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Abstract: This study investigates the universal I-Love-Q relation in anisotropic 

quark stars within the Rastall gravity framework. We employ the 4th-order Runge-

Kutta numerical method to solve the slow rotation and tidal deformation equations. 

The analysis utilizes the MIT Bag equation of state with the Bag parameter (𝐵) and 

the Color Flavor Locked (CFL) equation of state with the CFL parameter (𝛥) to 

model the material properties of anisotropic quark stars. The universal I-Love-Q 

relation are explored by varying the Rastall parameter (𝜁) and the anisotropic 

parameter (𝜆𝐻). The universal I-Love-Q relation is satisfied when variations in 𝜁, 

𝜆𝐻, 𝐵, and 𝛥 do not affect the linear relationship between the moment of inertia (𝐼), 

Love number (𝛬), and quadrupole moment (𝑄). The universal I-Love-Q relation 

holds when 𝐵 and 𝛥 are varied, but breaks down when ζ and 𝜆𝐻 are altered. 

Keyword: Anisotropic Quark Stars, Rastall Gravity, Stability, Universal Relation, 

Equation of State 

1.  Introduction 

General Relativity (GR), developed by Albert Einstein in 1915, is a theory that describes 

how matter and energy influence space-time geometry, and vice versa, through Einstein's field 

equations derived from the Einstein-Hilbert Lagrangian. GR has been instrumental in 

understanding phenomena such as cosmological models (Peebles P. , 1993), black holes 

(Thorne, 1995), compact stars (Glendenning, 2012), and gravitational waves (Schilling, 2017). 

It has also made successful predictions, validated through experimental observations like the 

perihelion shift of Mercury (Turyshev, Shao, Nordtvedt, & Hellings, 2007), deflection of 

starlight during a solar eclipse (Dyson, Eddington, & Davidson, 1923), gravitational waves 

detected by LIGO (Abbott, et al., 2017), and gravitational redshift (Vessot, et al., 1980). 

However, GR faces challenges in certain scenarios, including the information paradox, black 

hole singularities (Mathur, 2009), galaxy rotation (Tian & Hsia, 2020), and the mysteries of 

dark energy and cosmic acceleration (Riess, et al., 1998; Perlmutter, et al., 1999). 

Observational evidence of high-redshift type Ia supernovae suggests that the universe's 

expansion is accelerating, which has led to the introduction of dark energy to explain this 

phenomenon (Peebles, James, & Ratra, 2003). Dark energy, represented by the cosmological 
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constant Λ in the Λ-CDM model, exerts negative pressure, driving accelerated expansion. 

While dark energy accounts for the acceleration, its exact origin remains unknown. As a result, 

modified gravity theories, such as Brane gravity (Randall, 2002), scalar-tensor theory (Fujii & 

Maeda, 2003), F(R) gravity (Kerner, 1982), and Rastall gravity (Rastall, 1972), have been 

proposed to address the uncertainty surrounding dark energy's source and its effects on the 

universe's expansion. 

Rastall's theory of gravity has gained significant attention over the past few decades due to 

its intriguing features at both cosmological and astrophysical levels. This modified theory 

proposes non-conserved energy and momentum, where the divergence of the energy-

momentum tensor is non-zero ∇𝜈𝑇;𝜇
𝜈 = 𝜁𝑇,𝜇, with 𝜁 being the Rastall parameter. It generalizes 

General Relativity, reverting to its form when 𝜁 = 0. Recent studies, such as Cruz's work, have 

shown that Rastall's theory aligns with Dicke's observation, which suggests the cosmological 

constant decreases over time (Cruz, Lepe, & Morales-Navarrete, 2019). Additionally, Rastall's 

theory has been explored in various scientific areas, including black holes (Heydarzade, 

Moradpour, & Darabi, 2017), cosmology (Singh & Mishra, 2020), and compact stars (Abbas 

& Shahzad, 2020). 

Recent studies on anisotropic quark stars in Rastall gravity have drawn researchers' attention 

to their non-uniform pressure caused by complex quark interactions. Tangphati et al. found that 

increasing anisotropic and Rastall parameters makes quark stars more compact and more 

massive than in general relativity (Tangphati, Banerjee, Hansraj, & Pradhan, 2023). Malick et 

al. studied the effect of charge on anisotropic quark stars within Rastall theory and found the 

model physically feasible and stable (Sallah & Sharif, 2025). Although anisotropic quark stars 

are hypothetical, there are several candidates such as PSR J1416-2230, PSR J1903+327, 4U 

1820-30, Cen X-3, and EXO 1785-248 (Errehymy, Mustafa, Khedif, & Daoud, 2022). Xu Qiao 

suggests magnetospheric activity in pulsars can be used as an indication of the existence of 

quark stars, while differences in mass-radius relationships with neutron stars may help identify 

light-mass quark stars (Ren-xin & Guo-jun, 1998).  

Nevertheless, the mass-radius relationship is highly sensitive to the star's internal structure, 

leading to significant discrepancies between observational data and theoretical calculations. 

