
Journal of Physics: Theories and Applications E-ISSN: 2549-7324  /  P-ISSN: 2549-7316    

J. Phys.: Theor. Appl.  Vol. 9 No. 2 (2025) 248-257 doi:  

 

248 

 

Mass spectra of quarkonium systems in the shifted 

generalized Cornell–inverse quadratic potential model 

Etido P. Inyang 

     Department of Physics, Faculty of Science, National Open University of Nigeria, Jabi-Abuja, 

Nigeria  

Corresponding author email: etidophysics@gmail.com 

Received 21 August 2025, Revised 12 October 2025, Published 30 September 2025 

 

Abstract: In this study, we present an application of the Shifted Generalized 

Cornell–Inverse Quadratic Potential (SG-CIQP) to heavy quarkonium 

systems. By solving the radial Schrödinger equation with the Pekeris-type 

approximation within the Nikiforov–Uvarov method, we derive closed-form 

expressions for both the energy eigenvalues and wave functions. This 

approach is applied to charmonium and bottomonium mesons, yielding mass 

spectra in excellent agreement with experimental data and established 

theoretical predictions. Notably, the S-wave states are reproduced with high 

precision, while the P-wave states are captured with quantitatively reliable 

accuracy, with minor deviations in the charmonium sector attributable to 

relativistic and coupled-channel effects. These results not only confirm the 

robustness of the SG-CIQP framework but also establish its potential as a 

versatile tool for extending quarkonium studies to spin-dependent 

interactions, relativistic corrections, and the spectroscopy of exotic hadronic 

states. 
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1.  Introduction 

The study of quarkonium systems—bound states of a heavy quark and its antiquark 

remain one of the most active and illuminating areas of modern particle physics. These 

systems provide a crucial platform for testing quantum chromodynamics (QCD), the 

fundamental theory governing the strong interaction. Heavy quarkonia, particularly 

charmonium (c𝑐̄) and bottomonium (b𝑏̄), are of special importance because the large 

masses of the charm and bottom quarks allow their dynamics to be approximated using 

non-relativistic quantum mechanics [1-5]. This makes them excellent laboratories for 

probing both the perturbative regime of QCD, dominated by short-distance gluon 

exchange, and the non-perturbative regime, governed by confinement and other long-

range effects [6]. Although significant advances have been achieved, the precise 

description of quarkonium properties—including their mass spectra—remains 

incomplete. This ongoing challenge motivates the development and application of 
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improved potential models [7-10]. The challenge has grown with the advent of next-

generation facilities such as the Large Hadron Collider (LHC), Belle II, and BESIII, 

whose precision demands increasingly accurate and predictive theoretical models [11,12]. 

To meet this challenge, potential models have emerged as a powerful phenomenological 

framework for describing the quark–antiquark interaction. The Cornell potential, with its 

short-range Coulomb-like term and long-range linear confining term, has been 

particularly influential. However, its simplicity necessitates refinements to account for 

higher-order effects, and excited-state behavior. To address these shortcomings, several 

extensions of the Cornell potential and related models have been proposed [13,14]. These 

include the addition of inverse quadratic terms to capture orbital effects, screening 

modifications to account for quark-gluon plasma dynamics, logarithmic corrections, and 

relativistic spin-dependent contributions. Recent studies highlight the diversity and 

vitality of this approach. For example, Kanago et al. [15] investigated heavy quarkonia in 

a curved space-time background with conical geometry, applying an extended Cornell 

potential and solving via the bi-confluent Heun function to demonstrate sensitivity to 

topological defects. Inyang et al. [16] employed the Nikiforov–Uvarov (NU) method with 

the Cornell potential to explore the influence of these defects on thermal properties and 

meson mass spectra, achieving better consistency with experimental data. Kumar et al. 

[17] studied heavy meson spectra with a sextic anharmonic oscillator potential within the 

NU framework and extended their analysis to thermodynamic functions such as entropy 

and partition functions. Abu-Shady and Fath-Allah [18] advanced the field by applying a 

generalized fractional NU method to the fractional Klein–Gordon equation with screened 

Kratzer and Yukawa potentials to analyze meson mass spectra. Other works have applied 

alternative approaches. Rani et al. [19] used the asymptotic iteration method for general 

Cornell-type potentials, reporting excellent agreement with experimental spectra for 

heavy and heavy-light mesons. Purohit et al. [20] employed the NU method with a linear-

plus-modified-Yukawa potential to study heavy-light mesons, accurately reproducing 

lower-state masses. Horchani et al. [21] investigated mesons in higher-dimensional 

spaces with a Killingbeck plus inverse quadratic potential, while Atangana Likéné et al. 

