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Abstract: This study investigates the universal I-Love-Q relation in anisotropic
quark stars within the Rastall gravity framework. We employ the 4th-order Runge-
Kutta numerical method to solve the slow rotation and tidal deformation equations.
The analysis utilizes the MIT Bag equation of state with the Bag parameter (B) and
the Color Flavor Locked (CFL) equation of state with the CFL parameter (4) to
model the material properties of anisotropic quark stars. The universal I-Love-Q
relation are explored by varying the Rastall parameter ({) and the anisotropic
parameter (Ag). The universal [-Love-Q relation is satisfied when variations in {,
Ay, B, and 4 do not affect the linear relationship between the moment of inertia (),
Love number (A), and quadrupole moment (Q). The universal I-Love-Q relation
holds when B and 4 are varied, but breaks down when { and Ay are altered.

Keyword: Anisotropic Quark Stars, Rastall Gravity, Stability, Universal Relation,
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1. Introduction

General Relativity (GR), developed by Albert Einstein in 1915, is a theory that describes
how matter and energy influence space-time geometry, and vice versa, through Einstein's field
equations derived from the Einstein-Hilbert Lagrangian. GR has been instrumental in
understanding phenomena such as cosmological models (Peebles P. , 1993), black holes
(Thorne, 1995), compact stars (Glendenning, 2012), and gravitational waves (Schilling, 2017).
It has also made successful predictions, validated through experimental observations like the
perihelion shift of Mercury (Turyshev, Shao, Nordtvedt, & Hellings, 2007), deflection of
starlight during a solar eclipse (Dyson, Eddington, & Davidson, 1923), gravitational waves
detected by LIGO (Abbott, et al., 2017), and gravitational redshift (Vessot, et al., 1980).
However, GR faces challenges in certain scenarios, including the information paradox, black
hole singularities (Mathur, 2009), galaxy rotation (Tian & Hsia, 2020), and the mysteries of
dark energy and cosmic acceleration (Riess, et al., 1998; Perlmutter, et al., 1999).

Observational evidence of high-redshift type Ia supernovae suggests that the universe's
expansion is accelerating, which has led to the introduction of dark energy to explain this
phenomenon (Peebles, James, & Ratra, 2003). Dark energy, represented by the cosmological
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constant A in the A-CDM model, exerts negative pressure, driving accelerated expansion.
While dark energy accounts for the acceleration, its exact origin remains unknown. As a result,
modified gravity theories, such as Brane gravity (Randall, 2002), scalar-tensor theory (Fujii &
Maeda, 2003), F(R) gravity (Kerner, 1982), and Rastall gravity (Rastall, 1972), have been
proposed to address the uncertainty surrounding dark energy's source and its effects on the
universe's expansion.

Rastall's theory of gravity has gained significant attention over the past few decades due to
its intriguing features at both cosmological and astrophysical levels. This modified theory
proposes non-conserved energy and momentum, where the divergence of the energy-
momentum tensor is non-zero V, T, = {T,, with { being the Rastall parameter. It generalizes
General Relativity, reverting to its form when { = 0. Recent studies, such as Cruz's work, have
shown that Rastall's theory aligns with Dicke's observation, which suggests the cosmological
constant decreases over time (Cruz, Lepe, & Morales-Navarrete, 2019). Additionally, Rastall's
theory has been explored in various scientific areas, including black holes (Heydarzade,
Moradpour, & Darabi, 2017), cosmology (Singh & Mishra, 2020), and compact stars (Abbas
& Shahzad, 2020).

Recent studies on anisotropic quark stars in Rastall gravity have drawn researchers' attention
to their non-uniform pressure caused by complex quark interactions. Tangphati et al. found that
increasing anisotropic and Rastall parameters makes quark stars more compact and more
massive than in general relativity (Tangphati, Banerjee, Hansraj, & Pradhan, 2023). Malick et
al. studied the effect of charge on anisotropic quark stars within Rastall theory and found the
model physically feasible and stable (Sallah & Sharif, 2025). Although anisotropic quark stars
are hypothetical, there are several candidates such as PSR J1416-2230, PSR J1903+327, 4U
1820-30, Cen X-3, and EXO 1785-248 (Errehymy, Mustafa, Khedif, & Daoud, 2022). Xu Qiao
suggests magnetospheric activity in pulsars can be used as an indication of the existence of
quark stars, while differences in mass-radius relationships with neutron stars may help identify
light-mass quark stars (Ren-xin & Guo-jun, 1998).

