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Abstract: This study investigates the use of artificial intelligence,
specifically machine learning models, to predict temperature reduction in
Newtonian cooling experiments involving varying volumes of water. Two
regression models, Gradient Boosting Regression and Random Forest
Regressor, were utilized to learn from empirical data. The findings indicate
that both models are capable of accurately predicting cooling behavior, with
the Random Forest model demonstrating superior accuracy for the dataset
used. The machine learning models effectively represent the theoretical
model of Newton’s Law of Cooling, which is characterized by an
exponential decay curve. Furthermore, the cooling constant for each volume
was estimated using curve fitting techniques. This research underscores the
potential of Al in modeling complex physical processes, particularly in real-
world scenarios where the relationships between physical variables are
intricate and challenging to express analytically. With sufficient data, Al can
adeptly predict variable changes based on fluctuations in others. As
technology continues to advance, Al is poised to assume an increasingly
critical role in experimental and industrial applications involving complex
physical systems. The novelty of this study lies in its comparative analysis to
identify the optimal machine learning model—Gradient Boosting Regression
or Random Forest Regressor—for accurately predicting Newtonian cooling
behavior. Additionally, this research introduces an automated data
acquisition approach using a datalogger, significantly enhancing precision
and practicality compared to traditional manual methods involving a
stopwatch and thermometer.

Keywords: Newtonian Cooling, Machine Learning, Temperature Prediction,
Random Forest, Gradient Boosting.

1. Introduction

Newton's Law of Cooling, a cornerstone of thermodynamics, describes the rate at
which an object's temperature changes in relation to the temperature differential
between the object and its surroundings (Arpad et al., 2024). This principle, which
assumes that the rate of heat transfer is proportional to the temperature difference, is
widely employed in a variety of scientific and engineering domains (Li et al., 2012).
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However, real-world scenarios frequently deviate from the idealized conditions of
Newtonian cooling, necessitating the use of more sophisticated modeling techniques.
The growing capabilities of machine learning provide an intriguing opportunity to
improve the accuracy and adaptability of cooling analysis, enabling more precise
predictions and efficient thermal management strategies (Svensen et al., 2024). By
using machine learning algorithms, intricate relationships and nonlinearities that are
frequently overlooked by traditional methods can be captured, and computational fluid
dynamics can be integrated to get high-fidelity data (Fukami et al., 2020). This opens
the door to a more thorough understanding of cooling processes, which has
ramifications for anything from the design of electronic devices to the optimization of
industrial cooling systems (Kochkov et al., 2021). We will explore the theoretical
underpinnings of Newtonian cooling in this study, looking at its limitations and
applicability in different situations. We will also look at how machine learning models
can be used to improve the precision and effectiveness of cooling analysis.

Traditionally, the Newtonian cooling process has been studied using water cooling
experiments, as is done in basic physics laboratories, where measuring cups with
volumes of 100 ml, 250 ml, and 600 ml are filled with hot water. Temperature decrease
in each measuring cup is read every 2 minutes, which can reduce accuracy and precision
because time and temperature must be read simultaneously. The 2-minute time interval
is also wide, potentially eliminating important data, especially at the beginning of the
cooling process, where the temperature drops quickly. Due to the limited time allocated
for practical work (generally 3 hours), the data obtained is less than optimal, which
results in a less smooth temperature drop characteristic curve, and the value of the
cooling coefficient obtained through the least square method is imprecise, making it
difficult to validate Newton's Law of Cooling.

This study distinguishes itself through the application of machine learning
methodologies to water cooling experiments, an approach that necessitates a substantial
volume of data. To this end, a datalogger is employed to capture time and temperature
data, supplanting conventional manual readings. Current technological solutions,
comprising Arduino microcontrollers, datalogger modules equipped with integrated
RTC and SD cards, and DS18B20 waterproof temperature sensors, facilitate the
periodic measurement of water temperature and the logging of data in CSV format to an
SD card, as implemented herein. By integrating machine learning models, this research
addresses the limitations in accuracy and resolution inherent in traditional cooling
experiments, thereby yielding more precise and robust predictive tools for thermal
management.

