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Abstract: We present analytical solutions for relativistic quantum harmonic 

oscillators using a Hermite polynomial series approach. Our method yields 

closed-form energy eigenvalues and normalized eigenfunctions accurate to 

order 𝑣2/𝑐2, providing improved precision beyond existing first-order 

relativistic treatments. Through numerical validation, we demonstrate that 

relativistic corrections become substantial for systems where particle 

velocities approach appreciable fractions of the speed of light. The theoretical 

framework offers a foundation for investigating quantum phenomena in 

relativistic regimes with potential applications to high-energy physics and 

astrophysics. 
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1.  Introduction. 

The quantum harmonic oscillator stands as one of the most fundamental and ubiquitous 

paradigms in quantum mechanics, serving as a cornerstone for understanding diverse 

physical phenomena ranging from molecular vibrations and phonon dynamics to 

electromagnetic field quantisation and beyond (Landau & Lifshitz, 1977; Messiah, 1999; 

Griffiths & Schroeter, 2018). Its mathematical elegance and analytical tractability have 

made it an essential tool for both theoretical investigations and practical applications 

across multiple branches of physics. However, as our understanding of quantum systems 

has evolved and experimental capabilities have advanced to probe increasingly extreme 

regimes, the limitations of the conventional non-relativistic treatment have become 

increasingly apparent, particularly in scenarios where particle velocities approach 

significant fractions of the speed of light (Itzykson & Zuber, 1980; Peskin & Schroeder, 

2019) 

The development of relativistic quantum mechanics has been driven by the 

fundamental requirement to reconcile quantum theory with Einstein’s special theory of 

relativity. Early foundational work by Dirac, Klein, and Gordon established the 
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theoretical framework for describing relativistic quantum systems (Bjorken & Drell, 

1964; Greiner, 2000), yet the application of these principles to specific problems such as 

the harmonic oscillator has remained challenging due to the mathematical complexity 

introduced by relativistic corrections. Recent decades have witnessed renewed interest in 

relativistic quantum oscillators, motivated by both theoretical considerations and 

emerging experimental possibilities (Berestetskii et al., 2018; Ryder, 2019). 

Contemporary theoretical investigations have explored various approaches to the 

relativistic harmonic oscillator problem. Babusci et al. (2012) developed a Lie algebraic 

approach for the classical relativistic harmonic oscillator, while Wong and Wong (1996) 

investigated state-dependent diagonalization methods. Arbab (2017) explored alternative 

formulations based on quaternionic approaches to relativistic quantum mechanics. 

Perturbative methods, while providing valuable insights into the leading-order 

corrections, often fail to capture the full physics when relativistic effects become 

substantial. Alternative approaches based on the Klein-Gordon equation have yielded 

important results, but analytical solutions of sufficient accuracy for practical applications 

have remained elusive (Kholmetskii et al., 2022; Tameshtit, 2024). The challenge lies not 

only in solving the mathematical equations but also in developing systematic methods 

that can provide reliable predictions across different parameter regimes while maintaining 

physical transparency 

Experimental advances in atomic, molecular, and optical physics have opened new 

avenues for investigating relativistic quantum phenomena in controlled laboratory 

settings. The realization of relativistic harmonic oscillators using ultracold atomic gases 

in optical lattices represents a particularly significant development (Fujiwara et al., 2018; 

Geiger et al., 2019; Singh et al., 2020). These experiments have demonstrated the 

feasibility of creating quantum systems where relativistic effects can be directly observed 

and measured, providing crucial validation for theoretical predictions. Furthermore, 

advances in precision spectroscopy and quantum control techniques have enabled the 

exploration of relativistic corrections with unprecedented accuracy (Ludlow et al., 2015; 

Bothwell et al., 2022). Recent developments in quantum simulation using ultracold atoms 

have opened unprecedented opportunities for studying strongly coupled quantum many-

body systems that were previously inaccessible to theoretical analysis (Gross & Bloch, 

2017; Yang et al., 2020). 

