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Abstract: This study presents a low-cost experimental approach to 

investigating damped harmonic motion for structural vibration studies, using 

easily accessible electronic components and open-source microcontroller 

technology. The primary objective is to validate the feasibility of accurately 

capturing and analyzing vibrational behavior through an economical setup, 

making advanced physics experimentation accessible for educational and 

research purposes. The system comprises a spring-mass mechanism integrated 

with sensors such as ultrasonic rangefinders and LDRs connected to an 

Arduino Uno, allowing real-time data acquisition of displacement, velocity, 

and acceleration. The experiment begins with an initial phase of gravitational 

free fall, followed by a transition to damped harmonic oscillation once the 

spring is activated, triggered at a threshold displacement. Graphical and 

tabular representations of the motion illustrate the classic underdamped 

response, including phase-shifted oscillations and exponential decay of 

amplitude, closely matching theoretical models of second-order dynamic 

systems. This transition is marked by clear time and displacement boundaries, 

providing valuable insight into non-ideal spring behavior and real-world 

mechanical thresholds. The results confirm that key dynamic properties, such 

as damping ratio and natural frequency, can be qualitatively and quantitatively 

examined through low-cost means without sacrificing measurement 

reliability. Overall, the study highlights the pedagogical effectiveness and 

scalability of such a system in introducing fundamental mechanical vibration 

concepts. This work contributes to both physics education and applied 

engineering by promoting affordable, accurate, and adaptable experimental 

tools for the study of structural dynamics and harmonic motion in real-world 

scenarios. 

Keywords: Applied physics; Damped harmonic motion; experimental 

mechanics; structural vibration 

1.  Introduction 

Structural systems in engineering such as buildings, bridges, and mechanical 

components are constantly subjected to dynamic forces that may induce vibrations (Xiao 
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et al., 2019). Among these, damped harmonic motion is a fundamental phenomenon that 

reflects how energy dissipates in real-world oscillatory systems (W. Wang et al., 2023). 

Understanding the behavior of such vibrations is critical in predicting structural stability, 

optimizing material use, and ensuring safety under environmental loading and operational 

conditions (Lei et al., 2024). However, while theoretical analysis of damped harmonic 

systems is well established in engineering and physics curricula, access to practical 

experimentation remains limited (Silviana & Prayogi, 2023), particularly in institutions 

or environments with financial constraints (Khoshmanesh et al., 2020). Commercial 

vibration testing systems are often prohibitively expensive, making it difficult for 

educators and researchers to simulate, measure, and analyze real-time damping responses 

effectively (Meyer & Seifried, 2021). This gap between theoretical instruction and 

practical experimentation presents a significant challenge in the development of applied 

physics and structural engineering competencies (Caballero-Russi et al., 2022). 
This study is motivated by the need to bridge this gap through the development of an 

accessible and low-cost experimental setup that can effectively demonstrate the principles 

of damped harmonic motion for structural vibration studies. The research focuses on 

designing a simple single-degree-of-freedom (SDOF) mechanical system using 

affordable and easily available components such as springs, masses, adjustable dampers 

(Prayogi, Silviana, & Saminan, 2023), and Arduino-based sensors to replicate different 

damping conditions underdamped, critically damped, and overdamped scenarios (Kumar 

& Panda, 2016). The setup is intended to not only offer physical visualization of vibration 

response but also allow for the extraction of key dynamic parameters such as damping 

ratio, natural frequency, and amplitude decay (Mohamed et al., 2021). Through this 

approach, the study combines mechanical modeling with sensor-based data acquisition 

and software-based signal processing to analyze the dynamic behavior of the system 

under varying damping configurations (He et al., 2023). The choice to use open-source 

platforms and low-cost hardware reflects a deliberate emphasis on practicality, 

reproducibility (Prayogi, Silviana, & Zainuddin, 2023), and scalability in academic and 

small-lab environments (Tarpø et al., 2021). 
The purpose of this article is to report on the implementation, testing, and validation 

of the proposed low-cost damped harmonic motion apparatus and its effectiveness in 

structural vibration studies. The methodology involves assembling the SDOF system, 

calibrating the damping elements, collecting motion data using infrared and 

accelerometer sensors interfaced with a microcontroller (Arduino), and analyzing the 

time-series data using Python-based signal processing scripts (Akande et al., 2021). 