This has motivated researchers to seek a universal relation that is insensitive to the star's internal 

composition. Among these researchers is Kent Yagi, who discovered the universal relation 

between moment of inertia 𝐼, quadrupole moment 𝑄, and love number Λ, which is referred to 

as the I-Love-Q relation (Yagi & Yunes, 2013). Kent Yagi also investigated whether the 

anisotropic pressure affects the universal relation and he found that the anisotropy affects the 

universal relation only weakly (Yagi & Yunes, 2015). The I-Love-Q relations have direct 

applications to nuclear physics, experimental relativity and gravitational wave physics. This 

relationship can be used in resolving degeneracies in X-Ray pulse profiles and testing modified 

gravity theories (Psaltis, Özel, & Chakrabarty, 2014; Bauböck, Berti, Psaltis, & Özel, 2013). 

An intriguing question is whether the universal I-Love-Q relation remains valid in the 

context of Rastall modified gravity on anisotropic quark stars. To address this issue, we 

numerically solve the equations governing slowly rotating and tidal deformation, utilizing the 
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MIT Bag and Color-Flavor Locked (CFL) equations of state to model quark star matter, as this 

model is deemed adequate for describing the fundamental interactions of quark matter 

(Glendenning, 2012). The anisotropic pressure is incorporated using a phenomenological 

approach—specifically, the Horvat model—which ensures that anisotropic effects vanish in the 

non-relativistic limit (Horvat, Ilijić, & Marunović, 2010). The remainder of this paper is 

structured as follows: Section 2 provides a comprehensive overview of Rastall gravity and 

introduces the theoretical framework used to derive the governing equations for slowly rotating 

and tidally deformed anisotropic stars. Section 3 presents the numerical calculations of the 

universal relations. Section 4 discusses the results and provides an analysis. Section 5 offers the 

conclusions. Throughout the paper, we adopt the geometric units in which 𝑐 = 𝐺 = 1. 

2.  Formalism 

In this section, we provide an overview of Rastall gravity and present a detailed formulation 

of the slow-rotation and tidal deformation equations for quark stars with anisotropic matter, 

expanded to third order in the small spin approximation. We adopt the Hartle-Thorne method 

to derive the slow-rotation equations (Hartle, 1967) while the tidal deformability equation is 

obtained through the Hinderer method (Hinderer, 2008) . 

2.1.  Rastall Gravity  

Rastall suggested that the conservation of energy-momentum holds true for flat spacetime, 

but further analysis is required to determine if it also applies to curved spacetime. He proposed 

that the divergence of energy-momentum tensor (𝑇𝜇𝜈) is proportional to the derivative of the 

Ricci scalar 𝑅. This assumption ensures the validity of the equivalence principle in General 

Relativity, as the Ricci scalar is zero in flat spacetime and non-zero in curved spacetime. As a 

result, the Rastall field equations are modified to 

𝐺𝜇𝜈 = 8𝜋𝑇̅𝜇𝜈, (1) 

with 𝐺𝜇𝜈 is Einstens Tensor and 𝑇̅𝜇𝜈 is effective energy-momentum tensor, which is defined as 

follows 

𝑇𝜇𝜈 = 𝑇𝜇𝜈 − 𝜁𝑔𝜇𝜈𝑇 . (2) 

 where 𝜻 is the Rastall parameter.  

We present the energy-momentum tensor with anisotropic pressure, which is given by 

𝑇𝜇𝜈 = (𝜌 + 𝑝⊥)𝑢𝜇𝑢𝜈 + 𝑝⊥𝑔𝜇𝜈 + (𝑝 − 𝑝⊥)𝑘𝜇𝑘𝜈, (3)  

Here, 𝑢𝜇 and 𝑘𝜇 represent the fluid velocity 4-vector and the radial vector, respectively. These 

vectors satisfy the orthonormality conditions 𝑢𝜇𝑢𝜇 = −1, 𝑘𝜇𝑘𝜇 = 1 dan 𝑘𝜇𝑢𝜇 = 0. 

Additionally, 𝑝, 𝑝⊥and 𝜌 denote the radial pressure, tangential pressure, and energy density, 

respectively. By substituting equation (3) into equation (2), the resulting expression for 𝑇𝜇𝜈 

equation is obtained as follows: 

𝑇̅𝜇𝜈 = (𝜌̅ + 𝑝̅⊥)𝑢𝜇𝑢𝜈 + 𝑝̅⊥𝑔𝜇𝜈 + (𝑝̅ − 𝑝̅⊥)𝑘𝜇𝑘𝜈, (4)  

Here, 𝑝̅, 𝑝̅⊥, and 𝜌̅ denote the effective forms of radial pressure, tangential pressure, and 

energy density, respectively, and are expressed as follows: 
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𝜌 = (1 − 𝜁)𝜌 + 𝜁𝑝 + 2𝜁𝑝⊥, (5)  

𝑝 = 𝜁𝜌 + (1 − 𝜁)𝑝 − 2𝜁𝑝⊥, (6) 

𝑝⊥ = 𝜁𝜌 − 𝜁𝑝𝑟 + (1 − 2𝜁)𝑝⊥, (7) 

We define the anisotropic parameter as 𝜎 = 𝑝 − 𝑝⊥ where 𝜎 = 0 corresponds to an isotropic 

material. We utilize the anisotropic parameter model introduced by Horvat, which is defined as 

follows 

𝜎 = 2𝜆𝐻𝑝
𝑀

𝑅
, (8)  

for a non-rotating configuration. Here, 𝜆𝐻 is a parameter that characterizes the degree of 

anisotropy within the Horvat model. The Horvat model represents a phenomenological 

approach to anisotropy, founded on the assumption that anisotropic effects vanish in the non-

relativistic limit due to the influence of nuclear matter stress in compact stars. Therefore, this 

study is exclusively concerned with the Horvat model.  