2. Methodology

The methodology implemented in this investigation encompasses data collection,
model selection, model training, and performance evaluation. The apparatus employed
comprises three measuring glasses (100 ml, 250 ml, and 600 ml), each integrated with a
waterproof temperature sensor DS18B20; a temperature sensor to measure the ambient
temperature; an Arduino Uno microcontroller; and a datalogger module featuring an
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integrated Real-Time Clock and Secure Digital card module. In the experimental setup,
the temperature sensors are connected to the Arduino, along with the datalogger
module. Subsequently, the temperature sensors are introduced into the measuring
glasses containing hot water, and the Arduino code is executed to record temperature
variations over time. Following data acquisition, the collected data is used to train a
machine learning model, with meticulous attention to the selection of the model
architecture, hyperparameters, and training algorithms. For training purposes, the
elapsed time from the experiment's commencement serves as the feature, while the
corresponding water temperature functions as the label. The data, stored in CSV format
on the SD card, is then transferred to a computer for subsequent processing and
analysis. The elapsed time since the experiment began is used as the input feature, and
the corresponding water temperature is the target variable.

The schematic of the data acquisition system, including the Arduino, temperature
sensor, and SD card datalogger module are shown in Figure 1. The primary objective of
this experimental setup is to collect high-fidelity temperature data over time, which will
subsequently be used to train and validate machine learning models for predicting
cooling behavior based on Newton's Law of Cooling (Loisel et al., 2021).
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Figure 1. Schematic of the Data Acquisition System

The Arduino Uno is situated below the datalogger module. The DS18B20 sensors,
represented as transistors in schematics, are housed in waterproof metal casings with
attached cables for practical use, ensuring they are waterproof. A 4.7 kOhms resistor
functions as a pull-up resistor, with the sensor's data output connected to digital pin 4.
Three sensors are deployed to measure the water temperature in measuring glasseses
containing varying water volumes, while the fourth sensor tracks the ambient room
temperature, offering essential context for understanding the cooling dynamics. The
incorporation of multiple temperature sensors, along with the SD card module's data
logging capabilities, enables the development of a comprehensive dataset for training
advanced machine learning algorithms. These algorithms can identify complex thermal
patterns and forecast cooling trends across different experimental conditions. This
meticulous arrangement guarantees the system's ability to precisely capture the thermal
behavior of water samples, which is vital for training machine learning algorithms to
accurately simulate the cooling process. The DS18B20 sensors, recognized for their
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accuracy and affordability, are well-suited for this application, providing acceptable
temperature measurement precision. The Arduino-based system, which integrates the
DS18B20 temperature sensors and an SD card module for data logging, delivers a
dependable platform for real-time temperature monitoring and data collection in water
cooling experiments.

3. Results and Discussion

The collected data, encompassing temperature readings from multiple sensors and
varying water volumes, forms the empirical basis for developing and validating machine
learning models to predict cooling behavior based on Newton's Law of Cooling. Figure
2 shows the trend of the temperature readings from all three experimental setups,
demonstrating a clear exponential decay consistent with Newton's Law of Cooling,
while the ambient temperature remained relatively stable throughout the experimental
duration. The initial rapid temperature drop is gradually reduced as the water
temperature approaches ambient temperature, demonstrating the cooling process's
expected asymptotic behavior. The graph also compares the behavior of temperatures in
each volume, showing that different volumes have a small impact on cooling rates.

Cooling Trend Comparison of Water in Three Volumes
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Figure 2. Temperature Data Trend for all Three Volumes

The initial data points were excluded to focus on the stabilized temperature data,
ensuring accurate modeling of the cooling process. This exclusion of initial data points
refines the dataset, allowing for a more accurate representation of the system's dynamic
cooling behavior under steady-state conditions, which is crucial for robust model
training. Further, this initial data exclusion helps in eliminating noise and transient
effects that are not representative of the actual cooling process governed by Newton's
Law. The data collected from these experiments can be used to validate theoretical
models of heat transfer, which often rely on principles such as Fourier's law of heat
conduction and the Stefan-Boltzmann law in addition to Newton's law of cooling. This
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ensures that the analysis focuses on the well-defined cooling phase, thereby enhancing
the precision and reliability of the machine learning models developed (Guo et al.,
2015). The collected data is divided into training and testing datasets to assess the
machine learning model. The training set, which is larger, is used to teach the model,
while the testing set evaluates its performance with new data to ensure the model can
generalize effectively.