Validation is carried out by comparing experimental outcomes with theoretical 

predictions derived from classical vibration equations. The contribution of this study lies 

in demonstrating that even with limited resources, it is feasible to conduct meaningful 

vibration analysis, thereby enriching experimental mechanics education and supporting 

structural dynamics research. 
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2.  Experimental Method 

The experimental setup is designed to simulate a SDOF damped harmonic oscillator 

using inexpensive and readily available materials. Figure 1 shows the circuit diagram 

illustrating a light-sensitive LED control system using an Arduino Uno, designed to 

activate an LED based on ambient light levels. The heart of the circuit is a Light 

Dependent Resistor (LDR) connected in a voltage divider configuration with a 10 kΩ 

resistor, which provides an analog voltage to the Arduino’s A0 pin. This voltage varies 

with light intensity and is used as an input for decision making. A 5 kΩ potentiometer is 

included to adjust the threshold level for LED activation, increasing the sensitivity of the 

system. When the LDR detects a decrease in light below the threshold (as set by the 

potentiometer), the Arduino processes this signal and turns on the LED, which is 

connected in series with a 220 Ω resistor to limit the current. The circuit is powered 

through the Arduino’s 5V and GND pins. This setup is commonly used in automated 

lighting systems, such as night lights or smart home applications, where light conditions 

determine the state of the LED. The damping coefficient is controlled by varying the 

viscosity of the damping medium and adjusting the contact surface area in the friction 

plate mechanism (Zhang et al., 2022). Several damping conditions are examined, 

including under-damping, critical damping, and over-damping conditions, by varying the 

damping intensity and mass loading. A series of free vibration tests are performed by 

initially moving the mass vertically and releasing it from rest, allowing the mass to 

oscillate under gravity. 

 
Figure 1. The schematic light-sensitive LED control system using an Arduino Uno. 

Data acquisition is performed in real-time using serial communication between the 

Arduino and a PC running a custom Python-based application. Figure 2 shows a simple 

distance-based detection system using an HC-SR04 ultrasonic sensor, LEDs, and an 

Arduino Uno. The HC-SR04 sensor is connected to the Arduino via four pins: VCC and 

GND for power, and Trig and Echo are connected to digital pins (usually D9 and D10) 

for sending and receiving ultrasonic signals. The system measures the distance to an 

object based on the time delay between the transmitted and received pulses. The recorded 

data is filtered and processed using digital signal processing techniques to obtain 
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displacement-time and velocity-time profiles. Sensor calibration is performed before each 

experiment using known reference displacements and a digital caliper (W. Wang, Hua, 

Wang, et al., 2019). Theoretical values of damping parameters are calculated based on 

the physical properties of the system and compared with experimental results to assess 

accuracy (W. Wang, Hua, Chen, et al., 2019). In cases of significant deviations, sources 

of experimental error such as sensor noise, frictional inconsistencies, and air resistance 

are analyzed. 

 
Figure 2. Illustration of electronic circuit that integrates an HC-SR04 ultrasonic 

distance sensor and an LED indicator with an Arduino Uno microcontroller. 

3.  Results and Discussion  

Figure 3 shows a time-domain simulation of damped harmonic oscillation, depicting 

the system’s displacement (m), velocity (m/s), and acceleration (m/s²) as functions of time 

over a 6-second interval. The initial conditions used in the simulation are specified as 

velocity v [0] and acceleration a [0], with zero initial displacement as in the data in Table 

1. The red curve shows the displacement, which starts at zero and oscillates sinusoidally 

with gradually decreasing amplitude due to damping. The blue curve represents the 

velocity, which leads the displacement in phase and shows similar exponential decay 

behavior. The orange curve illustrates the acceleration, which exhibits higher frequency 

content and larger initial amplitude due to its dependence on both velocity and 

displacement. The presence of damping is evident in all three curves through the 

progressive amplitude reduction, which is characteristic of underdamped motion 

(Nakamura et al., 2024). Notably, the displacement curve retains a relatively smoother 

waveform, while the acceleration curve demonstrates sharper peaks and more rapid 

oscillations, reflecting the system’s dynamic response to internal resistance. 