Nevertheless, the mass-radius relationship is highly sensitive to the star's internal structure,
leading to significant discrepancies between observational data and theoretical calculations.
This has motivated researchers to seek a universal relation that is insensitive to the star's internal
composition. Among these researchers is Kent Yagi, who discovered the universal relation
between moment of inertia I, quadrupole moment @, and love number A, which is referred to
as the I-Love-Q relation (Yagi & Yunes, 2013). Kent Yagi also investigated whether the
anisotropic pressure affects the universal relation and he found that the anisotropy affects the
universal relation only weakly (Yagi & Yunes, 2015). The I-Love-Q relations have direct
applications to nuclear physics, experimental relativity and gravitational wave physics. This
relationship can be used in resolving degeneracies in X-Ray pulse profiles and testing modified
gravity theories (Psaltis, Ozel, & Chakrabarty, 2014; Baubdck, Berti, Psaltis, & Ozel, 2013).

An intriguing question is whether the universal I-Love-Q relation remains valid in the
context of Rastall modified gravity on anisotropic quark stars. To address this issue, we
numerically solve the equations governing slowly rotating and tidal deformation, utilizing the
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MIT Bag and Color-Flavor Locked (CFL) equations of state to model quark star matter, as this
model is deemed adequate for describing the fundamental interactions of quark matter
(Glendenning, 2012). The anisotropic pressure is incorporated using a phenomenological
approach—specifically, the Horvat model—which ensures that anisotropic effects vanish in the
non-relativistic limit (Horvat, Iliji¢, & Marunovi¢, 2010). The remainder of this paper is
structured as follows: Section 2 provides a comprehensive overview of Rastall gravity and
introduces the theoretical framework used to derive the governing equations for slowly rotating
and tidally deformed anisotropic stars. Section 3 presents the numerical calculations of the
universal relations. Section 4 discusses the results and provides an analysis. Section 5 offers the
conclusions. Throughout the paper, we adopt the geometric units in which ¢ = G = 1.

2. Formalism

In this section, we provide an overview of Rastall gravity and present a detailed formulation
of the slow-rotation and tidal deformation equations for quark stars with anisotropic matter,
expanded to third order in the small spin approximation. We adopt the Hartle-Thorne method
to derive the slow-rotation equations (Hartle, 1967) while the tidal deformability equation is
obtained through the Hinderer method (Hinderer, 2008) .

2.1. Rastall Gravity

Rastall suggested that the conservation of energy-momentum holds true for flat spacetime,
but further analysis is required to determine if it also applies to curved spacetime. He proposed
that the divergence of energy-momentum tensor (7, ) is proportional to the derivative of the
Ricci scalar R. This assumption ensures the validity of the equivalence principle in General
Relativity, as the Ricci scalar is zero in flat spacetime and non-zero in curved spacetime. As a
result, the Rastall field equations are modified to

Gy = 8nTy,, (1)
with G, is Einstens Tensor and T, is effective energy-momentum tensor, which is defined as
follows

Tuv =T —SgwT . (2)
where { is the Rastall parameter.
We present the energy-momentum tensor with anisotropic pressure, which is given by
Ty = (p+ pl)uuuv + P9 t (- pl)kukv' (3)
Here, u,, and k, represent the fluid velocity 4-vector and the radial vector, respectively. These
vectors satisfy the orthonormality conditions wu,u* = -1, k,k* =1 dan k,u* =0.
Additionally, p,p,and p denote the radial pressure, tangential pressure, and energy density,
respectively. By substituting equation (3) into equation (2), the resulting expression for Tuv
equation is obtained as follows:
Tuv = (P + P uyuy +Prguy + (@ —D)kuky, 4)
Here, p, p,, and p denote the effective forms of radial pressure, tangential pressure, and
energy density, respectively, and are expressed as follows:
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p=00-p+{p+2pyL, (5)
p=C¢p+1—-p—2p,, (6)

We define the anisotropic parameter as ¢ = p — p; where ¢ = 0 corresponds to an isotropic
material. We utilize the anisotropic parameter model introduced by Horvat, which is defined as
follows

M
o =2Ayp R 3

for a non-rotating configuration. Here, Ay is a parameter that characterizes the degree of
anisotropy within the Horvat model. The Horvat model represents a phenomenological
approach to anisotropy, founded on the assumption that anisotropic effects vanish in the non-
relativistic limit due to the influence of nuclear matter stress in compact stars. Therefore, this
study is exclusively concerned with the Horvat model.