We assume that the radial pressure is barotropic, which implies that radial pressure is a 

function solely dependent on the energy density. The perturbation in the radial pressure is 

assumed to vanish according to the definition of new radial coordinate 𝑅. In this study, the 

radial pressure is modeled using the MIT Bag and Color-Flavor-Locked (CFL) models. The 

MIT Bag model, initially proposed by a group of theoretical physicists at the Massachusetts 

Institute of Technology (MIT), is founded on the assumption that quarks move freely within a 

confined region, referred to as a 'bag.' The presence of quarks within a volume 𝑉 generates a 

bag energy of 𝐵𝑉, where 𝐵 is the bag constant. In addition to the bag energy, kinetic energy 

associated with the motion of the quarks within the bag also contributes. Both the kinetic energy 

and the bag energy influence the energy density and pressure in the quark matter. Based on this 

framework, a simple equation of state is derived, namely 

𝑝 =
1

3
(𝜌 − 4𝐵), (9)  

On the other hand, the CFL model was initially proposed by Alford, Rajagopal, and Wilczek 

(Alford, Rajagopal, & Wilczek, 1999). Alford and his colleagues demonstrated that, at 

sufficiently high densities, quarks of different colors and flavors will form Cooper pairs with 

identical Fermi momenta. In this phase, the quark matter transitions into the CFL phase, where 

it remains electrically neutral, and electrons are absent. The CFL phase is characterized by 

pairwise interactions, corresponding to the Cooper pairs 𝑢𝑑, 𝑢𝑠, and 𝑑𝑠. The equation of state 

for this model is provided by 

𝜌 = 3𝑝 + 4𝐵 −
9𝛼𝜇2

𝜋2
, (10)  

This equation closely resembles the MIT Bag equation of state, with the addition of the 

condensation term 9𝛼𝜇2/𝜋2. In the absence of the condensation term, the CFL equation of state 

reduces to the MIT Bag equation of state. 

 

2.2.  Slow Rotating  
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We begin by explaining the ansatz metric and introducing the energy-momentum tensor with 

anisotropic pressure. The ansatz metric employed is given by  

𝑑𝑠2 = −𝑒𝜈(1 + 2𝜖2ℎ(𝑟, 𝜃))𝑑𝑡2 + 𝑒𝜆(1 + 2𝜖2𝑒𝜆𝑚(𝑟, 𝜃)/𝑟)𝑑𝑟2

+ 𝑟2(1 + 2𝜖2𝑘(𝑟, 𝜃)) (𝑑𝜃2 + sin2 𝜃 {𝑑𝜙 − 𝜖[Ω − 𝜔(𝑟, 𝜃)]𝑑𝑡}2)

+ 𝑂(𝜖3). 

(11) 

Here, 𝜖 denotes an order parameter, Ω represents the angular velocity, 𝜈 and 𝜆 are the 

background metrics and 𝜔, ℎ, 𝑘, and 𝑚 are the perturbation metrics. The mass function 𝑀 is 

related to background metric 𝜆 via 

𝑒−𝜆 = 1 − 2𝑀/𝑟. (12) 

The perturbation metrics are expressed in terms of the Legendre polynomial function as 

follows:  

𝜔(𝑟, 𝜃) = 𝜔1(𝑟)𝑃1
′(cos 𝜃), (13)  

ℎ(𝑟, 𝜃) = ℎ0(𝑟) + ℎ2(𝑟)𝑃2(cos 𝜃), (14) 

𝑚(𝑟, 𝜃) = 𝑚0(𝑟) + 𝑚2(𝑟)𝑃2(cos 𝜃) , (15) 

𝑘(𝑟, 𝜃) = 𝑘2(𝑟)𝑃2(cos 𝜃), (16) 

where 𝑃𝑙
′(cos 𝜃) = 𝑑𝑃𝑙(cos 𝜃)/𝑑(cos 𝜃) dan 𝜔1, ℎ0, ℎ2, 𝑚0, 𝑚2 dan 𝑘2 represent perturbation 

metrics, the functions of which depend on the radial coordinate 𝑟. Hartle-Thorne introduced 

new radial coordinates 𝑅 to account for the deformation of the star from its spherical shape due 

to rotation. The new and old radial coordinates are related by the function 𝜉(𝑅, 𝜃), where 

𝑟(𝑅, 𝜃) = 𝑅 + 𝜖2𝜉(𝑅, 𝜃) + 𝑂(𝜖4). (17)  

The function 𝜉 characterizes the deformed shape of a slowly rotating star. Additionally, the 

functions 𝜉 can be expressed in terms of Legendre polynomials as follows : 

𝜉(𝑅, 𝜃) = 𝜉0(𝑅) + 𝜖2𝜉2(𝑅)𝑃2(cos 𝜃) + 𝑂(𝜖4). (18)  

