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ABSTRACT 

In silico study by molecular docking, drug discovery, and virtual screening are useful for 
obtaining compounds with promising biological activity. The force fields energy minimization in 
molecular docking is the overall process to produce better geometry estimation and ligand-
receptor affinity. In this study, the divide and conquer algorithm based on the Mikowski matrix in 
MarvinSketch and the conjugate gradient algorithm of Open Babel were used to minimise 
acetone-based oxindole derivatives in indoleamine 2,3-dioxygenase 1 (IDO1). The results 
showed that the binding energy produced by MarvinSketch was generally better than the binding 
energy obtained with Open Babel. The visualization of molecular docking results indicated that 
the poses and hydrogen bonding, halogen bonding and π-π interactions are different between 
MarvinSketch, Open Babel, and no energy minimization. The results revealed that energy 
minimization affects the molecular docking results. 
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INTRODUCTION 

Molecular docking is a simulation of a 

protein (enzyme) and small molecules 

(ligands) interactions by the computational 

procedure. Molecular docking predicts the 

geometry and behaviour of ligands in the 

binding sites of target enzymes. Thus, this 

technique identifies ligands' correct 

orientations when bound to a protein and 

forms a stable complex [1,2]. The biological 

function and biochemical processes of the 

protein may be enhanced or inhibited by the 

interactions of the ligands in the supra-

molecular complex formed [3]. Based on the 

binding site of a protein, docking can be 

categorized as selective and blind dockings. 

The docking process can be performed as 

flexible ligand docking, rigid body docking, 

and flexible docking depend on the flexibility 

of the ligands and protein. 

The docking procedure consists of two 

main steps; sampling and scoring. The first 

step involves the generation and prediction of 

conformations of the ligands and their 

orientation in the protein's active site (known 

as pose). The scoring function as the second 

step evaluates the best pose and ranks the 
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ligands based on the binding affinity. The 

docking process should predict the best pose 

and the affinity of the ligands accurately [3,4]. 

The structure of ligands is usually optimized by 

energy minimization to achieve a conformation 

with the lowest energy that illustrates their 

stability. This optimization step is essential 

since the two-dimensional structure of the 

ligands, as drawn, are not energetically stable. 

The minimization is stopping when the local 

energy minimum is reached as the energy 

minimization, and the program is operated. 

However, this point is not representing the 

most stable conformer of the ligands. A global 

energy minimum depicting the most stable 

conformer can be obtained using suitable 

algorithms [5]. The force fields with the 

Steepest Descent algorithm are usually used 

for this purpose. The force field evaluates the 

atomic interactions, including van der Waals 

and electrostatic interactions, bond-stretching, 

bending, and torsion forces. The force field is 

determined based on experimental data and 

by the mechanical calculations based on the 

laws of physics [6]. 

In the present study, the energy 

minimization of 5,7-dichloro-3-hydroxy-3-(2-

oxopropyl)-2,3-dihydro-1H-indol-2-one (1) 

(Figure 1) was studied by using the divide and 

conquer algorithm based on the Mikowski 

matrix in MarvinSketch and with the conjugate 

gradient algorithm of Open Babel in 

indoleamine 2,3-dioxygenase 1 (IDO1). The 

results were compared to 1-methyl-L-

tryptophan (L-1MT), a standard inhibitor of 

IDO1. This research is expected to provide 

information about the effect of energy 

minimization in the molecular docking process. 

 
Figure 1. Structure of 1 and L-1MT 

 

METHODS  

This study was performed according to 

previously reported method [7]. Docking was 

started by IDO1 enzyme preparation and 

compound 1 and L-1MT optimization. The 

docking was then performed on 2D0T 

macromolecule followed by visualization. The 

steps of this study are described as follow: 

1. Macromolecule preparation 

The crystal structure of indoleamine 

2,3-dioxygenase 1 (PDB ID: 2D0T) with a 

resolution of 2.30 Å was chosen for this study 

[8]. PyMOL [9] was used for removing water 

molecules and 4-phenyl imidazole (PIM) co-

crystallized ligand followed by the addition of 

hydrogen atoms. 