A crucial component of this study involves the development and application of
machine learning models to predict and analyze Newtonian cooling dynamics. These
models offer a data-driven approach to understanding the complex relationships
between temperature, time, and environmental conditions, surpassing the limitations of
traditional analytical methods (Raad et al., 2019). It is clear from Figure 2 that the
temperature data trend shows exponential decay so we can use machine learning models
to predict those changes. Two model algorithms will be applied which are Gradient
Boost Regression and Random Forest Regressor, while Linear Regression is obviously
not applicable in this case.

The procedures in using machine learning are collecting data, preprocessing,
selecting a model, training, validation and parameter tuning, testing, and deployment.
Machine learning methods have become indispensable tools in various engineering and
scientific domains, offering robust capabilities for automated decision-making in
complex systems (Bunyan et al., 2025). The selection of appropriate machine learning
algorithms and the optimization of their parameters are critical steps in achieving high
prediction accuracy and reliable performance (Zeng, 2024).

Gradient Boosting Regression is an ensemble learning technique that constructs a
predictive model through the sequential combination of multiple weak learners,
typically decision trees (Sha et al., 2021) while Random Forest Regressor operates by
constructing a multitude of decision trees during the training phase and outputting the
average prediction of the individual trees (Zhang et al., 2025). The two models are
programmed with python and using libraries such as pandas, numpy, matplotlib, and
scikit-learn. The dataset is split into training and testing sets, with 80% of the data used
for training and 20% reserved for testing, while the Root Mean Squared Error is used to
evaluate the performance of the models.

Figure 3 shows the visualization of the predicted values and experimental data for the
Gradient Boosting Regression model, while Figure 4 shows the visualization of the
predicted values and experimental data for the Random Forest Regression model. The
visualization results demonstrate the predictive performance of both models,
highlighting their ability to capture the underlying patterns in the temperature data. It
appears that the Random Forest Regressor is more accurate in predicting temperature.
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Actual vs Predicted Temperature (After Data Trimming)
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Figure 3. Comparison of Actual Versus Predicted Temperature using Gradient Boosting
Regression Model

Actual vs Predicted Temperature using Random Forest
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Figure 4. Comparison of Actual Versus Predicted Temperature using the Random
Forest Regression Model.

The accuracy of the machine learning model is determined by the values of MAE
and Root Mean Squared Error—the smaller the value, the more accurate the model (Gia
& Papurello, 2022)—and R*—the larger the value, the more accurate the model (Samadi
et al., 2023). The results of the two models have been shown in Table 1.
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Table 1. Testing Results of Gradient Boosting Regression and Random Forest

Regression

Metric Gradient Boosting Regression [Random Forest Regression
Mean Absolute Error 0.1346 0.0091

Root Mean Squared Error 0.1868 0.0156
R-squared 0.9998 1.0000

Both models show good performance, but Random Forest Regression is better than
Gradient Boosting Regression due to the lower values of error and the higher value of
the R? value. The superior performance of the Random Forest model might be attributed
to its robustness against overfitting and ability to handle small datasets better than
Gradient Boosting. Furthermore, potential experimental errors such as sensor delays or
slight variations in environmental conditions may contribute to prediction errors.
However, other studies suggest that Gradient Boosting typically exhibits superior
prediction performance compared to Random Forest (Ahn et al., 2023). This is likely
due to the amount of data used and the physics phenomena being studied. The choice of
hyperparameters significantly influences the predictive performance of machine
learning models, particularly in ensemble methods like Random Forest and Gradient
Boosting (Parikh et al., 2019). Thus, the choice of specific parameters can substantially
impact the model's performance (Feng et al., 2021).

In the context of proving Newton's Law of Cooling, especially the form of the
equation, which involves a cooling constant, cannot be determined by machine learning.
Machine learning algorithms, including regression or classification, are designed to find
patterns and relationships in data but cannot directly validate or prove the truth of a
fundamental law of physics. To validate Newton's Law of Cooling, specifically the
cooling constant, for the three water volumes examined, regression analysis was
performed using Python with libraries like NumPy, pandas, and SciPy, as shown in
Table 2.

