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Abstract: This study investigates the use of artificial intelligence, 

specifically machine learning models, to predict temperature reduction in 

Newtonian cooling experiments involving varying volumes of water. Two 

regression models, Gradient Boosting Regression and Random Forest 

Regressor, were utilized to learn from empirical data. The findings indicate 

that both models are capable of accurately predicting cooling behavior, with 

the Random Forest model demonstrating superior accuracy for the dataset 

used. The machine learning models effectively represent the theoretical 

model of Newton’s Law of Cooling, which is characterized by an 

exponential decay curve. Furthermore, the cooling constant for each volume 

was estimated using curve fitting techniques. This research underscores the 

potential of AI in modeling complex physical processes, particularly in real-

world scenarios where the relationships between physical variables are 

intricate and challenging to express analytically. With sufficient data, AI can 

adeptly predict variable changes based on fluctuations in others. As 

technology continues to advance, AI is poised to assume an increasingly 

critical role in experimental and industrial applications involving complex 

physical systems. The novelty of this study lies in its comparative analysis to 

identify the optimal machine learning model—Gradient Boosting Regression 

or Random Forest Regressor—for accurately predicting Newtonian cooling 

behavior. Additionally, this research introduces an automated data 

acquisition approach using a datalogger, significantly enhancing precision 

and practicality compared to traditional manual methods involving a 

stopwatch and thermometer. 

Keywords: Newtonian Cooling, Machine Learning, Temperature Prediction, 

Random Forest, Gradient Boosting. 

1.  Introduction 

Newton's Law of Cooling, a cornerstone of thermodynamics, describes the rate at 

which an object's temperature changes in relation to the temperature differential 

between the object and its surroundings (Árpád et al., 2024). This principle, which 

assumes that the rate of heat transfer is proportional to the temperature difference, is 

widely employed in a variety of scientific and engineering domains (Li et al., 2012).  
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However, real-world scenarios frequently deviate from the idealized conditions of 

Newtonian cooling, necessitating the use of more sophisticated modeling techniques. 

The growing capabilities of machine learning provide an intriguing opportunity to 

improve the accuracy and adaptability of cooling analysis, enabling more precise 

predictions and efficient thermal management strategies (Svensen et al., 2024).  By 

using machine learning algorithms, intricate relationships and nonlinearities that are 

frequently overlooked by traditional methods can be captured, and computational fluid 

dynamics can be integrated to get high-fidelity data (Fukami et al., 2020). This opens 

the door to a more thorough understanding of cooling processes, which has 

ramifications for anything from the design of electronic devices to the optimization of 

industrial cooling systems (Kochkov et al., 2021).  We will explore the theoretical 

underpinnings of Newtonian cooling in this study, looking at its limitations and 

applicability in different situations.  We will also look at how machine learning models 

can be used to improve the precision and effectiveness of cooling analysis. 

Traditionally, the Newtonian cooling process has been studied using water cooling 

experiments, as is done in basic physics laboratories, where measuring cups with 

volumes of 100 ml, 250 ml, and 600 ml are filled with hot water. Temperature decrease 

in each measuring cup is read every 2 minutes, which can reduce accuracy and precision 

because time and temperature must be read simultaneously. The 2-minute time interval 

is also wide, potentially eliminating important data, especially at the beginning of the 

cooling process, where the temperature drops quickly. Due to the limited time allocated 

for practical work (generally 3 hours), the data obtained is less than optimal, which 

results in a less smooth temperature drop characteristic curve, and the value of the 

cooling coefficient obtained through the least square method is imprecise, making it 

difficult to validate Newton's Law of Cooling. 