We assume that the radial pressure is barotropic, which implies that radial pressure is a
function solely dependent on the energy density. The perturbation in the radial pressure is
assumed to vanish according to the definition of new radial coordinate R. In this study, the
radial pressure is modeled using the MIT Bag and Color-Flavor-Locked (CFL) models. The
MIT Bag model, initially proposed by a group of theoretical physicists at the Massachusetts
Institute of Technology (MIT), is founded on the assumption that quarks move freely within a
confined region, referred to as a 'bag.' The presence of quarks within a volume V generates a
bag energy of BV, where B is the bag constant. In addition to the bag energy, kinetic energy
associated with the motion of the quarks within the bag also contributes. Both the kinetic energy
and the bag energy influence the energy density and pressure in the quark matter. Based on this
framework, a simple equation of state is derived, namely

p =30~ 4B) )

On the other hand, the CFL model was initially proposed by Alford, Rajagopal, and Wilczek
(Alford, Rajagopal, & Wilczek, 1999). Alford and his colleagues demonstrated that, at
sufficiently high densities, quarks of different colors and flavors will form Cooper pairs with
identical Fermi momenta. In this phase, the quark matter transitions into the CFL phase, where
it remains electrically neutral, and electrons are absent. The CFL phase is characterized by
pairwise interactions, corresponding to the Cooper pairs ud, us, and ds. The equation of state
for this model is provided by

days” (10)
w2’

This equation closely resembles the MIT Bag equation of state, with the addition of the
condensation term 9au?/m?. In the absence of the condensation term, the CFL equation of state

reduces to the MIT Bag equation of state.

p=3p+4B —

2.2. Slow Rotating
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We begin by explaining the ansatz metric and introducing the energy-momentum tensor with
anisotropic pressure. The ansatz metric employed is given by

ds? = —e"(1 + 2€2h(r,0))dt? + e*(1 + 2e2e*m(r,0) /r)dr?

+12(1 + 2€2k(r,0)) (d? + sin? 0 {dp — €[Q — w(r, 0)]dt}?) (11)
+ 0(€3).

Here, € denotes an order parameter, () represents the angular velocity, v and A are the
background metrics and w, h, k, and m are the perturbation metrics. The mass function M is
related to background metric A via

e =1-2M/r. (12)

The perturbation metrics are expressed in terms of the Legendre polynomial function as

follows:

w(r,0) = w,(r)P{(cosH), (13)
h(r,0) = hy(r) + h,(r)P,(cos 8), (14)
m(r,0) = my(r) + my(r)P,(cos ), (15)
k(r,0) = k,(r)P,(cos8), (16)

where Pj (cos 8) = dP;(cos 8)/d(cos 0) dan w4, hy, h,, my, m, dan k, represent perturbation
metrics, the functions of which depend on the radial coordinate r. Hartle-Thorne introduced
new radial coordinates R to account for the deformation of the star from its spherical shape due
to rotation. The new and old radial coordinates are related by the function (R, 8), where

r(R,0) = R + €2&(R,0) + 0(e%). (17)

The function & characterizes the deformed shape of a slowly rotating star. Additionally, the
functions ¢ can be expressed in terms of Legendre polynomials as follows :

§(R,0) = §(R) + €25, (R)Py(cos 0) + O(e*). (18)

Furthermore, we can express anisotropic parameter using Legendre functions as shown

below

a(R,0) = 6y(R) + 5P (R) + a2 (R)Py(cos 6) + 0(e*) (19)

Building upon the aforementioned approach, we proceed to derive an equation

characterizing the slow rotation of an anisotropic quark star. By employing equation (1), the

corresponding equations governing the 0(e®) term can be obtained :
dM

= 25 20
iR 4mR“p (20)

d ATR3p + M
v _,AmRp+ M 1)

dR ~ “R(R —2M)
dp _ (4nR*p+M)(p+p) 20, )

dR R(R —2M) R
While at O(e), one finds
d? R*(p +p)e* —1d

e 47T (P +p) D1 +16m(p + p — 0p)e’w,, (23)

dR? R dR
and at 0(e?), one finds
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- — Op dO'O dﬁ RZ 2
g, =(p+p,—0g)h, — —=m; + 52+_(P+Pr_00)9 wi, (24)