Furthermore, we can express anisotropic parameter using Legendre functions as shown 

below 

𝜎(𝑅, 𝜃) = 𝜎0(𝑅) + 𝜎0
(2)(𝑅) + 𝜎2

(2)(𝑅)𝑃2(cos 𝜃) + 𝑂(𝜖4) (19)  

Building upon the aforementioned approach, we proceed to derive an equation 

characterizing the slow rotation of an anisotropic quark star. By employing equation (1), the 

corresponding equations governing the 𝑂(𝜖0) term can be obtained : 

𝑑𝑀

𝑑𝑅
= 4𝜋𝑅2𝜌̅ (20)  

𝑑𝜈

𝑑𝑅
= 2

4𝜋𝑅3𝑝̅ + 𝑀

𝑅(𝑅 − 2𝑀)
 (21) 

𝑑𝑝̅

𝑑𝑅
= −

(4𝜋𝑅3𝑝̅ + 𝑀)(𝜌̅ + 𝑝̅)

𝑅(𝑅 − 2𝑀)
−

2𝜎0

𝑅
 (22) 

While at 𝑂(𝜖), one finds 

𝑑2𝜔1

𝑑𝑅2
= 4

𝜋𝑅2(𝜌 + 𝑝)𝑒𝜆 − 1

𝑅

𝑑𝜔1

𝑑𝑅
+ 16𝜋(𝜌 + 𝑝 − 𝜎0)𝑒𝜆𝜔1 , (23)  

and at 𝑂(𝜖2), one finds 
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𝜎2 = (𝜌 + 𝑝𝑟 − 𝜎0)ℎ2 −
𝜎0

𝑅 − 2𝑀
𝑚2 + (

𝑑𝜎0

𝑑𝑅
−

𝑑𝑝
𝑟

𝑑𝑅
) 𝜉2 +

𝑅2

3
(𝜌 + 𝑝𝑟 − 𝜎0)𝑒−𝜈𝜔1

2 , (24)  

𝑚2 = −𝑅𝑒−𝜆ℎ2 +
1

6
𝑅4𝑒−(𝜈+𝜆) (𝑅𝑒−𝜆 (

𝑑𝜔1

𝑑𝑅
)

2

+ 16𝜋𝑅𝜔1
2(𝜌 + 𝑝𝑟 − 𝜎0)) , (25) 

𝑑𝑘2

𝑑𝑅
= −

𝑑ℎ2

𝑑𝑅
+

𝑅 − 3𝑀 − 4𝜋𝑝
𝑟

𝑅3

𝑅2
𝑒𝜆ℎ2 +

𝑅 − 𝑀 + 4𝜋𝑝
𝑟
𝑅3

𝑅3
𝑒2𝜆𝑚2 , (26) 

𝑑ℎ2

𝑑𝑅
=

3𝑒𝜆

𝑅
ℎ2 −

4𝜋𝑝
𝑟

𝑅3 − 𝑀 + 𝑅

𝑅
𝑒𝜆

𝑑𝑘2

𝑑𝑅
+

2𝑒𝜆

𝑅
𝑘2 +

8𝜋𝑝
𝑟
𝑅2 + 1

𝑅2
𝑒2𝜆𝑚2

+
1

12
𝑅3𝑒−𝜈 (

𝑑𝜔1

𝑑𝑅
)

2

− 4𝜋𝑅𝑒𝜆𝜉2

𝑑𝑝
𝑟

𝑑𝑅
 , 

(27) 

𝑑𝜉2

𝑑𝑅
=

1

6𝑅2
(

𝑑𝑝
𝑟

𝑑𝑅
)

−1

{6𝑅2(𝜌 + 𝑝𝑟)
𝑑ℎ2

𝑑𝑅
+ 12𝜎0𝑅2

𝑑𝑘2

𝑑𝑅

+ 3 (𝑅2(𝑝𝑟 + 𝜌)
𝑑2𝜈

𝑑𝑅2
− 4𝜎0) 𝜉2 + 12𝑅𝜎2

− 2𝑅3[𝜌 + 𝑝𝑟 − 𝜎0]𝑒−𝜈𝜔1 ((𝑅
𝑑𝜈

𝑑𝑅
− 2) 𝜔1 − 2𝑅

𝑑𝜔1

𝑑𝑅
) } . 

(28) 

This equation agrees with that for isotropic matter when 𝜎0 = 0. 

2.3.  Tidal Deformation 

The spacetime geometry employed to calculate the equations governing a tidally deformed 

star is derived from equation (11), with the condition 𝜔1 = 0. The analysis of tidal deformation 

pertains to a binary compact object system, wherein the primary object is assumed to be non-

rotating and experiences deformation due to the tidal field induced by its companion.  