Table 2. The cooling constant derived from the three different volumes of water

Volume (ml) k (1/min) R? (goodness of fit)
100 1.60 x 102 0.56
250 1.50 x 1072 0.97
600 1.24 x 102 0.99

Knowing the cooling constant, &, allows for the calculation of an object's cooling
rate, a task that can also be accomplished with the machine learning models previously
discussed. The application of Newton's Law of Cooling in this study serves as an
illustrative example of using artificial intelligence in experiments, particularly when an
exponential trend is observed. In scenarios where the relationship between variables is
intricate and lacks a straightforward mathematical representation, machine learning can
be employed to address the problem effectively. The adoption of machine learning
methodologies offers a paradigm shift in experimental design and optimization,
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enabling researchers to navigate complex parameter spaces and uncover non-intuitive
solutions (Barker et al., 2020).

4. Conclusion

The testing and validation results indicate that machine learning models can
effectively estimate experimental outcomes. However, physical constants, such as the
cooling constant in Newton's Law of Cooling, must be determined through physical
experiments and curve fitting. While machine learning models are unsuitable for
validating or discovering physical laws, they can estimate physical properties.
Integrating physics knowledge into deep learning models can enhance prediction
accuracy and ensure physical consistency. This study demonstrates that using machine
learning to estimate the temperature change of cooling water offers a quick method for
obtaining temperature estimates. This approach saves time and resources compared to
traditional numerical simulations or experimental studies.

In addition, the application of machine learning methodologies in this study
underscores the importance of data-driven approaches in scientific inquiry, where
algorithms can automatically learn and extract relevant features from complex datasets.
This integration not only enhances the accuracy and efficiency of predictive modeling
but also facilitates the discovery of underlying patterns and relationships that may not
be readily apparent through traditional analytical techniques (Brunton et al., 2020). The
hybridization of physics-based models with machine learning algorithms offers a
synergistic approach to addressing complex scientific problems, combining the
interpretability and generalizability of physics-based models with the data-driven
adaptability of machine learning (Pawar et al., 2021). Future studies could investigate
the use of deep learning models such as neural networks, or hybrid models combining
physical laws with machine learning to further enhance the accuracy and interpretability
of predictions.

This study has limitations, including the small dataset size and the specific conditions
of the experiment that may limit generalization. Additionally, the environmental factors,
such as humidity and air flow, were not controlled strictly, which may introduce
variability in the results.

References

Ahn, J. M., Kim, J., & Kim, K. (2023). Ensemble Machine Learning of Gradient
Boosting (XGBoost, LightGBM, CatBoost) and Attention-Based CNN-LSTM
for Harmful Algal Blooms Forecasting. Toxins, 15(10), 608.
https://doi.org/10.3390/toxins 15100608

Arpad, 1., Kiss, J. T., & Kocsis, D. (2024). Role of the volume-specific surface area in
heat transfer objects: A critical thinking-based investigation of Newton’s law
of cooling. International Journal of Heat and Mass Transfer, 227, 125535.
https://doi.org/10.1016/j.ijjheatmasstransfer.2024.125535

Barker, A., Style, H., Luksch, K., Sunami, S., Garrick, D., Hill, F., Foot, C. J., &
Bentine, E. (2020). Applying machine learning optimization methods to the

100 Predicting Newtonian Cooling with Machine Learning: A...



Journal of Physics: Theories and Applications E-ISSN: 2549-7324 | P-ISSN: 2549-7316
J. Phys.: Theor. Appl. Vol. 9 No. 2 (2025) 93-102 doi:

production of a quantum gas. Machine Learning Science and Technology, 1(1),
15007. https://doi.org/10.1088/2632-2153/ab6432

Brunton, S. L., Hemati, M. S., & Taira, K. (2020). Special issue on machine learning
and data-driven methods in fluid dynamics. Theoretical and Computational
Fluid Dynamics, 34(4), 333. https://doi.org/10.1007/s00162-020-00542-y

Bunyan, S. T., Khan, Z. H., Al-Haddad, L. A., Dhahad, H. A., Al-Karkhi, M. 1., Ogaili,
A. A. F., & Al-Sharify, Z. T. (2025). Intelligent Thermal Condition Monitoring
for Predictive Maintenance of Gas Turbines Using Machine Learning.
Machines, 13(5), 401. https://doi.org/10.3390/machines13050401