R —2M dR  dR
-2 L oa —wen) _a (41 ’ 2= 4 =
m, = —Re ™ *h, + ER e Re (ﬁ) + 16nRwi(p +p, — 09) |, (25)
dk, dh, R—3M —4np R® R—M + 4np R®
==t 2 T —e*h, + 3 T —e?*m,, (26)
dh, 3e* 4np R3—M+R _dk, 2e* 8np R? + 1
2 = hZ — pr el 2 + kZ +pr—621m2
dR R R dR R R? 27)
=R (—dwl)z — 4mRe*E %,
12 dR >dR"’
-1
ds, 1 (ap, 2= dh, 2 dks
dR 6R2<dR> {6R (PP gp T 1200850
s~ . d*v

—2R%[p+7, — ople " w (Rd——2> _opden
L e T dR
This equation agrees with that for isotropic matter when g, = 0.

2.3. Tidal Deformation

The spacetime geometry employed to calculate the equations governing a tidally deformed
star is derived from equation (11), with the condition w; = 0. The analysis of tidal deformation
pertains to a binary compact object system, wherein the primary object is assumed to be non-
rotating and experiences deformation due to the tidal field induced by its companion.

The Love number characterizes a star's capacity to deviate from a perfect spherical shape
under external tidal forces. Determining the Love number requires obtaining the asymptotic
form of the exterior solution within the buffer zone—the region corresponding to the orbital
separation between the stars. For instance, the (t, t) component of the metric in this buffer zone
can be approximated as follows:

1- Ger _ M Q(“d)
2 R R3

Here, Q 1D and E (tid) correspond to the tldally induced quadrupole moment and the external
tidal potential generated by the companion, respectively. Conversely, the exterior solution h,
can be determined exactly from equations (24) - (28), where:

R)( 2M)< 2M(R — M)(3R? — 6MR — 2M?) 31n<

1
~——P,(cos8) += E(“d)RZP (cos8) + 0 (R4'R ) (29)

hext — <_
2 T4 R RZ(R — 2M)?

M
c M )

where c; and ¢, are constants of integration. By performing a Taylor expansion of the above
expression within the buffer zone, we obtain:

R
R - 2M)> 30)
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16 M3 R? 1
h§Xt=?C1F+C2W+O(F,R> (31)

Subsequently, QD and E4 are determined by matching equation (31) with equation
(29). The Love number is then defined as follows:

Q(tid)

[ (tid)
For a more comprehensive analysis, it is also useful to define dimensionless numbers :

3A
- 33
ko =55 (33)
— A
A= (34)
Upon completing the calculation, the Love number can alternatively be expressed as follows:

A= (32)

8
k, = gCS (1-20)*QC(y—-1)—y

+ 2) <2C(4(y +1)C* + (6y —4)C* + (26 — 22y)C* + 3(5y — 8)C  (35)
1 -1
—3y+6)—3(1-20)?C(y —1) —y+2)10g(1_ ZC)) ,
Here, C = M /R denotes the compactness of the star, and y depends on the value of h, and
its derivatives evaluated at the stellar surface. For stars with continuous density profiles at the

surface, the value of y is given by:

_ Rh, (36)
=T
A correction to y arises for stars with discontinuous density profiles at the surface, where
R.h} 4mpR?¢,
= 1-)———. 37
Y= +( th(R—ZM) (37)

Anisotropic quark stars exhibit surfaces with discontinuous density profiles. In this case,
equation (37) is used to determine the value of y. The values of h, and &, in equation are
obtained from the numerical solution of equations (I1.61)—(I1.65) by setting w,with the
numerical method detailed in the following chapter.