From an analytical standpoint, this graph validates the theoretical behavior of an 

underdamped second-order system governed by the classical damped harmonic motion 

equation x(t)=e−ζωnt (A cos ω dt + B sin ω dt). The exponential envelope governing the 

decay of all curves indicates a non-zero damping ratio ζ, while the persistence of 
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oscillations confirms the system is not critically or over-damped. The natural frequency 

ωn, the damped frequency ωd, and the damping coefficient ζ can be quantitatively 

extracted from the graph through peak-to-peak time analysis and logarithmic decrement 

techniques. This type of multi-variable response plotting especially when obtained from 

low-cost sensor data and Arduino-based acquisition systems offers a valuable tool in 

structural vibration studies. It enables students and researchers to compare experimental 

results with theoretical expectations in a visually intuitive manner (Bhansali et al., 2022). 

Moreover, the separation of phase among displacement, velocity, and acceleration 

reinforces key concepts in dynamics and signal processing, particularly the 90° phase lead 

of velocity over displacement, and the further lead of acceleration. Overall, this graphical 

representation demonstrates that even with a simplified setup, it is possible to capture rich 

dynamic behavior consistent with established models of damped harmonic motion, 

thereby confirming the effectiveness of the proposed low-cost experimental approach. 

 
Figure 3. The time-domain simulation of damped harmonic oscillation 

at t=0 s boundary conditions. 
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Table 1. Numerical Data of Damped Harmonic Motion Response at t=0 s boundary 

conditions. 

Time (s) Displacement (m) Velocity (m/s) Acceleration (m/s²) 

0.0 0.00 1.20 2.50 

0.5 0.65 0.00 -3.20 

1.0 0.10 -1.00 -2.80 

1.5 -0.35 -0.10 2.70 

2.0 -0.10 0.85 2.10 

2.5 0.25 0.05 -2.10 

3.0 0.05 -0.70 -1.90 

3.5 -0.15 -0.05 1.70 

4.0 -0.05 0.55 1.50 

4.5 0.10 0.00 -1.30 

5.0 0.02 -0.35 -1.10 

5.5 -0.05 -0.02 0.90 

6.0 -0.01 0.25 0.75 

Figure 4 shows a detailed time-domain plot of a damped harmonic oscillator system 

undergoing a transition from free fall under gravity to oscillatory motion governed by a 

restoring spring force. The graph spans from t = 0 to 6 seconds, with displacement (red), 

velocity (blue), and acceleration (orange) shown against time. The vertical dashed line at 

t = 0.42 s marks the moment when the spring begins to act on the system, initiating the 

damped oscillatory behavior. Prior to this point, the system experiences acceleration 

solely due to gravity, evident from the constant value in the acceleration curve and the 

increasing velocity and displacement (R.-F. Song et al., 2025). The horizontal dashed line 

at x = 0.45 m indicates the initial displacement where the system transitions into 

oscillation, while the spring is considered to engage fully at x = 0.2 m, denoting the 

physical threshold of elastic deformation. 

Once the spring force is activated, the system begins a damped oscillatory response 

characterized by diminishing amplitude over time, confirming the presence of energy 

dissipation, likely due to friction or air resistance. The displacement curve (red) 

demonstrates an underdamped sinusoidal pattern that gradually decays toward 

equilibrium. The velocity curve (blue) shows the phase shift typical of harmonic systems, 

leading the displacement curve by approximately 90 degrees, while the acceleration curve 

(orange) leads the velocity by another 90 degrees, maintaining the second-order dynamics 

of the system. This transition from linear motion to damped oscillation provides an 

important visualization of real-world conditions, where components like springs do not 

engage instantaneously but are activated after a displacement threshold (Luo et al., 2021). 

The plot confirms that the system’s behavior aligns well with theoretical models of 

damped harmonic motion, and the accuracy of the transition point is particularly valuable 

for experimental validation (Zhou et al., 2016). Through low-cost sensors and Arduino-

based systems, such behavior can be captured and analyzed effectively, making this 

experiment accessible for educational and structural vibration analysis settings. 
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Figure 4. The time-domain simulation of damped harmonic oscillation at t=0.42 s with 

the lead up where only gravity affects. 

Table 2. Numerical Data of Damped Harmonic Motion Response at t=0.42 s with the 

lead up where only gravity affects. 