This study distinguishes itself through the application of machine learning 

methodologies to water cooling experiments, an approach that necessitates a substantial 

volume of data. To this end, a datalogger is employed to capture time and temperature 

data, supplanting conventional manual readings. Current technological solutions, 

comprising Arduino microcontrollers, datalogger modules equipped with integrated 

RTC and SD cards, and DS18B20 waterproof temperature sensors, facilitate the 

periodic measurement of water temperature and the logging of data in CSV format to an 

SD card, as implemented herein. By integrating machine learning models, this research 

addresses the limitations in accuracy and resolution inherent in traditional cooling 

experiments, thereby yielding more precise and robust predictive tools for thermal 

management. 

2.  Methodology 

The methodology implemented in this investigation encompasses data collection, 

model selection, model training, and performance evaluation. The apparatus employed 

comprises three measuring glasses (100 ml, 250 ml, and 600 ml), each integrated with a 

waterproof temperature sensor DS18B20; a temperature sensor to measure the ambient 

temperature; an Arduino Uno microcontroller; and a datalogger module featuring an 
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integrated Real-Time Clock and Secure Digital card module. In the experimental setup, 

the temperature sensors are connected to the Arduino, along with the datalogger 

module. Subsequently, the temperature sensors are introduced into the measuring 

glasses containing hot water, and the Arduino code is executed to record temperature 

variations over time. Following data acquisition, the collected data is used to train a 

machine learning model, with meticulous attention to the selection of the model 

architecture, hyperparameters, and training algorithms. For training purposes, the 

elapsed time from the experiment's commencement serves as the feature, while the 

corresponding water temperature functions as the label. The data, stored in CSV format 

on the SD card, is then transferred to a computer for subsequent processing and 

analysis. The elapsed time since the experiment began is used as the input feature, and 

the corresponding water temperature is the target variable. 

The schematic of the data acquisition system, including the Arduino, temperature 

sensor, and SD card datalogger module are shown in Figure 1. The primary objective of 

this experimental setup is to collect high-fidelity temperature data over time, which will 

subsequently be used to train and validate machine learning models for predicting 

cooling behavior based on Newton's Law of Cooling (Loisel et al., 2021). 

 
Figure 1. Schematic of the Data Acquisition System 

The Arduino Uno is situated below the datalogger module. The DS18B20 sensors, 

represented as transistors in schematics, are housed in waterproof metal casings with 

attached cables for practical use, ensuring they are waterproof. A 4.7 kOhms resistor 

functions as a pull-up resistor, with the sensor's data output connected to digital pin 4. 

Three sensors are deployed to measure the water temperature in measuring glasseses 

containing varying water volumes, while the fourth sensor tracks the ambient room 

temperature, offering essential context for understanding the cooling dynamics. The 

incorporation of multiple temperature sensors, along with the SD card module's data 

logging capabilities, enables the development of a comprehensive dataset for training 

advanced machine learning algorithms. These algorithms can identify complex thermal 

patterns and forecast cooling trends across different experimental conditions. This 

meticulous arrangement guarantees the system's ability to precisely capture the thermal 

behavior of water samples, which is vital for training machine learning algorithms to 

accurately simulate the cooling process. The DS18B20 sensors, recognized for their 
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accuracy and affordability, are well-suited for this application, providing acceptable 

temperature measurement precision. The Arduino-based system, which integrates the 

DS18B20 temperature sensors and an SD card module for data logging, delivers a 

dependable platform for real-time temperature monitoring and data collection in water 

cooling experiments. 

3.  Results and Discussion 

The collected data, encompassing temperature readings from multiple sensors and 

varying water volumes, forms the empirical basis for developing and validating machine 

learning models to predict cooling behavior based on Newton's Law of Cooling. Figure 

2 shows the trend of the temperature readings from all three experimental setups, 

demonstrating a clear exponential decay consistent with Newton's Law of Cooling, 

while the ambient temperature remained relatively stable throughout the experimental 

duration. The initial rapid temperature drop is gradually reduced as the water 

temperature approaches ambient temperature, demonstrating the cooling process's 

expected asymptotic behavior. The graph also compares the behavior of temperatures in 

each volume, showing that different volumes have a small impact on cooling rates.  