2.4. Universal Relations

Universal behavior refers to a tendency observed in physical systems that is independent of
the internal details of those systems. The definition of universality may vary across different
scientific disciplines. In statistical mechanics, for instance, universality is associated with
systems belonging to large classes whose macroscopic properties are not influenced by the
specific dynamics of the system. In astrophysics, the concept of universality in black holes
states that the external metric tensor field of a static and isolated black hole can be fully
described by only three global parameters: mass, electric charge, and angular momentum (spin).
This statement is commonly referred to as the no-hair theorem. According to this concept, all
information about matter entering a black hole becomes hidden behind the event horizon and
cannot be observed by any external agent.
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Unlike black holes, stars do not possess an event horizon, allowing information such as their
internal composition to be observed by external agents. This internal composition influences
the external gravitational field produced by the star. However, recent studies have shown that
the external gravitational field of compact stars exhibits certain universal properties. One such
example is the [-Love-Q relation, which connects the moment of inertia, the Love number, and
the quadrupole moment. The moment of inertia measures an object’s resistance to changes in
rotational motion at a given angular momentum. The quadrupole moment quantifies the extent
of a star’s deformation due to rotation, while the Love number indicates how easily an object
deforms in response to an external tidal field. This relation suggests the possible existence of a
no-hair-like theorem for neutron stars or quark stars.

Within the framework of general relativity, the I-Love-Q relations are computed
numerically. Kent Yagi and Nicolas Yunes discovered that these relations are independent of
the equation of state. Based on this finding, they formulated a fitting equation derived from the
numerical correlations, which is expressed as follows:

Iny; =a; + b;Inx; + ¢;(Inx;)? + d;(In x;)3 + e;(In x;)*. (38)
with the coefficients given by Table 1

Table 1. Table of numerical coefficients for the empirical fitting of the [-Love-Q relations

a; b; C; d; e;
1.496 0.05951 0.02238 —6953 x 10~* 8.345 x 10~°
1.393 0.5471 0.03028 0.01926 4.434 x 104
0.194 0.09163 0.04812 —4.283 x 1073 1.245x 107*

Q|| ~i| ~i1|=
S>HQ|| > &

where the dimensionless quantities: the normalized moment of inertia (I), the dimensionless
tidal deformability (A), and the normalized quadrupole moment (Q ) are defined by

_ I
I = W 39)
_ M
0=-m (40)
— A

3. Numerical Methods

In general, the differential equations are integrated from the center, 7, to the surface R,,
using the fourth-order Runge-Kutta method. To ensure numerical stability, we set 7.=100 cm,
which is significantly smaller than the stellar radius, typically on the order of tens of kilometers.
The boundary conditions at the stellar center are derived from the analysis of the equations in
the vicinity of the center. One finds :

p(re) = p. + p_ZT'EZ +0(x3). (42)
MGD) = 5 perd +0G) 43)
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1
v(r) =v. + 3 (Bp, + p)r2 + 0(x*) (44)

The function is expanded around x = 1. /R, < 1. Here, p. and p. represent the central
density and pressure, respectively, while v, is a constant determined by matching the interior
and exterior solutions at the stellar surface. For a given central pressure p., the stellar radius R,
and mass M, are obtained from the condition that the pressure vanishes at the surface, i.e.,
pr(R.) = 0. A range of p. values is used to derive the mass-radius relation. The actual value
of v is obtained by matching the interior and exterior solutions at the stellar boundary. The
exterior solution used in this context is given by:

yext = In (1 - ?) . (45)

For calculations in the slow-rotation regime, the equation is integrated with boundary
conditions specified at the center of the star. These boundary conditions are derived from a
series solution analysis of the differential equation, which is formulated as follows:

8w
wy(Te) = wyc + ? (pc + pc)wlcrez + O(XS) ) (46)
hy(r.) = C;v2 + 0(x?), 47)
ky(re) = _Clrez + 0(x3) , (48)

B e v (2n = D + pc)(Be¥Cy + wil) N
An(3pé(m + 2( — DAu) + 2pcpc(B3n — DAy + D + Bn —2)p2) ©  (49)
+ 0(x?),
The constant C; is determined by matching the interior and exterior solutions at the stellar
surface. The boundary condition at the surface is obtained using the exterior solution of the

$o(re) =

equation. For example, the moment of inertia I and the quadrupole moment @ can be
determined from the asymptotic behavior of the exterior solutions w; and h, at spatial infinity.

21
i =a(1-3), (50)
1

This solution does not depend on the anisotropic model, since the pressure vanishes at the
stellar surface. The exterior solution contains an integration constant whose value is fixed by
matching it with the interior solution at the surface. This constant determines the multipole
moments of the gravitational field in the exterior region.