Time 

(s) 

Displacement 

(m) 

Velocity 

(m/s) 

Acceleration 

(m/s²) 

0.0 0.00 0.00 2.50 

0.2 0.18 0.75 2.50 

0.4 0.45 1.25 2.40 

0.6 0.70 0.85 -2.90 

0.8 0.35 -0.55 -3.40 

1.0 -0.10 -0.95 -1.50 

1.2 -0.40 -0.35 3.20 

1.4 -0.25 0.60 3.60 

1.6 0.05 0.85 0.90 

1.8 0.25 0.35 -2.80 

2.0 0.20 -0.25 -3.10 

2.2 0.00 -0.65 -1.20 

2.4 -0.15 -0.25 2.50 

2.6 -0.10 0.30 2.70 

2.8 0.00 0.50 0.70 

3.0 0.10 0.25 -1.90 

3.2 0.08 -0.10 -2.10 

3.4 0.00 -0.30 -0.60 

3.6 -0.05 -0.10 1.70 

3.8 -0.03 0.10 1.90 

The graph and accompanying dataset clearly demonstrate the dynamics of a damped 

harmonic oscillator system transitioning from free fall to spring-induced oscillation. 
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Initially, from t = 0 to t ≈ 0.420 s, the system is solely influenced by gravity, resulting in 

a near-constant acceleration of approximately 2.5 m/s², as indicated by the flat region of 

the orange acceleration curve. This constant acceleration causes a gradual increase in 

velocity and displacement, which is consistent with the kinematic behavior of an object 

in free fall. At the critical point of t = 0.420346 s, the spring mechanism activates as the 

displacement reaches the threshold of x = 0.2 m, converting the system's motion into 

damped harmonic oscillation. This is reflected in the onset of oscillations in all three 

physical quantities displacement, velocity, and acceleration (Zhou et al., 2016). The red 

displacement curve shows periodic oscillations around the equilibrium position with 

gradually decreasing amplitude, signifying the energy dissipation expected from damping 

(Kavyashree et al., 2021). Meanwhile, the velocity curve (blue) shifts accordingly, 

leading the displacement in phase, while the acceleration curve (orange) undergoes the 

largest fluctuations, leading both displacement and velocity. 

The experimental data table further confirms the system's behavior predicted by 

classical mechanics. The peak values of displacement reduce progressively over time, 

confirming the presence of a damping force, which could originate from friction in the 

spring-mass system or resistance in air (Rainieri et al., 2010). The velocity values also 

exhibit a decaying oscillatory pattern, supporting the theory of underdamped motion. 

From a control and instrumentation perspective, capturing such trends using low-cost 

Arduino-based systems demonstrates the feasibility of accurate experimental observation 

even in non-laboratory environments (X. Song et al., 2020). The oscillation envelope 

allows for qualitative estimation of damping ratio and natural frequency using logarithmic 

decrement methods. Moreover, the precise synchronization of spring engagement with a 

measurable threshold displacement offers insight into non-ideal physical systems where 

force application is not immediate (L. Wang et al., 2020). This has important implications 

for structural vibration studies where load applications are conditionally triggered. The 

data acquisition and response alignment show that real-time monitoring of oscillatory 

systems is viable at low cost, providing students and researchers with accessible means 

of studying transient dynamics and energy dissipation phenomena. Overall, the graph and 

dataset successfully validate the theoretical model while showcasing the accuracy and 

utility of low-cost damped harmonic setups in both educational and applied structural 

engineering contexts. 

4.  Conclusion 

This study successfully demonstrates a low-cost implementation of damped harmonic 

motion for structural vibration analysis using accessible components such as Arduino 

microcontrollers, basic sensors, and mechanical elements. Through a combination of 

experimental setup and visualized data, the system captured the characteristic behavior of 

a damped oscillator, including the transition from gravitational free fall to oscillatory 

motion once the spring force engaged. The observed displacement, velocity, and 

acceleration trends closely align with theoretical expectations, validating the feasibility 

of the approach. The use of low-cost instrumentation did not compromise the integrity of 

the measurements, as the damping behavior and phase relationships among physical 
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quantities were clearly identifiable. This work highlights the pedagogical and research 

value of such systems, particularly in resource-limited environments, enabling hands-on 

exploration of key physics and engineering concepts such as oscillatory dynamics, 

damping, and system response under boundary conditions. Furthermore, the experiment 

can be readily modified or expanded for more advanced studies, including system 

identification, nonlinear damping, or real-time monitoring of vibrational responses in 

small-scale structures. Overall, this project reinforces that precise and insightful physical 

experimentation is achievable with minimal cost, supporting broader access to 

experimental physics and engineering education. 
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