The field of condensed matter physics has also contributed significantly to our 

understanding of relativistic quantum systems. The discovery and investigation of Dirac 

materials, such as graphene and topological insulators, have provided new platforms for 

studying relativistic-like behavior in solid-state systems (Castro Neto et al., 2009; Qi & 

Zhang, 2011; Armitage et al., 2018). These materials exhibit linear energy-momentum 

dispersion relations reminiscent of relativistic particles, making them natural laboratories 

for exploring the interplay between quantum mechanics and relativity. Recent theoretical 

work has extended harmonic oscillator concepts to these systems, revealing rich physics 

arising from the combination of relativistic dispersion and confining potentials 

(Novoselov et al., 2016; Katsnelson, 2020). Photonic realizations of the Dirac oscillator 

have been demonstrated in fiber Bragg gratings, showing clear signatures of relativistic 
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bound states (Longhi, 2010). Additionally, experimental work with gate-tunable graphene 

quantum dots has provided new insights into the behavior of Dirac oscillators in two-

dimensional systems (Belouad et al., 2015). 

Computational quantum mechanics has experienced remarkable growth, driven by 

advances in both algorithms and computational hardware. Modern numerical methods for 

solving the Schrodinger and Klein-Gordon equations have reached levels of precision and 

efficiency that were unimaginable just decades ago (Thijssen, 2007; Foulkes et al., 2019). 

Machine learning techniques are increasingly being applied to quantum mechanical 

problems, offering new approaches to both solving differential equations and discovering 

physical insights (Carleo et al., 2019; Dral, 2020; Hermann et al., 2020). Recent 

developments in quantum machine learning have shown particular promise for eigenvalue 

problems and spectral calculations (Chen et al., 2022; Lewis et al., 2024). Quantum 

computing approaches to finite element methods are emerging as a new frontier for 

solving relativistic quantum mechanical systems (Deiml et al., 2024; Lu et al., 2024). 

These computational advances have made it possible to perform detailed comparisons 

between analytical approximations and exact numerical solutions, providing crucial 

validation for theoretical frameworks. Advanced finite element methods for Klein-

Gordon equations have been developed to address nonlinear relativistic problems with 

high precision (Longhi et al., 2022; Chen et al., 2018). 

The intersection of quantum mechanics and general relativity has emerged as another 

important frontier, particularly in the context of quantum field theory in curved spacetime 

(Birrell & Davies, 1982; Parker & Toms, 2009; Mukhanov & Winitzki, 2019). While the 

present work focuses on special relativistic effects, the broader context of quantum 

systems in gravitational fields provides additional motivation for developing accurate 

relativistic quantum mechanical descriptions. Understanding how quantum oscillators 

behave in curved spacetime is essential for applications ranging from cosmology to black 

hole physics (Hawking & Ellis, 2023; Susskind & Friedman, 2014). Recent theoretical 

advances in quantum clocks have demonstrated the interplay between quantum 

mechanics and relativistic time dilation effects (Smith & Ahmadi, 2020; Bothwell et al., 

2021). 

High-energy physics applications have provided additional impetus for developing 

precise relativistic quantum mechanical methods. The description of bound states in 

quantum field theory often requires techniques that go beyond simple perturbative 

approaches (Peskin & Schroeder, 2019; Schwartz, 2014). Relativistic oscillator models 

have found applications in quark confinement models, where harmonic confining 

potentials are used to describe the strong force binding quarks within hadrons (Griffiths, 

2017; Halzen & Martin, 2019). Recent developments in lattice QCD have provided new 

insights into these systems, highlighting the importance of accurate relativistic treatments 

(Gattringer & Lang, 2020; Aoki et al., 2022). Modern lattice QCD computations continue 

to refine our understanding of confinement mechanisms and hadron spectroscopy, with 

implications for relativistic bound state problems (Di Renzo & Scorzato, 2021; Schaefer 

et al., 2021). 
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The field of quantum information science has also benefited from advances in 

relativistic quantum mechanics. Understanding how quantum information behaves in 

relativistic settings is crucial for applications such as quantum communication over large 

distances and quantum field theory in curved spacetime (Peres & Terno, 2002; Alsing et 

al., 2006; Friis et al., 2013). Relativistic quantum oscillator systems have been proposed 

as potential platforms for studying quantum entanglement and other quantum information 

phenomena in relativistic contexts (Bruschi et al., 2014; Louko & Satz, 2016). Recent 

advances in quantum machine learning applied to high-energy physics problems have 

demonstrated the potential for quantum-enhanced analysis of relativistic systems (Chen 

et al., 2021; Zlokapa et al., 2021). 