The Love number characterizes a star's capacity to deviate from a perfect spherical shape 

under external tidal forces. Determining the Love number requires obtaining the asymptotic 

form of the exterior solution within the buffer zone—the region corresponding to the orbital 

separation between the stars. For instance, the (𝑡, 𝑡) component of the metric in this buffer zone 

can be approximated as follows: 

1 − 𝑔𝑡𝑡

2
= −

𝑀∗

𝑅
−

𝑄(𝑡𝑖𝑑)

𝑅3
𝑃2(𝑐𝑜𝑠 𝜃) +

1

3
𝛦(𝑡𝑖𝑑)𝑅2𝑃2(𝑐𝑜𝑠 𝜃) + 𝑂 (

1

𝑅4
, 𝑅3). (29)  

Here, 𝑄(𝑡𝑖𝑑) and 𝐸(𝑡𝑖𝑑) correspond to the tidally induced quadrupole moment and the external 

tidal potential generated by the companion, respectively. Conversely, the exterior solution ℎ2 

can be determined exactly from equations (24) - (28), where:  

ℎ2
𝑒𝑥𝑡 = 𝑐1 (

𝑅

𝑀
) (1 −

2𝑀

𝑅
) (−

2𝑀(𝑅 − 𝑀)(3𝑅2 − 6𝑀𝑅 − 2𝑀2)

𝑅2(𝑅 − 2𝑀)2
+ 3 ln (

𝑅

𝑅 − 2𝑀
))

+ 𝑐2 (
𝑅

𝑀
)

2

(1 −
2𝑀

𝑅
) , 

(30)  

where 𝑐1 and 𝑐2 are constants of integration. By performing a Taylor expansion of the above 

expression within the buffer zone, we obtain: 
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ℎ2
𝑒𝑥𝑡 =

16

5
𝑐1

𝑀3

𝑅3
+ 𝑐2

𝑅2

𝑀2
+ 𝑂 (

1

𝑅4
, 𝑅) (31)  

Subsequently, 𝑄(𝑡𝑖𝑑) and 𝐸(𝑡𝑖𝑑) are determined by matching equation (31) with equation 

(29). The Love number is then defined as follows: 

Λ = −
𝑄(𝑡𝑖𝑑)

𝛦(𝑡𝑖𝑑)
 (32)  

For a more comprehensive analysis, it is also useful to define dimensionless numbers : 

𝑘2 =
3

2

Λ

𝑅5
, (33)  

Λ =
Λ

𝑀5
. (34) 

Upon completing the calculation, the Love number can alternatively be expressed as follows:  

𝑘2 =
8

5
𝐶5 (1 − 2𝐶)2(2𝐶(𝑦 − 1) − 𝑦

+ 2) (2𝐶(4(𝑦 + 1)𝐶4 + (6𝑦 − 4)𝐶3 + (26 − 22𝑦)𝐶2 + 3(5𝑦 − 8)𝐶

− 3𝑦 + 6) − 3(1 − 2𝐶)2(2𝐶(𝑦 − 1) − 𝑦 + 2) log (
1

1 − 2𝐶
))

−1

 , 

(35)  

Here, 𝐶 = 𝑀/𝑅 denotes the compactness of the star, and 𝑦 depends on the value of ℎ2 and 

its derivatives evaluated at the stellar surface. For stars with continuous density profiles at the 

surface, the value of 𝑦 is given by: 

𝑦 =
𝑅ℎ2

′

ℎ2
. (36)  

A correction to 𝑦 arises for stars with discontinuous density profiles at the surface, where 

𝑦 =
𝑅∗ℎ2

′

ℎ2
+ (1 − 𝜁)

4𝜋𝜌𝑅2𝜉2

ℎ2(𝑅 − 2𝑀)
 . (37)  

Anisotropic quark stars exhibit surfaces with discontinuous density profiles. In this case, 

equation (37) is used to determine the value of 𝑦. The values of ℎ2 and 𝜉2 in equation  are 

obtained from the numerical solution of equations (II.61)–(II.65) by setting 𝜔1with the 

numerical method detailed in the following chapter. 

2.4.  Universal Relations 

Universal behavior refers to a tendency observed in physical systems that is independent of 

the internal details of those systems. The definition of universality may vary across different 

scientific disciplines. In statistical mechanics, for instance, universality is associated with 

systems belonging to large classes whose macroscopic properties are not influenced by the 

specific dynamics of the system. In astrophysics, the concept of universality in black holes 

states that the external metric tensor field of a static and isolated black hole can be fully 

described by only three global parameters: mass, electric charge, and angular momentum (spin). 

This statement is commonly referred to as the no-hair theorem. According to this concept, all 

information about matter entering a black hole becomes hidden behind the event horizon and 

cannot be observed by any external agent. 
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Unlike black holes, stars do not possess an event horizon, allowing information such as their 

internal composition to be observed by external agents. This internal composition influences 

the external gravitational field produced by the star. However, recent studies have shown that 

the external gravitational field of compact stars exhibits certain universal properties. One such 

example is the I-Love-Q relation, which connects the moment of inertia, the Love number, and 

the quadrupole moment. The moment of inertia measures an object’s resistance to changes in 

rotational motion at a given angular momentum. The quadrupole moment quantifies the extent 

of a star’s deformation due to rotation, while the Love number indicates how easily an object 

deforms in response to an external tidal field. This relation suggests the possible existence of a 

no-hair-like theorem for neutron stars or quark stars. 

