Aminudin, E. N. Syamsiah, K. Y. Togatorop 265

I I I I ! I I I I
20 40 60 80 100 20 40 60 80 100 !


https://dx.doi.org/10.20961/jphystheor-appl.v9i2.110756

Journal of Physics: Theories and Applications E-ISSN: 2549-7324 | P-ISSN: 2549-7316
J. Phys.: Theor. Appl. Vol. 9 No. 2 (2025) 258-266 doi: jphystheor-appl.v9i2.110756

from equation (35) can be determined numerically from experimental data. Overall, the
method described in equation (24), combined with the exact solution from differential
equation (20), provides a modified expression that is still in line with the standard
theory of linear expansion for the time-dependent total expansion AL(t).

5. Conclusion

An alternative formulation of the thermal expansion equation in one-dimensional
rods is derived using equations (7) and (8). The resulting expression for time-dependent
elongation, as shown in Equation (35), is a correction to the standard linear expansion
model. In order to obtain this corrected form, an inhomogeneous heat diffusion equation
must be solved, which is consistent with experimental configurations frequently
employed in laboratory settings. For example, a common experimental setup is to keep
a steady heat source at one end of the rod while leaving the other end open to the
environment or thermally insulated. Assuming that the rod initially displays a
temperature distribution that may be linear, like Figure 4, observations are made for t >
0. Additional generalization is possible based on this study. To get more representative
expressions for thermal expansion, other researchers could use more complicated
boundary conditions and numerical evaluations of the power series integral in equation
(24). These methods provide improved accuracy in simulating real-world situations with
temperature-dependent  diffusivity and non-uniform heating while maintaining
consistency with the conventional theory of one-dimensional thermal expansion.
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