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ABSTRACT  

Cobalt oxide catalysts can be prepared by impregnation and calcined under different 
temperatures to obtained different species of cobalt oxide, namely CoO(OH), Co3O4, and CoO. 
Co3O4 was the most appropriate catalyst for decomposing NH4

+ with O3 in the presence of Cl– 
because of relatively high activity, 74%, and high selectivity for gas products, 88%, compared to 
CoO and CoO(OH). Cl– is necessary to proceed with the catalytic ozonation of NH4

+ since Cl– 
participate in the catalytic ozonation mechanism, while SO4

2– inhibited the process. During the 
catalytic ozonation of NH4

+, Co3O4 showed no deactivation rather than enhanced the catalytic 
performance after repeated used up to 100% of NH4

+ conversion. The Co3O4 can be regenerated 
by recalcining the catalyst under air at high temperatures. 
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ABSTRAK  

Katalis oksida kobalt dapat dibuat dengan cara impregnasi dan kalsinasi pada suhu yang 
berbeda untuk memperoleh berbagai spesies oksida kobalt, yaitu CoO(OH), Co3O4, dan CoO. 
Co3O4 merupakan  katalis yang paling tepat untuk mendekomposisi NH4

+ dengan O3  dengan 
adanya Cl–  karena aktivitasnya yang relatif tinggi, 74%, dan selektivitas yang tinggi untuk produk 
gas, 88%, dibandingkan dengan CoO dan  CoO(OH). Cl– diperlukan untuk memproses ozonasi 
katalitik NH4

+ karena  Cl– berpartisipasi dalam mekanisme ozonasi katalitik, sedangkan SO4
2– 

menghambat proses. Selama ozonasi katalitik NH4
+, Co3O4 tidak menunjukkan deaktivasi 

melainkan peningkatan performa katalitik setelah penggunaan berulang untuk konversi NH4
+ 

hingga 100%. Co3O4 dapat diregenerasi dengan rekalsinasi katalis pada suhu udara  tinggi. 
 

Kata Kunci: Spesies oksida kobalt, Co3O4, ozonasi katalitik NH4
+, stabilitas, regenerasi 

 
 
INTRODUCTION 

Water is the most widespread subs-

tance to be found in the natural environment 

and it plays vital roles in both environment 

and human lives. Since more than 97% water 

on the earth is sea water, fresh water is only 

3%. About 0.3% of fresh water is held in 

Pengaruh Suhu Kalsinasi pada Cobalt Oksida dan Kinerjanya untuk 
Ozonasi Katalitik NH4   dalam Air 
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rivers, lakes, and reservoirs, while the rest is 

stored in glaciers, permanent snow and 

groundwater aquifers [1]. 

One of the pollutants generated from 

disposal of industrial wastewater, household 

sewage discharge, excess fertilization and 

inappropriate disposal of livestock excreta is 

ammonia (NH3) and ammonium ion (NH4
+). 

Hereafter those are called ammonia nitrogen. 

Ammonia nitrogen can cause eutrophication 

and is toxic to fish and aquatic organisms [2, 

3] in addition to the offensive smell and 

potential carcinogenesis [4]. Furthermore, 

growth of algae and bacteria population in 

drinking water will rise caused by ammonia 

nitrogen [5], it should be removed to prevent 

environmental damage.  

Catalytic ozonation is one of advance 

oxidation process which is proven effective 

for treating refractory pollutants [6-8]. 

Catalytic ozonation gained a lot of attention 

due to its advantages, such as mild reaction 

conditions (ordinary temperature and pressure) 

and high effectiveness for organic pollutants 

degradation. In catalytic ozonation, even 

though ozone is one of strong oxidizer, it is 

not enough for total mineralization of the 

contaminant in the absence of catalyst [8-10]. 

Heterogeneous catalyst that usually applied 

for catalytic ozonation is metal oxide and 

cobalt oxide is one of them [9, 11-13].  

Cobalt oxide has great potential for 

catalysis [12, 14, 15], electrochemistry [16, 

17], sensing devices [18] and magnetic 

materials [19] to name a few. There are 

several cobalt oxides that showed significant 

performance to their potential, namely CoO, 

CoO2, Co2O3, CoO(OH) and Co3O4. However, 

mostly Co3O4 and CoO are used due to their 

stability [18, 20]. These cobalt oxides were 

synthesized using various methods such as 

hydrothermal [21], precipitation [22-24], 

impregnation [13], femtosecond laser ablation 

[16], solid-state [14] and core-shell [15]. 