2. Ligand preparation and optimization 

The two- and three-dimensional 

(2D/3D) structure of the ligands and their 

protonation steps were developed using 

MarvinSketch [9]. The MMFF94 energy 

minimization of the ligands was carried out by 

divide and conquer algorithm based on the 

Mikowski matrix in MarvinSketch [9] and by 

conjugate gradient algorithm in Open Babel 

[10] of PyRx [11] (200 steps and a minimum 

root mean square (RMS) gradient of 0.0001 

kcal/mol/Å). 
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3. Molecular docking 

Molecular docking was accomplished 

using AutoDock Vina [12] in PyRx [11]. The 

grid of the receptor was set in the area around 

the active site of the protein with sizes X 12 

Å, Y 12 Å, Z 12 Å and dimensions X 59.9 Å, 

Y 53.1 Å, Z 18.8 Å. 

 

RESULTS AND DISCUSSION 

1. Macromolecule preparation 

The 2D0T macromolecule at a resolution 

of 2.30 Å was retrieved from a worldwide 

protein data bank (wwPDB). This macro-

molecule consists of two identical chains, e.g. a 

large domain with 15 -helical chains and a 

small domain with 9 -helical chains and two -

chains [7]. The preparation of 2D0T was started 

by removing water molecules and extracting 

PIM co-crystallized ligand. It was reported that 

removing water molecules could increase the 

accuracy of docking by finding the most 

representative binding pose of ligand and 

protein [13]. The extraction of PIM co-

crystallized ligand aimed to provide the binding 

site, which was defined at a coordinate of X = 

59.9 Å, Y = 53.0 Å, and Z = 18.8 Å. 

2. Ligand preparation and optimization 

The two dimensional (2D) structure of 

ligand 1 with the addition of all hydrogen atoms 

was prepared using MarvinSketch. The three 

dimensional (3D) structure of the ligands was 

then achieved using the same program by 

generating coordinates from a temporary 

coordinate data set that meets the interatomic 

distance requirements according to the 

Minkowski approach [14]. The ligands 

optimization was performed by Merck 

molecular force field (MMFF94) energy 

minimization using MarvinSketch (a) and 

Open Babel (b) and compared to no 

minimization (c). The energy minimization 

process produces a conformational structure 

with the lowest total potential energy [5]. The 

minimization step of ligand 1 provided 1a, 1b, 

and 1c conformations with the energy of 

32.31, 35.72, and 51.74 kcal/mol, respectively. 

By portraying the minimization energy pattern 

of ligand 1, i.e. 1a < 1b < 1c, it is recognized 

that energy minimization affects the stability of 

ligand 1. The ligand 1a produced by 

MarvinSketch was the most stable 

conformation among others, 1b and 1c, as 

indicated by the smallest energy. This fact 

indicated the Steepest Descent algorithm of 

MMFF94 energy minimization fitted with the 

divide-and-conquer algorithm of MarvinSketch 

in the characterization of bonds, angles, 

atomic properties, and dihedral angels of 

ligand 1 [15,16]. These results also revealed 

that the divide-and-conquer algorithm works 

better than the conjugate gradient algorithm of 

Open Babel. It is well known that the divide-

and-conquer algorithm solves the problem by 

dividing it into several sub-problems that are 

similar to the actual problem but in a smaller 

size. The algorithm then resolves the sub-

problems recursively and then combines them 

to form a solution to the real problem [17]. 

Meanwhile, the Open Babel energy 

minimization based on conjugate gradient 

algorithm breaks the problem using an 

iterative method for linear equations in the 

form of Ax = b with a matrix A having 

symmetric positive definitive. In general, this 

algorithm clarifies a large system of linear 

equations and looks for the minimum point of 

https://doi.org/10.1002/jcc.21334
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a quadratic function of a vector so that the 

search process is expected to be faster [18]. 