Within the framework of general relativity, the I-Love-Q relations are computed 

numerically. Kent Yagi and Nicolás Yunes discovered that these relations are independent of 

the equation of state. Based on this finding, they formulated a fitting equation derived from the 

numerical correlations, which is expressed as follows: 

ln 𝑦𝑖 = 𝑎𝑖 + 𝑏𝑖 ln 𝑥𝑖 + 𝑐𝑖(ln 𝑥𝑖)2 + 𝑑𝑖(ln 𝑥𝑖)3 + 𝑒𝑖(ln 𝑥𝑖)4 . (38)  

with the coefficients given by Table 1 

Table 1. Table of numerical coefficients for the empirical fitting of the I-Love-Q relations 

𝑦𝑖 𝑥𝑖  𝑎𝑖 𝑏𝑖 𝑐𝑖 𝑑𝑖 𝑒𝑖 

𝐼 Λ 1.496 0.05951 0.02238 −6.953 × 10−4 8.345 × 10−6 

𝐼 𝑄 1.393 0.5471 0.03028 0.01926 4.434 × 10−4 

𝑄 Λ 0.194 0.09163 0.04812 −4.283 × 10−3 1.245 × 10−4 

 

where the dimensionless quantities: the normalized moment of inertia (𝐼)̅, the dimensionless 

tidal deformability (Λ̅), and the normalized quadrupole moment (𝑄̅ ) are defined by 

𝐼 ̅ =
𝐼

𝑀3
. (39)  

𝑄̅ = −
𝑄 𝑀

𝐼2Ω2
 (40) 

Λ =
Λ

𝑀5
 (41) 

3.  Numerical Methods 

In general, the differential equations are integrated from the center, 𝑟𝜖, to the surface 𝑅∗, 

using the fourth-order Runge-Kutta method. To ensure numerical stability, we set 𝑟𝜖=100 cm, 

which is significantly smaller than the stellar radius, typically on the order of tens of kilometers. 

The boundary conditions at the stellar center are derived from the analysis of the equations in 

the vicinity of the center. One finds : 

𝜌̅(𝑟𝜖) = 𝜌̅𝑐 + 𝜌̅2𝑟𝜖
2 + 𝑂(𝑥3). (42)  

𝑀(𝑟𝜖) =
4𝜋

3
𝜌̅𝑐𝑟𝜖

3 + 𝑂(𝑥5) (43) 
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𝜈(𝑟𝜖) = 𝜈𝑐 +
4𝜋

3
(3𝑝̅𝑐 + 𝜌̅𝑐)𝑟𝜖

2 + 𝑂(𝑥4) (44) 

The function is expanded around 𝑥 ≡ 𝑟𝜖/𝑅∗ ≪ 1. Here, 𝜌𝑐 and 𝑝𝑐 represent the central 

density and pressure, respectively, while 𝜈𝑐 is a constant determined by matching the interior 

and exterior solutions at the stellar surface. For a given central pressure 𝑝𝑐, the stellar radius 𝑅∗ 

and mass 𝑀∗ are obtained from the condition that the pressure vanishes at the surface, i.e., 

𝑝𝑟(𝑅∗) = 0. A range of 𝑝𝑐  values is used to derive the mass-radius relation. The actual value 

of 𝜈 is obtained by matching the interior and exterior solutions at the stellar boundary. The 

exterior solution used in this context is given by: 

𝜈ext = ln (1 −
2𝑀

𝑅
) . (45)  

For calculations in the slow-rotation regime, the equation is integrated with boundary 

conditions specified at the center of the star. These boundary conditions are derived from a 

series solution analysis of the differential equation, which is formulated as follows: 

𝜔1(𝑟𝜖) = 𝜔1𝑐 +
8𝜋

5
(𝜌𝑐 + 𝑝𝑐)𝜔1𝑐𝑟𝜖

2 + 𝑂(𝑥3) , (46)  

ℎ2(𝑟𝜖) = 𝐶1𝑟𝜖
2 + 𝑂(𝑥3) , (47) 

𝑘2(𝑟𝜖) = −𝐶1𝑟𝜖
2 + 𝑂(𝑥3) , (48) 

𝜉2(𝑟𝜖) = −
𝑒−𝜈𝑐(2𝜂 − 1)(𝑝𝑐 + 𝜌𝑐)(3𝑒𝜈𝑐𝐶1 + 𝜔1𝑐

2 )

4𝜋(3𝑝𝑐
2(𝜂 + 2(𝜂 − 1)𝜆𝐻) + 2𝑝𝑐𝜌𝑐(3𝜂 − 1)(𝜆𝐻 + 1) + (3𝜂 − 2)𝜌𝑐

2)
𝑟𝜖

+ 𝑂(𝑥2) , 

(49) 

The constant 𝐶1 is determined by matching the interior and exterior solutions at the stellar 

surface. The boundary condition at the surface is obtained using the exterior solution of the 

equation. For example, the moment of inertia 𝐼 and the quadrupole moment 𝑄 can be 

determined from the asymptotic behavior of the exterior solutions 𝜔1 and ℎ2 at spatial infinity. 

𝜔1
ext = Ω (1 −

2𝐼

𝑅3
) , (50)  

ℎ2
ext = −

𝑄

𝑅3
+ 𝑂 (

1

𝑅4
) , (51)  

 

This solution does not depend on the anisotropic model, since the pressure vanishes at the 

stellar surface. The exterior solution contains an integration constant whose value is fixed by 

matching it with the interior solution at the surface. This constant determines the multipole 

moments of the gravitational field in the exterior region.  