4. Results and Discussion

This section addresses two main topics. First, we analyze the configuration in the moment
of inertia, quadrupole moment, and Love number for anisotropic quark stars in the framework
of Rastall gravity. Second, we investigate the influence of varying the parameters {, 1y, B, and
A on the universal relations among the moment of inertia, Love number, and quadrupole
moment. The universal relations for anisotropic stars in general relativity have been studied by
Yagi and Yunes. They found that variations in the equation of state increase with growing
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anisotropy; however, the anisotropic effect is relatively weak, with differences of
approximately 10% compared to the isotropic case, within the range —2 < Ay < 2.

We compute the moment of inertia, quadrupole moment, and Love number, with the results
presented in Figure 1 for the MIT Bag model. In general, the moment of inertia increases almost
linearly with stellar mass in each model. Prior to reaching the maximum mass, the stellar radius
begins to decrease, leading to a drop in the moment of inertia. An increase in ¢ and B, tends to
reduce the moment of inertia. In contrast, a larger value of 1y increases the moment of inertia
in high-density regions, while its effect is negligible in low-density regions. We conclude that
increasing ¢ and B, along with decreasing Ay, results in a star that tends to rotate less easily, as
indicated by a larger moment of inertia.

We present the numerical solutions of equations (20)—(28) in Figures 2, with the
corresponding fitting results summarized in Table 2. The [-Love—Q relation is analyzed using
dimensionless quantities: the normalized moment of inertia (I), the dimensionless tidal
deformability (A), and the normalized quadrupole moment (Q ), as defined in equations (39),
(40), and (41). This relation is considered universal if variations in the parameters ¢, Ay, B, and
A do not significantly alter the correlation among I, Q, and A, which would otherwise form a
single linear relation. Our results show that the universality of the [-Love—Q relation breaks
down when { is varied, as the corresponding points deviate from the expected linear behavior.
Similarly, variations in Ay also lead to a loss of universality, particularly at high stellar
densities, although the deviation remains negligible at low-density regimes. These findings are
consistent with those reported by Yagi and Yunes (2015) in their study of anisotropic compact
stars. It should be noted that the conclusions presented here are drawn for a specific equation
of state, namely the MIT Bag model with B = 60 MeV.

It is necessary to investigate whether the internal structure of a star or variations in the
equation of state affect the universality relation within a specific model framework (with fixed
Ayand 0), as illustrated in Figure 3. Interestingly, we find that the internal structure of the star
does not significantly affect the universality of the [-Love—Q relation within the given model
framework.This conclusion is supported by the fractional difference between the numerical
results and the fitted data, which remains on the order of 10—3.
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Table 2 Table of numerical coefficients for the empirical fitting of the I-Love-Q

relations

A ¢ Vi X a; b; Ci d; e;