Feng, Y., Duan, Q., Chen, X., Yakkali, S. S., & Wang, J. (2021). Space cooling energy
usage prediction based on utility data for residential buildings using machine
learning methods. Applied Energy, 291, 116814.
https://doi.org/10.1016/j.apenergy.2021.116814

Fukami, K., Fukagata, K., & Taira, K. (2020). Assessment of supervised machine
learning methods for fluid flows. Theoretical and Computational Fluid
Dynamics, 34(4), 497. https://doi.org/10.1007/s00162-020-00518-y

Gia, S. D., & Papurello, D. (2022). Hybrid Models for Indoor Temperature Prediction
Using Long Short Term Memory Networks—Case Study Energy Center.
Buildings, 12(7), 933. https://doi.org/10.3390/buildings 12070933

Guo, T., Shang, B., Duan, B., & Luo, X. (2015). Design and testing of a liquid cooled
garment for hot environments. Journal of Thermal Biology, 47.
https://doi.org/10.1016/j.jtherbio.2015.01.003

Kochkov, D., Smith, J., Alieva, A., Wang, M., Brenner, M. P., & Hoyer, S. (2021).
Machine learning—accelerated computational fluid dynamics. Proceedings of
the National Academy of Sciences, 118(21).
https://doi.org/10.1073/pnas.2101784118

Loisel, J., Duret, S., Cornu¢jols, A., Cagnon, D., Tardet, M., Derens-Bertheau, E., &
Laguerre, O. (2021). Cold chain break detection and analysis: Can machine
learning help? Trends in Food Science & Technology, 112, 391.
https://doi.org/10.1016/j.tifs.2021.03.052

Parikh, R. B., Manz, C. R., Chivers, C., Regli, S. H., Braun, J., Draugelis, M.,
Schuchter, L. M., Shulman, L. N., Navathe, A. S., Patel, M. S., & O’Connor,
N. (2019). Machine Learning Approaches to Predict 6-Month Mortality
Among Patients With Cancer. JAMA Network Open, 2(10).
https://doi.org/10.1001/jamanetworkopen.2019.15997

Pawar, S., San, O., Nair, A., Rasheed, A., & Kvamsdal, T. (2021). Model fusion with
physics-guided  machine  learning. arXiv  (Cornell = University).
http://export.arxiv.org/pdf/2104.04574

Raad, R., Itani, M., Ghaddar, N., & Ghali, K. (2019). A novel M-cycle evaporative
cooling vest for enhanced comfort of active human in hot environment.

International Journal of Thermal Sciences, 142, 1.
https://doi.org/10.1016/].ijthermalsci.2019.04.010

Samadi, B., Raison, M., Mahaudens, P., Detrembleur, C., & Achiche, S. (2023).
Development of Machine learning algorithms to identify the Cobb angle in

E. Sulistya 101



Journal of Physics: Theories and Applications E-ISSN: 2549-7324 | P-ISSN: 2549-7316
J. Phys.: Theor. Appl. Vol. 9 No. 2 (2025) 93-102 doi:

adolescents with idiopathic scoliosis based on lumbosacral joint efforts during
gait (Case study). arXiv (Cornell University).
https://doi.org/10.48550/arxiv.2301.12588

Sha, H., Moujahed, M., & Qi, D. (2021). Machine learning-based cooling load
prediction and optimal control for mechanical ventilative cooling in high-rise
buildings. Energy and Buildings, 242, 110980.
https://doi.org/10.1016/j.enbuild.2021.110980

Svensen, J. L., Silva, W. R. L. da, Merino, J. P., Sampath, D., & Jergensen, J. B. (2024).
A Dynamic Cooler Model for Cement Clinker Production. arXiv (Cornell
University). https://doi.org/10.48550/arxiv.2409.09076

Zeng, X. (2024). A Review on Design of Sustainable Advanced Materials by Using
Artificial Intelligence [Review of A Review on Design of Sustainable
Advanced Materials by Using Artificial Intelligence]. Deleted Journal, 1(1),
10006. https://doi.org/10.35534/amsm.2024.10006

Zhang, J., Yang, M., Dong, N., & Wang, Y. (2025). Machine-Learning-Based Ensemble
Prediction of the Snow Water Equivalent in the Upper Yalong River Basin.
Sustainability, 17(9), 3779. https://doi.org/10.3390/sul1 7093779

102 Predicting Newtonian Cooling with Machine Learning: A...