4.  Results and Discussion 

This section addresses two main topics. First, we analyze the configuration in the moment 

of inertia, quadrupole moment, and Love number for anisotropic quark stars in the framework 

of Rastall gravity. Second, we investigate the influence of varying the parameters 𝜁, 𝜆𝐻, 𝐵, and 

𝛥 on the universal relations among the moment of inertia, Love number, and quadrupole 

moment. The universal relations for anisotropic stars in general relativity have been studied by 

Yagi and Yunes. They found that variations in the equation of state increase with growing 
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anisotropy; however, the anisotropic effect is relatively weak, with differences of 

approximately 10% compared to the isotropic case, within the range −2 ≤ 𝜆𝐻 ≤ 2. 

We compute the moment of inertia, quadrupole moment, and Love number, with the results 

presented in Figure 1  for the MIT Bag model. In general, the moment of inertia increases almost 

linearly with stellar mass in each model. Prior to reaching the maximum mass, the stellar radius 

begins to decrease, leading to a drop in the moment of inertia. An increase in 𝜁 and 𝐵, tends to 

reduce the moment of inertia. In contrast, a larger value of 𝜆𝐻 increases the moment of inertia 

in high-density regions, while its effect is negligible in low-density regions. We conclude that 

increasing 𝜁 and 𝐵, along with decreasing 𝜆𝐻, results in a star that tends to rotate less easily, as 

indicated by a larger moment of inertia.  

We present the numerical solutions of equations (20)–(28) in Figures 2, with the 

corresponding fitting results summarized in Table 2. The I–Love–Q relation is analyzed using 

dimensionless quantities: the normalized moment of inertia (𝐼)̅, the dimensionless tidal 

deformability (Λ̅), and the normalized quadrupole moment (𝑄̅ ), as defined in equations (39), 

(40), and (41). This relation is considered universal if variations in the parameters 𝜁, 𝜆𝐻, 𝐵, and 

Δ do not significantly alter the correlation among 𝐼 ,̅ 𝑄̅, and Λ̅, which would otherwise form a 

single linear relation. Our results show that the universality of the I–Love–Q relation breaks 

down when 𝜁 is varied, as the corresponding points deviate from the expected linear behavior. 

Similarly, variations in 𝜆𝐻  also lead to a loss of universality, particularly at high stellar 

densities, although the deviation remains negligible at low-density regimes. These findings are 

consistent with those reported by Yagi and Yunes (2015) in their study of anisotropic compact 

stars. It should be noted that the conclusions presented here are drawn for a specific equation 

of state, namely the MIT Bag model with 𝐵 = 60 MeV.  

It is necessary to investigate whether the internal structure of a star or variations in the 

equation of state affect the universality relation within a specific model framework (with fixed 

Λ𝐻and 𝜁), as illustrated in Figure 3. Interestingly, we find that the internal structure of the star 

does not significantly affect the universality of the I–Love–Q relation within the given model 

framework.This conclusion is supported by the fractional difference between the numerical 

results and the fitted data, which remains on the order of 10−3. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 1. The relationship between stellar mass 𝑀∗ and the quantities 𝐼 ,𝑄/Ω2 and 𝑘2 for 

the MIT Bag model 
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(c) 

Figure 2 Relationship between the 

quantities 𝐼 ,̅ 𝑄̅ and Λ̅ for the MIT Bag 

model with B=60 MeV 

 Figure 3 The relationship between the 

quantities 𝐼 ,̅ 𝑄̅ and Λ̅ for 𝜆𝐻=0.5 with 
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various models of the equation of 

state 

Table 2 Table of numerical coefficients for the empirical fitting of the I-Love-Q 