In the previous study of catalytic 

ozonation of NH4
+, Ichikawa et al [13] have 

reported that Co3O4 showed moderate 

performance with high selectivity of gaseous 

gas than NO3
- as product. In the contrary, Liu 

[14] showed that Co3O4 and Co3O4-enhanced 

with surfactant had low activity and selectivity 

toward nitrogen gas when treating NH4
+ in 

water. In this study, the facile synthesis of 

cobalt oxide was conducted based on the 

calcination temperature only to form different 

cobalt oxide catalysts. The purpose of this study 

was to apply the catalytic ozonation for ammonia 

decomposition in water in the presence of cobalt 

oxides. In addition, the stability of Co3O4 as 

heterogeneous catalyst was also have been 

investigated by repeated use. 

 

EXPERIMENTAL 

1. Synthesis of catalysts 

The cobalt oxide catalysts were 

prepared by a precipitation method following 

the procedure used by Ichikawa et al [13]. 

Cobalt nitrate, Co(NO3)2. 6H2O, as source of 

cobalt was mixed with aqueous ammonia 

until the pH reached 8. The found precipitate 

was then filtered, washed with distilled water 

and dried at 100oC for two days, followed by 

calcination at 450oC for 3 h to obtain Co3O4. 

As for the CoO(OH) and CoO formation were 

conducted by calcined Co3O4 under N2 gas 

for 4 h with different temperatures, namely 

260 and 850oC, respectively.  
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2. Catalytic ozonation of NH4
+ 

The catalytic ozonation of NH4
+ was 

carried out in a batch reactor. The reaction 

solution containing NH4Cl (10 mmol/L) and 

catalyst was heated up to 60oC with stirring. 

After temperature reached to 60oC, O3/O2 

mixture was introduced into the reactor to 

start the reaction. The catalytic ozonation of 

NH4
+ was also conducted using (NH4)2SO4 

and (NH4)2CO3 under same reaction condition. 

The aqueous phase was analyzed using ion 

chromatographs to determine the concentra-

tions of NH4
+ and NO3

–. NO2
– was not formed 

at all under the reaction conditions.  

3. Repeated use of Co3O4 for catalytic 

ozonation of NH4
+ 

Catalytic ozonation of NH4
+ in water 

(NH4Cl, 10 mmol L–1) was carried out in a 

batch reactor at 60°C with vigorous stirring in 

a stream of O2/O3. Concentration of NH4
+ and 

NO3
– were determined by using ion 

chromatographs. After the reaction, the 

catalyst was separated by filtration, washed 

with distilled water and dried overnight at 

100°C. The spent catalyst was then reused 

for the catalytic ozonation of NH4
+ under the 

reaction conditions similar to those for the 

first run. The reactions were repeated for 

several times.   

 

RESULTS AND DISCUSSION 

Preparation of cobalt oxide plays 

important role to determine the cobalt oxide 

(CoOx) species. Among the parameters, 

catalyst precursor and calcination temperature 

are considered to be crucial [20, 25]. The 

calcination of Co(NO3)2 at 300-800oC leads to 

its decomposition to Co3O4, as shown in Eq.1 

3 Co(NO3)2 (H2O)6 → Co3O4 + 6 NO2 + O2 + 18 H2O  (1) 

 

Meanwhile, Co3O4 can also be obtained 

from oxidation and decomposition of Co(OH)2, 

as represented in Eq. 2-4 [25, 26]. 

 

Co(OH)2 NO3 + KOH → Co(OH)2 + KNO3    (2) 

4 Co(OH)2 + O2 + H2O → 4 Co(OH)3    (3) 

6 Co(OH)3 → 2 Co3O4 + 9 H2O + ½ O2    (4) 

 

In addition, heating Co3O4 under inert 

gas like N2 at temperature above 850oC will 

resulted the formation of CoO [20, 27, 28] and 

CoO(OH) when CoOx was thermally 

decomposed under 270oC [20, 21, 23]. The 

cobalt oxides collected for this study agrees 

with the theories mentioned. The cobalt 

nitrate calcined at 450 and 650oC are Co3O4 

species and Co3O4 which was further 

calcined at 260 and 850oC are CoO(OH) and 

CoO, respectively. Next, those cobalt oxide 

species were utilized for catalytic ozonation 

of NH4
+ in water.  

 

Fig 1. The performance of cobalt oxide 
catalyst for catalytic ozonation of NH4

+. 

(◼) conversion of NH4
+ and (◻) selectivity 

to gaseous product. Reaction parameter: 
NH4Cl, 10 mmol L-1; O3/O2 total flow 
rate, 100 cm3 min-1; T, 60oC; t, 6 h; 
catalyst, 0.10 g. 
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Figure 1. exhibits the performance of 

Co3O4, CoO and CoO(OH) based on the 

conversion of NH4
+ and selectivity to gaseous 

product. The activities of those three cobalt 

oxide species were different. Co3O4 showed 

highest conversion of NH4
+ at 74% and 

followed by CoO(OH) and CoO about 36 and 

23%, respectively. Co3O4 is consist of Co2+, 

Co3+ and O4
2-. The activity of Co3O4 is high 

likely because well-dispersed Co2+ species 

acted as active sites. It is also expected that 

redistribution of Co2+ and Co3+ in cobalt 

happened during ozonation [28]. Meanwhile, 

all three cobalt oxide species show similar 

trend in selectivity to gaseous product about 

85-90% of NH4
+. High selectivity was occurred 

because the surface density of NHx adsorbed 

is expected to be high compared to O* 

adsorbed on the surface of Co3O4 [13]. 