 
Figure 2. Temperature Data Trend for all Three Volumes 

The initial data points were excluded to focus on the stabilized temperature data, 

ensuring accurate modeling of the cooling process. This exclusion of initial data points 

refines the dataset, allowing for a more accurate representation of the system's dynamic 

cooling behavior under steady-state conditions, which is crucial for robust model 

training. Further, this initial data exclusion helps in eliminating noise and transient 

effects that are not representative of the actual cooling process governed by Newton's 

Law. The data collected from these experiments can be used to validate theoretical 

models of heat transfer, which often rely on principles such as Fourier's law of heat 

conduction and the Stefan-Boltzmann law in addition to Newton's law of cooling. This 
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ensures that the analysis focuses on the well-defined cooling phase, thereby enhancing 

the precision and reliability of the machine learning models developed (Guo et al., 

2015). The collected data is divided into training and testing datasets to assess the 

machine learning model. The training set, which is larger, is used to teach the model, 

while the testing set evaluates its performance with new data to ensure the model can 

generalize effectively. 

A crucial component of this study involves the development and application of 

machine learning models to predict and analyze Newtonian cooling dynamics. These 

models offer a data-driven approach to understanding the complex relationships 

between temperature, time, and environmental conditions, surpassing the limitations of 

traditional analytical methods (Raad et al., 2019). It is clear from Figure 2 that the 

temperature data trend shows exponential decay so we can use machine learning models 

to predict those changes. Two model algorithms will be applied which are Gradient 

Boost Regression and Random Forest Regressor, while Linear Regression is obviously 

not applicable in this case. 

The procedures in using machine learning are collecting data, preprocessing, 

selecting a model, training, validation and parameter tuning, testing, and deployment. 

Machine learning methods have become indispensable tools in various engineering and 

scientific domains, offering robust capabilities for automated decision-making in 

complex systems (Bunyan et al., 2025). The selection of appropriate machine learning 

algorithms and the optimization of their parameters are critical steps in achieving high 

prediction accuracy and reliable performance (Zeng, 2024). 

Gradient Boosting Regression is an ensemble learning technique that constructs a 

predictive model through the sequential combination of multiple weak learners, 

typically decision trees (Sha et al., 2021) while Random Forest Regressor operates by 

constructing a multitude of decision trees during the training phase and outputting the 

average prediction of the individual trees (Zhang et al., 2025). The two models are 

programmed with python and using libraries such as pandas, numpy, matplotlib, and 

scikit-learn. The dataset is split into training and testing sets, with 80% of the data used 

for training and 20% reserved for testing, while the Root Mean Squared Error is used to 

evaluate the performance of the models. 

Figure 3 shows the visualization of the predicted values and experimental data for the 

Gradient Boosting Regression model, while Figure 4 shows the visualization of the 

predicted values and experimental data for the Random Forest Regression model. The 

visualization results demonstrate the predictive performance of both models, 

highlighting their ability to capture the underlying patterns in the temperature data. It 

appears that the Random Forest Regressor is more accurate in predicting temperature.  
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Figure 3. Comparison of Actual Versus Predicted Temperature using Gradient Boosting 

Regression Model 

 

 
Figure 4. Comparison of Actual Versus Predicted Temperature using the Random 

Forest Regression Model. 

The accuracy of the machine learning model is determined by the values of MAE 

and Root Mean Squared Error—the smaller the value, the more accurate the model (Già 

& Papurello, 2022)—and R2—the larger the value, the more accurate the model (Samadi 

et al., 2023). The results of the two models have been shown in Table 1. 
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Table 1. Testing Results of Gradient Boosting Regression and Random Forest 

Regression 

Metric Gradient Boosting Regression Random Forest Regression 

Mean Absolute Error 0.1346 0.0091 

Root Mean Squared Error 0.1868 0.0156 

R-squared 0.9998 1.0000 

 

Both models show good performance, but Random Forest Regression is better than 

Gradient Boosting Regression due to the lower values of error and the higher value of 

the R2 value. The superior performance of the Random Forest model might be attributed 

to its robustness against overfitting and ability to handle small datasets better than 

Gradient Boosting. Furthermore, potential experimental errors such as sensor delays or 

slight variations in environmental conditions may contribute to prediction errors. 