3. Molecular docking 

Table 1. The binding affinity of ligands 1 and 
L-1MT on 2D0T 

Ligands Pose 
Binding affinity 

(kcal/mol) 

1a 
1 -1,5 
2 -0,7 
3 0,9 

1b 
1 0,3 
2 0,4 
3 0,8 

1c 
1 -1,0 
2 -0,8 
3 -0,7 

L-1MTa 
 

1 -2.3 
2 -2.0 
3 -0.9 
4 -0.8 
5 -0.3 
6 -0.1 
7 0.1 

L-1MTb 

1 -1.0 
2 -0.9 
3 -0.6 
4 -0.6 
5 -0.3 
6 1.5 
7 1.8 

L-1MTc 

1 -1.2 
2 -1.0 
3 -0.9 
4 -0.8 
5 0.0 
6 0.5 
7 1.2 

 

Molecular docking was performed at 

the binding site of PIM co-crystallized ligand at 

a coordinate of X = 59.9 Å, Y = 53.1 Å, and Z 

= 18.6 Å within the radius of 12 Å. The 

redocking procedure carried out the validation 

of the docking process. The results showed 

that the native ligand was successfully docked 

back onto its binding site. The alignment of the 

best pose of docked PIM with co-crystallized 

PIM ligand produced root-mean-square 

deviation (RMSD) values of 0.088 Å. 

Visualization of the docked PIM indicated 

interaction with ferrous ion (Fe2+) of HEM 

group as in the co-crystallized ligand. The 

interaction occurs via a metal coordination 

bond between the nitrogen atom at the 2-

position of the original ligand and the PIM 

anchored with theFe2+ of the HEM group within 

a distance of 2.13 Å [3] and 2.60 Å, 

respectively. Based on these results, the 

redocking procedure is acceptable and can be 

used for the next evaluation. 

Flexible ligand docking where the ligand 

is flexible and macromolecule are rigid were 

then evaluated using AutodockVina in Pyrx. 

Binding affinity determines the strength of 

ligand-receptor interaction. The more negative 

binding affinity, the stronger ligand-receptor 

interaction and the better molecular docking 

prediction [7]. As shown in Table 1, the binding 

affinity values from the best pose (pose 1) of 

each ligand 1a, 1b, and 1c were -1.5, 0.3, and 

-1.0 kcal/mol. Evaluation of this profile was 

then taken by looking at L-1MT for comparison. 

A similar pattern was coincidentally found for 

L-1MT. Minimization using MarvinSketch 

yielded the lowest binding affinity value (L-

1MTa -2.3 kcal/mol) L-1MTc and L-1MTb with 

the value of -1.2 kcal/mol and -1.0 kcal/mol, 

respectively. Based on the binding affinity, 

thus the strength order of ligan-receptor 

interactions was 1a > 1c > 1b and L-1MTa > 

L-1MTc > L-1MTb. Both ligand 1 and L-1MT 

showed a similar profile. These results 

showed that the strength of ligand-receptor 

interactions was also influenced by energy 

minimization. The ligand 1a resulted from 

minimization using MarvinSketch gave the 

lowest binding affinity and this result was 

linearly correlated with the value of 

minimization energy. In the minimization 

process, the MMFF94 force field adjusted the 

https://www.math.unipd.it/~alvise/AN_2018/LETTURE/hestenes-stiefel.pdf
https://doi.org/10.3389/fchem.2020.00343
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structures of ligands and yielded a different 

conformation from the initial before 

minimization. These conformations were then 

accommodated in the binding site, and the 

strength of the interactions was represented 

based on binding affinity. It is reported that 

binding affinity is also influenced by the energy 

of desolvation, conformation, interactions, and 

motions [19,20]. 

4. Interaction analysis 

The docking results were then 

visualized to determine the interactions and 

binding mode of the ligands-protein complex. 