relations 

𝜆𝐻 𝜁  𝑦𝑖 𝑥𝑖  𝑎𝑖 𝑏𝑖 𝑐𝑖 𝑑𝑖 𝑒𝑖 

0.5 0  𝐼 𝑄  4.1361 -3.8246 1.7807 -2.4437.E-01 1.2579.E-02 

0.5 1/8  𝐼 𝑄  1.9530 -1.5466 1.2087 -1.8195.E-01 1.0149.E-02 

0.5 1/4  𝐼 𝑄  -0.2255 1.2128 0.3914 -7.3785.E-02 4.8202.E-03 

0.5 3/8  𝐼 𝑄  -2.7778 5.2812 -1.1724 1.9285.E-01 -1.2015.E-02 

0.5 1/2  𝐼 𝑄  -5.3991 10.7225 -3.7380 7.1504.E-01 -5.0573.E-02 

0.5 0  𝑄 Λ  1.2684 0.2690 -0.0102 5.1376.E-04 -8.6051.E-06 

0.5 1/8  𝑄 Λ  1.0702 0.1937 -0.0024 1.5825.E-04 -2.7883.E-06 

0.5 1/4  𝑄 Λ  1.0215 0.0992 0.0050 -1.1352.E-04 9.8085.E-07 

0.5 3/8  𝑄 Λ  1.0834 -0.0002 0.0113 -3.0442.E-04 3.2259.E-06 

0.5 1/2  𝑄 Λ  1.1896 -0.0848 0.0149 -3.7088.E-04 3.6498.E-06 

0.5 0  𝐼 Λ  1.4614 0.0749 0.0206 -6.1701.E-04 7.2401.E-06 

0.5 1/8  𝐼 Λ  1.4652 0.1037 0.0192 -5.8627.E-04 6.9191.E-06 

0.5 1/4  𝐼 Λ  1.4322 0.1376 0.0179 -5.6312.E-04 6.7407.E-06 

0.5 3/8  𝐼 Λ  1.3734 0.1722 0.0168 -5.4791.E-04 6.6364.E-06 

0.5 1/2  𝐼 Λ  1.3067 0.2017 0.0163 -5.5229.E-04 6.7029.E-06 

0 0  𝐼 𝑄  4.3611 -3.8976 1.7696 -2.3853.E-01 1.2079.E-02 

0 1/8  𝐼 𝑄  2.2276 -1.7074 1.2385 -1.8333.E-01 1.0085.E-02 

0 1/4  𝐼 𝑄  0.3752 0.6545 0.5873 -1.0420.E-01 6.5744.E-03 

0 3/8  𝐼 𝑄  -1.4053 3.6963 -0.5026 7.0707.E-02 -3.9045.E-03 

0 1/2  𝐼 𝑄  -2.9631 7.5141 -2.2206 4.0924.E-01 -2.8327.E-02 

0 0  𝑄 Λ  1.1262 0.3008 -0.0128 6.0554.E-04 -9.7934.E-06 

0 1/8  𝑄 Λ  0.9509 0.2181 -0.0043 2.2395.E-04 -3.6287.E-06 

0 1/4  𝑄 Λ  0.8970 0.1235 0.0032 -5.3842.E-05 2.4673.E-07 

0 3/8  𝑄 Λ  0.9102 0.0327 0.0089 -2.2927.E-04 2.3405.E-06 

0 1/2  𝑄 Λ  0.9433 -0.0413 0.0120 -2.8704.E-04 2.7456.E-06 

0 0  𝐼 Λ  1.4908 0.0695 0.0209 -6.2785.E-04 7.3570.E-06 

0 1/8  𝐼 Λ  1.4916 0.1003 0.0194 -5.8592.E-04 6.8639.E-06 

0 1/4  𝐼 Λ  1.4666 0.1331 0.0181 -5.6483.E-04 6.7129.E-06 

0 3/8  𝐼 Λ  1.4281 0.1640 0.0172 -5.5814.E-04 6.7151.E-06 

0 1/2  𝐼 Λ  1.3964 0.1871 0.0172 -5.7653.E-04 6.9464.E-06 

-1 0  𝐼 𝑄  5.0443 -4.2136 1.7939 -2.3246.E-01 1.1331.E-02 

-1 1/8  𝐼 𝑄  2.7298 -1.9378 1.2528 -1.7753.E-01 9.3981.E-03 

-1 1/4  𝐼 𝑄  1.2234 -0.0291 0.7932 -1.3144.E-01 7.9044.E-03 

-1 3/8  𝐼 𝑄  0.2391 1.9246 0.2072 -5.3485.E-02 4.0766.E-03 

-1 1/2  𝐼 𝑄  -0.0962 3.7879 -0.4670 5.6163.E-02 -2.6190.E-03 

-1 0  𝑄 Λ  0.6943 0.4012 -0.0214 9.2423.E-04 -1.4133.E-05 

-1 1/8  𝑄 Λ  0.6571 0.2767 -0.0087 3.6906.E-04 -5.4062.E-06 

-1 1/4  𝑄 Λ  0.6374 0.1707 -0.0001 4.5665.E-05 -8.8387.E-07 

-1 3/8  𝑄 Λ  0.6011 0.0861 0.0055 -1.3040.E-04 1.2953.E-06 

-1 1/2  𝑄 Λ  0.5186 0.0280 0.0078 -1.7712.E-04 1.6856.E-06 

-1 0  𝐼 Λ  1.5911 0.0485 0.0226 -6.8601.E-04 8.1153.E-06 
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-1 1/8  𝐼 Λ  1.5635 0.0897 0.0199 -5.9550.E-04 6.8850.E-06 

-1 1/4  𝐼 Λ  1.5359 0.1249 0.0183 -5.6116.E-04 6.5448.E-06 

-1 3/8  𝐼 Λ  1.5232 0.1516 0.0177 -5.6308.E-04 6.6599.E-06 

-1 1/2  𝐼 Λ  1.5375 0.1674 0.0181 -5.9478.E-04 7.0436.E-06 

5.  Conclusion 

This study reveals that the configuration of the moment of inertia, quadrupole moment, 

and Love number in anisotropic quark stars under Rastall gravity is influenced by the 

parameters 𝜁, 𝜆𝐻, 𝐵, and Δ. The universality of the I–Love–Q relation breaks down when 

𝜁 and 𝜆𝐻 are varied, particularly at high stellar densities. However, the internal structure 

and the equation of state do not significantly affect this universal relation within a fixed 

model framework, with deviations remaining around the order of 10⁻³. These results are 

consistent with findings by Yagi and Yunes, and are based on the MIT Bag model with 

B = 60 MeV.. The findings of this study are expected to serve as a reference for 

identifying anisotropic quark star candidates based on their macroscopic properties. This 

research can also be extended to more realistic stellar models, such as neutron stars or 

white dwarfs. Observational data from such objects are anticipated to provide tighter 

constraints on the Rastall parameters. 
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