However, other studies suggest that Gradient Boosting typically exhibits superior 

prediction performance compared to Random Forest (Ahn et al., 2023). This is likely 

due to the amount of data used and the physics phenomena being studied. The choice of 

hyperparameters significantly influences the predictive performance of machine 

learning models, particularly in ensemble methods like Random Forest and Gradient 

Boosting (Parikh et al., 2019). Thus, the choice of specific parameters can substantially 

impact the model's performance (Feng et al., 2021).  

In the context of proving Newton's Law of Cooling, especially the form of the 

equation, which involves a cooling constant, cannot be determined by machine learning. 

Machine learning algorithms, including regression or classification, are designed to find 

patterns and relationships in data but cannot directly validate or prove the truth of a 

fundamental law of physics. To validate Newton's Law of Cooling, specifically the 

cooling constant, for the three water volumes examined, regression analysis was 

performed using Python with libraries like NumPy, pandas, and SciPy, as shown in 

Table 2. 

 

Table 2.  The cooling constant derived from the three different volumes of water 

Volume (ml) k (1/min) R2 (goodness of fit) 

100 1.60 × 10⁻² 0.56 

250 1.50 × 10⁻² 0.97 

600 1.24 × 10⁻² 0.99 

 

Knowing the cooling constant, k, allows for the calculation of an object's cooling 

rate, a task that can also be accomplished with the machine learning models previously 

discussed. The application of Newton's Law of Cooling in this study serves as an 

illustrative example of using artificial intelligence in experiments, particularly when an 

exponential trend is observed. In scenarios where the relationship between variables is 

intricate and lacks a straightforward mathematical representation, machine learning can 

be employed to address the problem effectively. The adoption of machine learning 

methodologies offers a paradigm shift in experimental design and optimization, 
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enabling researchers to navigate complex parameter spaces and uncover non-intuitive 

solutions (Barker et al., 2020). 

4.  Conclusion 

The testing and validation results indicate that machine learning models can 

effectively estimate experimental outcomes. However, physical constants, such as the 

cooling constant in Newton's Law of Cooling, must be determined through physical 

experiments and curve fitting. While machine learning models are unsuitable for 

validating or discovering physical laws, they can estimate physical properties. 

Integrating physics knowledge into deep learning models can enhance prediction 

accuracy and ensure physical consistency. This study demonstrates that using machine 

learning to estimate the temperature change of cooling water offers a quick method for 

obtaining temperature estimates. This approach saves time and resources compared to 

traditional numerical simulations or experimental studies. 

In addition, the application of machine learning methodologies in this study 

underscores the importance of data-driven approaches in scientific inquiry, where 

algorithms can automatically learn and extract relevant features from complex datasets. 

This integration not only enhances the accuracy and efficiency of predictive modeling 

but also facilitates the discovery of underlying patterns and relationships that may not 

be readily apparent through traditional analytical techniques (Brunton et al., 2020). The 

hybridization of physics-based models with machine learning algorithms offers a 

synergistic approach to addressing complex scientific problems, combining the 

interpretability and generalizability of physics-based models with the data-driven 

adaptability of machine learning (Pawar et al., 2021). Future studies could investigate 

the use of deep learning models such as neural networks, or hybrid models combining 

physical laws with machine learning to further enhance the accuracy and interpretability 

of predictions. 

This study has limitations, including the small dataset size and the specific conditions 

of the experiment that may limit generalization. Additionally, the environmental factors, 

such as humidity and air flow, were not controlled strictly, which may introduce 

variability in the results. 
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