These results were shown in Figure 2 and 

Table 2. Analysis of binding mode revealed 

that ligand 1 interacted with Serine-167 

residue and HEM group and the side chain of 

2D0T. Ligand 1a with the lowest binding 

affinity is bound to Serin-167 residue through 

the 5-chloro group (2.95 Å) by halogen-

bonding interaction. Interactions through 

halogen-bonding were also occurred between 

the 7-chloro group with the nitrogen atom of 

the HEM pyrrole ring (3.17 Å) and with another 

nitrogen atom from another HEM pyrrole ring 

(2.99 Å). Other interactions included halogen-

bonding through 5-chloro group with Tyrosine-

126 residue, π-π stacking interactions through 

benzene ring with Phenylalanine-163 residue 

and HEM group, also hydrophobic interactions 

with Tyrosine-126 and Phenylalanine-163 

residues. 

The binding mode analysis of ligand 1 

was then compared to L-1MT. This ligand 

showed a similar binding affinity profile as 

ligand 1 (Table 2). In general, L-1MT is bound 

to 2D0T via HEM group, Serine-167 and 

Glycine-262 residues (Figure 3). L-1MTa 

showed hydrogen-bonding interaction through 

nitrogen atom on indole side chain with 

Serine-167 (2.76 Å). This ligand is also bound 

to 2D0T by hydrogen-bonding interactions 

through oxygen and hydrogen atoms of the 

carboxyl group with Glycine-262 residue (2.86 

and 2.43 Å). Other hydrogen-bonding 

interactions also existed through the amino 

group with Cysteine-129 residue. The analysis 

also revealed that this ligand formed π-π 

stacking interactions through benzene rings 

with HEM and hydrophobic interactions with 

Cysteine-129 residue. 

 

Table 2. Interaction of ligands 1 and L-1MT to 2D0T macromolecule 

Ligands 
Interacting residues 

Hydrogen bonds Halogen bonds π-π stacking Hydrophobic 

1a - 
HEM 

Tyr-126 
Ser-167 

HEM 
Phe-163 

Tyr-126 
Phe-163 

1b - 
HEM 

Ser-167 
Ser-263 

HEM - 

1c 
Gly-262 
Ser-263 

Tyr-126 
Ser-167 
Ser-263 

HEM 
Tyr-126 

Tyr-126 

L-1MTa 
Cys-129 
Ser-167 
Gly-262 

- HEM Cys-129 

L-1MTb 
Cys-129 
Ser-167 
Gly-262 

- 
HEM 

Tyr-126 
Tyr-126 
Cys-129 

L-1MTc 
Ser-167 
Gly-262 

- 
HEM 

Tyr-126 
Tyr-126 

https://doi.org/10.1021/jm00026a001
https://doi.org/10.1002/wcms.1448
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The explanation mentioned above 

revealed that energy minimization affects the 

binding affinity and ligand-receptor 

interactions. The optimization of ligand 1 using 

MarvinSketch MMFF94 energy minimization 

produced the most stable ligand 1a with the 

smallest energy. MarvinSketch's algorithm 

supported the MMFF94 Steepest Descend 

algorithm [12-14]. Next, the ligands 1a and L-

1MTa generated the lowest binding affinity 

value than others. The energy minimization 

affected ligand-receptor interactions [16,17]. 

Moreover, the different energy minimization 

was also influenced ligand-protein interaction.

 

 

Figure 2. Interactions and binding mode of ligand 1 on 2D0T 

https://doi.org/10.1002/jcc.21334
https://doi.org/10.1016/j.theochem.2003.08.013
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Figure 3. Interactions and binding mode of ligand L-1MT on 2D0T 

 

CONCLUSION 

The MMFF94 is the prevalent energy 

minimization function in molecular docking. 

We studied the effect of energy minimization 

using MMFF94 by MarvinSketch and Open 

Babel, and without minimization, of ligand 1 

and L-1MT. The RMSD value and 

interactions analysis indicated that the 

redocking procedure was valid. This study 

revealed that minimization affects the total 
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potential energy, binding affinity, and ligand-

receptor interactions. MarvinSketch for 

energy minimization provided the best 

results. 
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