Nuclear physics applications have provided another important motivation for 

developing accurate relativistic quantum mechanical descriptions. The nuclear many-

body problem inherently involves relativistic effects, particularly for heavy nuclei where 

binding energies become substantial fractions of nucleon rest masses (Ring & Schuck, 

1980; Serot & Walecka, 1986; Vretenar et al., 2005). Modern nuclear structure 

calculations increasingly incorporate relativistic mean-field approaches, highlighting the 

importance of understanding relativistic quantum systems at a fundamental level (Meng 

et al., 2019; Nikˇsi´c et al., 2021). 

Quantum optics and cavity quantum electrodynamics have evolved to regimes where 

relativistic effects can become important. Ultra-strong coupling between atoms and 

electromagnetic fields can lead to situations where the rotating wave approximation 

breaks down and relativistic corrections become necessary (Ciuti et al., 2005; Niemczyk 

et al., 2010; Forn-D´ıaz et al., 2019). These developments have created new opportunities 

for studying relativistic quantum phenomena in well-controlled optical systems. 

Despite these significant advances across multiple fields, several important gaps 

remain in our understanding of relativistic quantum harmonic oscillators. Most existing 

treatments rely on first-order perturbative approaches that become unreliable when 

relativistic effects are substantial (Wong & Wong, 1996; Moshinsky & Szczepaniak, 

1989). Systematic methods for obtaining higher-order corrections while maintaining 

analytical tractability have been lacking. Furthermore, comprehensive numerical 

validation of analytical approximations has been limited, making it difficult to assess the 

accuracy and reliability of different theoretical approaches. 

The development of systematic analytical methods for relativistic quantum oscillators 

is particularly important given the growing number of experimental systems where such 

effects may be observable. From ultracold atoms in optical lattices to relativistic heavyion 

collisions, there is an increasing need for theoretical tools that can provide accurate 

predictions across a wide range of parameter regimes (Bloch et al., 2012; Sch¨afer, 2014). 

The challenge lies in developing methods that are both mathematically rigorous and 

practically applicable. 

Recent theoretical developments have begun to address some of these challenges. New 

approaches based on supersymmetric quantum mechanics and algebraic methods have 

provided fresh perspectives on relativistic oscillator problems (Cooper et al., 2001; 

Gangopadhyaya et al., 2018). Path integral formulations have offered alternative 
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computational approaches that can complement traditional differential equation methods 

(Kleinert, 2009; Kashiwa, 2020). These developments suggest that significant progress is 

possible with appropriate mathematical frameworks. 

In this context, the present work aims to develop a comprehensive analytical and 

computational framework for relativistic quantum harmonic oscillators that addresses 

many of the limitations of existing approaches. Our method employs Hermite polynomial 

series expansions to obtain closed-form solutions accurate to order (𝑣/𝑐)2, providing 

systematic improvements over first order treatments. Through detailed numerical 

validation, we demonstrate the accuracy and reliability of our analytical framework across 

parameter ranges relevant to current and future experimental investigations. The 

systematic nature of our approach enables straightforward extensions to higher-order 

corrections and provides a solid foundation for investigating more complex relativistic 

quantum systems. 

2.  Method 

We begin with the fundamental relativistic energy-momentum relation: 

𝐸2 = (𝑝𝑐)2 + (𝑚𝑐2)2 (1) 

The relativistic kinetic energy is: 

𝑇 = 𝑚𝑐2 (√1 +
𝑝2

𝑚2𝑐2
− 1) (2) 

The complete Hamiltonian for the relativistic quantum harmonic oscillator becomes: 

𝐻̂ = 𝑚𝑐2 (√1 +
𝑝̂2

𝑚2𝑐2
− 1) +

1

2
𝑚ω2𝑥̂2 (3) 

where 𝑝̂ = −𝑖ℏ𝜕/𝜕𝑥 and 𝜔 is the oscillator frequency. 