Therefore, it can be said that Co3O4 posses 

more active sites compared to CoO and 

CoO(OH).   

 

Fig 2. The performance of Co3O4 catalyst for 
catalytic ozonation of NH4

+ from different 

source of NH4
+. (◼) conversion of NH4

+ 

and (◻) selectivity to gaseous product. 

Reaction parameter: NH4
+, 10 mmol L-1; 

O3/O2 total flow rate, 100 cm3 min-1; T, 
60oC; t, 6 h; Co3O4, 0.10 g. 

 

The catalytic ozonation of NH4
+ over 

Co3O4 was also performed using different 

source of NH4
+, namely (NH4)2SO4 and 

(NH4)2CO3. In the absence of Cl–, the 

conversion of NH4
+ was low when (NH4)2CO3 

was used and no catalytic ozonation of NH4
+ 

occurred when (NH4)2SO4 applied, as shown 

in Figure 2. Thus, to clarify the role of Cl– on 

catalytic ozonation of NH4
+ over Co3O4, once 

again (NH4)2SO4 solution was used as the 

source of NH4
+ but this time Cl– was added 

into the reaction solution. This graph shows 

the relationship between Cl– concentration 

with the catalytic performance of Co3O4. As 

shown here, the higher the concentration of Cl–

, the higher the conversion of NH4
+ and so was 

the selectivity to gaseous product (Figure 3).  

 

Fig 3. The performance of Co3O4 catalyst for 
catalytic ozonation of NH4

+ in the presence 

of KCl. (●) conversion of NH4
+ and (○) 

selectivity to gaseous product. Reaction 
parameter: NH4

+, 10 mmol L-1; O3/O2 
total flow rate, 100 cm3 min-1; T, 60oC; t, 
6 h; Co3O4, 0.10 g. 
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the results from (NH4)2SO4 as NH4
+ source 

with NH4Cl, we can see that the catalytic 

performance of Co3O4 was a little lower for 

(NH4)2SO4, which suggests that SO4
2– 

inhibited the reaction. 

 

Fig 4. The performance of Co3O4 catalyst for 
catalytic ozonation of NH4

+ with repeated 

used and recalcination. (◻) conversion 

of NH4
+ and (●) selectivity to gaseous 

product. Reaction parameter: NH4
+, 10 

mmol L-1; O3/O2 total flow rate, 100 cm3 
min-1; T, 60oC; t, 6 h; Co3O4, 0.10 g. 
Recalcination: T, 450oC and t, 3 h.  

 

In the previous study [29] reported that 

conversion of NH4+ was 100% after repeated 

used of Co3O4 catalyst, due to the formation 

of Co–NHx functional group. This clearly 

showing that Co3O4 is an excellent catalyst 

since no deactivation happened. Deactivation 

of catalyst can be caused by sintering, 

fouling, poisoning or thermal degradation [30] 

and usually able to be generated for reuse in 

the same or related process [31].  In general, 

heterogeneous catalyst can be regenerated 

to regain the active site of the catalyst. Co3O4 

was washed with distilled water and dried 

overnight before being used for the next same 

procedure. The spent Co3O4 undergone 

recalcination after being used for three times 

at 450oC for 3 h (Figure 4). The recalcination 

of Co3O4 showed slightly better activity 

compared to fresh Co3O4. This is possible 

because exposing catalyst to oxygen at high 

temperature will make metal redispersed 

through gas phase and oxidation may offer a 

route to removal of poison on catalyst [31]. 

Nevertheless, to understand the real reason 

on the effect of recalcination toward the catalyst 

activity, further investigation is needed.  

 

CONCLUSIONS 

Co3O4 was the most appropriate 

catalyst for decomposing NH4
+ with O3 in the 

presence of Cl– because of relatively high 

activity and high selectivity for gas products 

compared to CoO and CoO(OH), due to high 

dispersion of the Co2+ and Co3+ active sites. 

Cl– is necessary to proceed the catalytic 

ozonation of NH4
+ since Cl– participate in the 

catalytic ozonation mechanism, while SO4
2– 

inhibited the process. During the catalytic 

ozonation of NH4
+, Co3O4 showed no 

deactivation rather than enhanced the 

catalytic performance after repeated used up 

to 100% of NH4
+ conversion. The Co3O4 can 

be regenerated by recalcining the catalyst 

under air at high temperature.  
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