05 0 I Q 4.1361 -3.8246 1.7807 -2.4437.E-01 1.2579.E-02
05 1/8 1 0 1.9530 -1.5466 1.2087 -1.8195.E-01  1.0149.E-02
05 1/4 1 Q -0.2255 1.2128 03914 -7.3785.E-02  4.8202.E-03
0.5 3/8 1 0 27778 52812 -1.1724 1.9285E-01 -1.2015.E-02
05 112 1 0 -5.3991  10.7225 -3.7380 7.1504.E-01  -5.0573.E-02
05 0 Q0 A 12684 02690 -0.0102 5.1376.E-04 -8.6051.E-06
05 1/8 Q0 A 1.0702  0.1937  -0.0024 1.5825.E-04 -2.7883.E-06
05 1/4 0 A 1.0215  0.0992  0.0050 -1.1352.E-04  9.8085.E-07
0.5 3/8 0 A 1.0834  -0.0002 0.0113 -3.0442.E-04 3.2259.E-06
05 112 Q A 1.1896  -0.0848 0.0149 -3.7088.E-04  3.6498.E-06
05 0 I A 14614  0.0749  0.0206 -6.1701.E-04  7.2401.E-06
05 1/8 1 A 14652  0.1037 0.0192 -5.8627.E-04 6.9191.E-06
05 1/4 I A 14322 0.1376  0.0179 -5.6312.E-04 6.7407.E-06
0.5 3/8 1 A 13734 0.1722  0.0168 -5.4791.E-04  6.6364.E-06
05 112 I A 13067 02017  0.0163 -5.5229.E-04  6.7029.E-06
0 0 1 Q 43611 -3.8976 1.7696 -2.3853.E-01  1.2079.E-02
0 1/8 1 0 22276 -1.7074 1.2385 -1.8333.E-01  1.0085.E-02
0 1/4 1 0 03752 0.6545  0.5873 -1.0420.E-01 6.5744.E-03
0 3/8 1 0 -1.4053  3.6963 -0.5026 7.0707.E-02  -3.9045.E-03
0 12 1 Q 29631 75141 -2.2206 4.0924E-01 -2.8327.E-02
0 0 Q A 1.1262 03008 -0.0128  6.0554.E-04 -9.7934.E-06
0 1/8 0 A 0.9509 02181 -0.0043 2.2395E-04 -3.6287.E-06
0 1/4 0 A 0.8970  0.1235  0.0032 -5.3842.E-05 2.4673.E-07
0 3/8 Q0 A 0.9102  0.0327  0.0089 -2.2927.E-04 2.3405.E-06
0 12 Q A 0.9433  -0.0413 0.0120 -2.8704.E-04 2.7456.E-06
0 0 1 A 1.4908  0.0695 0.0209 -6.2785.E-04 7.3570.E-06
0 1/8 1 A 14916  0.1003  0.0194 -5.8592E-04 6.8639.E-06
0 1/4 I A 14666  0.1331  0.0181 -5.6483.E-04 6.7129.E-06
0 3/8 1 A 14281 0.1640  0.0172 -5.5814E-04 6.7151.E-06
0 12 1 A 13964  0.1871  0.0172 -5.7653.E-04  6.9464.E-06
100 1 0Q 5.0443  -42136 1.7939 -2.3246E-01  1.1331.E-02
-1 1/8 1 0 27298 -1.9378 12528 -1.7753.E-01 9.3981.E-03
-1 1/4 1 Q 12234  -0.0291  0.7932 -1.3144E-01  7.9044.E-03
-1 38 1 0 02391 19246 02072 -5.3485.E-02 4.0766.E-03
-11n2 1 0 -0.0962 3.7879  -0.4670 5.6163.E-02 -2.6190.E-03
-10 0 A 0.6943  0.4012 -0.0214 9.2423.E-04 -1.4133.E-05
-1 1/8 0 A 0.6571 02767 -0.0087 3.6906.E-04 -5.4062.E-06
-1 1/4 Q A 0.6374  0.1707 -0.0001 4.5665.E-05 -8.8387.E-07
-1 38 Q0 A 0.6011  0.0861  0.0055 -1.3040.E-04 1.2953.E-06
-2 Q0 A 0.5186  0.0280  0.0078 -1.7712.E-04 1.6856.E-06
100 1 A 1.5911  0.0485 0.0226 -6.8601.E-04 8.1153.E-06

A. Name, S. A. Name
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1 1/8 1 A 15635 0.0897  0.0199 -5.9550.E-04  6.8850.E-06
-1 1/4 1 A 1.5359  0.1249  0.0183 -5.6116.E-04  6.5448.E-06
138 I A 1.5232  0.1516  0.0177 -5.6308.E-04  6.6599.E-06
112 I A 1.5375  0.1674  0.0181 -5.9478.E-04  7.0436.E-06

5. Conclusion

This study reveals that the configuration of the moment of inertia, quadrupole moment,
and Love number in anisotropic quark stars under Rastall gravity is influenced by the
parameters {, Ay, B, and A. The universality of the [-Love—Q relation breaks down when
¢ and Ay are varied, particularly at high stellar densities. However, the internal structure
and the equation of state do not significantly affect this universal relation within a fixed
model framework, with deviations remaining around the order of 1073. These results are
consistent with findings by Yagi and Yunes, and are based on the MIT Bag model with
B = 60 MeV.. The findings of this study are expected to serve as a reference for
identifying anisotropic quark star candidates based on their macroscopic properties. This
research can also be extended to more realistic stellar models, such as neutron stars or
white dwarfs. Observational data from such objects are anticipated to provide tighter
constraints on the Rastall parameters.
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