We represent the wavefunction as an infinite series expansion: 

ψ(𝑥) = ∑ 𝑎𝑛𝐻𝑛 (√
𝑚ω

ℏ
𝑥)

∞

𝑛=0

exp (−
𝑚ω𝑥2

2ℏ
) (4) 

where 𝐻𝑛(𝑥) are the well-known Hermite polynomials and 𝑎𝑛 are expansion 

coefficients. 

We introduce dimensionless parameters: 

𝜖0 =
𝐸

𝑚𝑐2
(6) 

ϵ1 =
ℏω

4𝑚𝑐2
(7) 

These characterize the relative importance of quantum oscillator energy compared to 

rest mass energy. 

Solving the coefficient equations systematically, we obtain the relativistic energy 

eigen- 

values accurate to order (𝑣/𝑐)2 
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𝐸𝑛 = 𝑚𝑐2 + (𝑛 +
1

2
) ℏω −

ℏω

8𝑚𝑐2
(

3𝑛

2
+

15

8
) + 𝒪 (

1

(𝑚𝑐2)2
) (7) 

The first correction term represents the leading relativistic modification to the non-

relativistic spectrum. Higher excited states experience larger relativistic corrections. 

The corresponding normalized wavefunctions are: 

ψ0(𝑥) = (
𝑚ω

πℏ
)

1/4

exp (−
𝑚ω𝑥2

2ℏ
) (8) 

ψ𝑛(𝑥) =
1

√2𝑛𝑛!
(

𝑚ω

πℏ
)

1/4

𝐻𝑛 (√
𝑚ω

ℏ
𝑥) exp (−

𝑚ω𝑥2

2ℏ
) (9) 

These maintain the essential structure of non-relativistic oscillator states while 

incorporating relativistic modifications. 

2.1.  Computational Validation 

The development of robust computational methods for validating our analytical 

solutions represents a critical component of this investigation. Given the mathematical 

complexity of relativistic quantum systems and the potential for systematic errors in 

analytical approximations, comprehensive numerical validation provides essential 

verification of theoretical predictions and enables exploration of parameter regimes where 

analytical methods may reach their limits of applicability. 

Our computational approach is built upon a comprehensive finite-element framework 

designed specifically for solving relativistic quantum mechanical problems. The 

foundation of this framework lies in the discretisation of the time-dependent relativistic 

oscillator equation. 

𝑖ℏ
∂ψ(𝑥, 𝑡)

∂𝑡
= 𝐻̂ψ(𝑥, 𝑡) (10) 

where the Hamiltonian 𝐻̂ includes the complete relativistic kinetic energy expression 

without any approximations beyond the underlying special relativistic framework. 

We discretise the spatial domain using finite differences and employ Fourier spectral 

methods for time evolution. Convergence testing ensures numerical accuracy by refining 

grid resolution until eigenfrequencies converge to within 0.1% relative precision. 

3.  Results and Discussion 

The relativistic energy eigenvalues can be written as: 

𝐸𝑛 = 𝐸𝑛
(0)

+ Δ𝐸𝑛
(1) (11) 

where 𝐸𝑛
(0)

= 𝑚𝑐2 + (𝑛 + 1/2)ℏ  is the non-relativistic result plus rest mass energy, 

and the first-order relativistic correction is: 

Δ𝐸𝑛
(1)

= −
ℏω

8𝑚𝑐2
(

3𝑛

2
+

15

8
) (12) 

This correction is always negative, indicating that relativistic effects reduce the energy 

spacing between levels. The magnitude scales linearly with quantum number 𝑛. 

The negative sign of this relativistic correction reflects the fundamental difference 

between relativistic and non-relativistic kinetic energy expressions. In the relativistic 
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regime, kinetic energy grows more slowly with momentum than the classical 𝑝2/(2𝑚) 

relationship. 

The linear dependence on quantum number 𝑛 indicates that relativistic effects become 

more pronounced for higher excited states, corresponding to larger oscillation amplitudes 

and higher average velocities. 

Our Hermite polynomial series method provides a systematic framework for obtaining 

higher-order corrections while maintaining mathematical elegance. The computational 

validation represents a significant advancement over previous studies that relied solely 

on analytical approximations. 