[22] introduced conformable fractional derivatives into the Schrödinger equation with an 

extended Cornell form. Omugbe et al. [23] applied a Pekeris-type scheme within the 

WKB approximation to solve the Killingbeck plus inverse quadratic potential, achieving 

results consistent with both experiment and other analytical methods. Recent numerical 

and semi-analytical efforts further underscore the variety of techniques in this field. 

Kaushal and Bhaghyesh [23] used a screened potential with corrections and the Matrix–

Numerov method to compute charmed hadron and diquark spectra, reproducing observed 

charmonium and triply charmed baryon states. Reggab [24] solved the Schrödinger 

equation with the Cornell potential using the NU method, with modified parameter forms 

linked to Kratzer and anharmonic potentials, producing results in close agreement with 

available ED. Collectively, these works demonstrate the wide applicability of both 

analytical and numerical techniques in refining quarkonium models. Building on this 

foundation, we propose the Shifted Generalized Cornell–Inverse Quadratic (SGCIQ) 



Journal of Physics: Theories and Applications E-ISSN: 2549-7324  /  P-ISSN: 2549-7316    

J. Phys.: Theor. Appl.  Vol. 9 No. 2 (2025) 248-257 doi:  

 

250 Mass Spectra of Quarkonium Systems in the Shifted… 

 

potential as a refined framework for heavy quarkonium studies. This potential is 

expressed as 

                                      
0 0

0 02
( )

A C
V r B r D

r r
= + − +   (1) 

with 0 0 0 0, ,   A B C and D  as arbitrary potential parameters. The potential in Eq. (1) 

reduces to the Cornell potential if we set the constants ( )0 0 0A D= =  [16]. 0C  is the 

coupling constant and 0B  is a linear confinement parameter. where the inverse quadratic 

term enhances modeling of short- to medium-range dynamics, and the constant shift 

adjusts the overall mass scale while leaving level splittings intact. Solving the 

Schrödinger equation for this potential is mathematically nontrivial, yet analytic solutions 

are invaluable for interpreting spectroscopy and computing observables. 

In this work, we employ the Nikiforov–Uvarov method to obtain closed-form 

expressions for the energy eigenvalues and wavefunctions of the SGCIQ potential. A 

detailed numerical analysis is carried out for charmonium and bottomonium spectra, with 

results benchmarked against experimental data and existing theoretical models. By doing 

so, this study not only deepens the theoretical understanding of heavy quarkonium 

systems but also establishes the SGCIQ potential as a viable and predictive framework 

consistent with the precision of modern experimental findings. 

2.  Approximate Solutions for the SG-CIQ Potential 

The Schrödinger equation (SE) interacting via potential 𝑉(𝑟), is given by [25]    
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where , ,l r  and    are the angular momentum quantum number, the reduced mass 

for the quarkonium particle, inter-particle distance and reduced plank constant 

respectively. Substituting Eq. (1) into Eq. (2), we arrive at the following expression 
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Transforming the coordinate of Eq. (3), with 
1

x
r

= , and after differentiation and 

simplification, Eq. (4) becomes 
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To solve Eq. (4), we employ the approximation scheme reported in the literature [26]. 

The term with 
1

0x


 is expanded in a second-order power series around 0r  (equivalently

0

0

1

r
  ) in the x-space, which is assumed to represent the characteristic radius of the 
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meson. This approximation transforms the potential into a tractable form suitable for 

solution via the NU method [27]. 

 

With 0 0 0y x = − , expansion around 0 0y =  yields the power series 
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Substituting Eq. (5) into Eq. (4) yields 
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Comparison of Eq. (6) with Eq. (A1) in Ref. [1] yields 
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Equation (8), when substituted into Eq. (A9) of Ref. [1], yields 

                         
( ) 2
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To obtain k, the discriminant of the expression beneath the square root is evaluated, 

giving 
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Equation (9), when substituted into Eq. (10), yields 
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For bound-state problems, the physically acceptable solution corresponds to the 

negative part of Eq. (11). Differentiation of this expression gives 
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Equations (8) and (12), when substituted into Eq. (A7) of Ref. [1], yield 
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Differentiation of Eq. (13) yields 
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From Eq. (A10) of Ref. [1], we obtain 
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From Eq. (A11) of Ref. [1], this results in 
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Equating Eqs. (15) and (16), with Eq. (7) substituted, the energy eigenvalues are 

expressed as 
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The wavefunction can be written as 
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Here, nlB  denotes the normalization constant, obtainable from 
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3.  Quarkonium Bound-State Interactions 

Charmonium and bottomonium mass spectra for radial and angular momentum 

quantum numbers were evaluated using the meson mass relation [28,29]. 

 
2 nlM m E= +

 (20) 

In this framework, m denotes the bare mass of the quarkonium, while nlE  represents 

the corresponding energy eigenvalues. 

Equation (17), when substituted into Eq. (20), provides the expressions for the SG-

CIQ potential mass spectra 
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4.  Discussion of results 

The model parameters were determined by fitting Eq. (21) to the experimental data in 

Tables [1–2]. For charmonium and bottomonium mesons, three algebraic equations were 

solved simultaneously with the aid of the MAPLE package, using the experimental 

masses of the 1S, 2S, and 3S states as input. Tables 1 and 2 compare the charmonium and 

bottomonium spectra calculated with the Shifted Generalized Cornell–Inverse Quadratic 

Potential (SG-CIQP) to experimental data and other theoretical models. The S-wave 

states (1S–4S) show excellent agreement with experiment in both systems, demonstrating 

that the SG-CIQP successfully captures the dominant central potential arising from color-

Coulomb attraction at short distances and linear confinement at larger separations. These 

features are central to quark–antiquark binding in quantum chromodynamics (QCD) and 

confirm that the model provides a reliable description of the radial excitations of heavy 

quarkonia. 

The P-wave states also show good agreement, though small deviations emerge. In 

charmonium, the P-wave levels lie slightly below experiment, which can be understood 

in terms of relativistic corrections and coupled-channel effects. The lighter charm quark 

allows stronger mixing with open-charm thresholds, which shifts the levels relative to a 

purely static potential model. In bottomonium, where the heavier quark mass suppresses 

relativistic effects and threshold couplings, the P-wave states are reproduced with higher 

accuracy. This contrast between the two systems reflects a fundamental aspect of hadron 

physics: charmonium lies in an intermediate regime where both perturbative QCD (at 

short distances) and nonperturbative effects (confinement and channel mixing) play 

significant roles, while bottomonium is closer to an ideal nonrelativistic bound system. 

From a broader hadron-physics perspective, the agreement of the SG-CIQP with both 

S- and P-wave states validates its potential structure as a balance of short-range gluon 

exchange and long-range confinement dynamics. The fact that S-wave levels, which are 

more sensitive to the short-distance Coulombic part, and P-wave levels, which probe the 

confining and spin-dependent contributions, are both reasonably well reproduced 

suggests that the SG-CIQP captures the essential physics across different regimes. This 

highlights its relevance not only for conventional quarkonium but also as a foundation for 

studying exotic hadrons, such as tetraquarks and hybrids, where similar interplay between 

color-Coulomb and confinement forces dictates the spectrum. 

 

 

 

 

 

 

Table 1. The Charmonium mass spectrum expressed in GeV 
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States The present 

analysis 

Ref. [13] Ref. [14] Experiment  

[30-32] 

1s 3.096839898 3.0969 3.098 3.097 

2s 3.686005578 3.68697 3.688 3.686 

3s 4.039049024 4.04143 4.029 4.039 

4s 4.267153785 4.27086 - 4.263 

1p 3.510571621 3.25581 3.516 3.511 

2p 3.912773823 3.77951 3.925 3.927 

3p 4.097620019 4.09997 4.301 3.097 

 

Table2. The bottomonium mass spectrum expressed in GeV 

2

0 0

0 0 0

4.823 , 1.033 , 0.2 ,

1.553 , 1.061 , 0.381

Bm GeV A GeV B GeV

C GeV D GeV GeV

 = = =
 

= = = 
 

States The present 

analysis 

Ref. [13] Ref. [14] Experiment  

[30-31] 

1s 9.460424446 9.45851 9.460 9.460 

2s 10.02337702 10.0218 10.026 10.023 

3s 10.35386764 10.3539 10.354 10.355 

4s 10.57826936 10.5661 10.572 10.579 

1p 9.898553580 9.61781 9.891 9.899 

2p 10.26088755 10.1127 10.258 10.260 

3p 10.51273350 10.4106 10.518 10.512 

 

5.  Conclusion 

In this work, we solved the radial Schrödinger equation for the Shifted Generalized 

Cornell–Inverse Quadratic Potential (SG-CIQP) and derived analytical expressions for 

the energy eigenvalues and wave functions using the Nikiforov–Uvarov method. The 

model was applied to study the mass spectra of charmonium and bottomonium mesons. 

Results show that the SG-CIQP provides a consistent description of both S- and P-wave 

states, with predictions in good agreement with experimental data and other theoretical 

models. This demonstrates its reliability as a framework for heavy quarkonium physics. 

The potential’s flexibility also makes it suitable for further studies, including the 

incorporation of spin-dependent interactions, relativistic corrections, and higher 

excitations. It may additionally be applied to exotic hadrons such as tetraquarks and 

pentaquarks, or to explore quarkonium properties in the quark–gluon plasma. Thus, the 

SG-CIQP offers a versatile and accurate approach to modeling quark–antiquark 

interactions. 

Data availability 

No external datasets were used in this study. All data were generated numerically from 

the analytical solutions. 
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