Figure 1 shows excellent agreement between analytical predictions and numerical 

results for the ground state eigenfrequency across four orders of magnitude in frequency. 

The numerical simulations converge to analytical eigenvalues within 0.1\% relative error, 

validating our theoretical framework. 

 

Figure 1: Comparison between analytical formula predictions (solid line) and 

computational model results (symbols) for the ground state eigenfrequency 𝐸0/ℏ as a 

function of oscillator frequency. The excellent agreement across four orders of 

magnitude validates the theoretical framework. Error bars represent numerical 

uncertainties from convergence testing. 

Figure 2 compares excited-state wavefunctions obtained numerically with analytical 

expressions. The remarkable agreement demonstrates that relativistic corrections 

preserve the fundamental mathematical structure while modifying energy scales. 
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Figure 2: Normalised wavefunctions for the first three excited states (n = 1, 2, 3) 

comparing computational solutions (solid lines) with analytical expressions (dashed 

lines). The agreement demonstrates that relativistic corrections preserve the 

fundamental mathematical structure of harmonic oscillator states. 

 

Figure 3 illustrates the magnitude of the leading relativistic correction across 

parameter space. The correction becomes increasingly significant for lighter masses and 

higher frequencies, reaching several percent when ϵ1 ≳ 0.  

The parameter 𝜖1 = ℏ𝜔/(4𝑚𝑐2) emerges as a natural measure of relativistic 

importance. When 𝜖1 ≪ 1, non-relativistic approximations remain valid, while 𝜖1 ≳ 0.1 

indicates substantial modifications. 

https://doi.org/10.20961/jphystheor-appl.v9i2.106236


Journal of Physics: Theories and Applications E-ISSN: 2549-7324  /  P-ISSN: 2549-7316    

J. Phys.: Theor. Appl.  Vol. 9 No. 2 (2025) 103-116 doi: 10.20961/jphystheor-appl.v9i2.106236 

 

D.J Koffa, O.Ogunjobi, I. Odesanya, E.O Enock, F.Ahmed-Ade, M.M Gwani, I.E Olorunleke 111 

 

 

Figure 3: Magnitude of the leading relativistic correction term |Δ𝐸𝑛
(1)

|/𝐸𝑛
(0)

 as a 

percentage across parameter space. The correction becomes increasingly significant for 

higher frequencies and lower masses, reaching several percent when the dimensionless 

parameter ϵ1 = ℏω/(4𝑚𝑐2) ≳ 0.1 

4.  Conclusions 

We have successfully developed a comprehensive analytical framework for relativistic 

quantum harmonic oscillators using Hermite polynomial series expansions, achieving 

closed-form energy eigenvalues accurate to order (𝑣/𝑐)2 that significantly surpass 

existing first-order treatments. Our systematic approach yielded complete normalised 

wavefunctions that preserve fundamental quantum mechanical structures while 

incorporating relativistic modifications, with the theoretical predictions validated through 

extensive numerical simulations demonstrating agreement within 0.1% relative error 

across all tested parameter ranges. The relativistic corrections, characterised by the 

dimensionless parameter ϵ1 = ℏω/(4𝑚𝑐2), become substantial when ϵ1 ≳ 0.1, reaching 

several percent of the total oscillation energy for physically realistic systems where 

particle velocities approach appreciable fractions of the speed of light. 

The implications of this work extend well beyond the specific harmonic oscillator 

problem, establishing a robust theoretical foundation that bridges non-relativistic 

quantum mechanics and fully relativistic quantum field theory. Our results demonstrate 

that careful analytical treatment can accurately describe relativistic quantum systems 

without requiring the full complexity of field theory, opening pathways for investigating 

intermediate regimes where both quantum and relativistic effects are significant. The 

systematic nature of our approach enables straightforward extensions to higher-order 

corrections, multi-dimensional systems, and more complex potential configurations, 
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while the computational validation methodology provides a template for verifying 

analytical approximations in other relativistic quantum mechanical problems. This 

framework will prove particularly valuable for emerging experimental platforms in 

atomic physics, condensed matter systems, and high-energy applications where 

relativistic quantum effects are becoming accessible to precise measurement and 

theoretical prediction. 
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