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Smartphone-based digital image analysis (DIA) has emerged as an 
affordable and accessible method for chemical analysis, particularly in 
colorimetry. While most existing studies have focused on quantitative 
applications, this study explores a machine learning–assisted DIA 
approach for the qualitative classification of synthetic food dyes. Digital 
images of nine food dyes solutions (Carmoisine, Sunset Yellow, Allura 
Red, Ponceau 4R, Tartrazine, Fast Green FCF, Brilliant Blue FCF, 
Quinoline Yellow WS, and Indigo Carmine), were captured under both 
controlled (closed) and open lighting conditions using a smartphone 
camera. The images were subsequently processed to extract color 
values in different color spaces, namely RGB, normalized RGB (rgb), 
HSL, and CIELAB. These values served as input features for a k-nearest 
neighbors (KNN) classifier trained to identify the dye present in each 
solution. The KNN model performed well on model solutions, with at 
least 86% accuracy across all color spaces and lighting conditions. To 
assess practical applicability, the classifier was also tested on seven 
commercial food and health products. The results show that HSL color 
space yielded the highest classification accuracy in the commercial 
sample testing, across both lighting setups, with the open condition 
consistently producing better performance. These findings demonstrate 
the potential use of smartphone-based DIA combined with machine 
learning for low-cost, portable, and reliable solutions for qualitative 
colorimetric analysis. 
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INTRODUCTION 

 Colorimetry is an analytical technique 

commonly used for the qualitative and 

quantitative determination of substances 

based on color information [1].  Standard 

colorimetric practices rely on specialized 

instruments such as spectrophotometers or 

colorimeters for analysis [2]. However, these 

specialized instruments are often costly, non-

portable, and often require specially trained 

personnel to operate. As a result, recent 

trends have shifted in favor of more 

affordable and accessible analytical 

methods, with smartphone-based digital 

image analysis (DIA) gaining significant 

traction [3-6].  
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 Smartphone-based DIA typically 

involves capturing images of a colored 

substance using a smartphone camera, 

extracting the relevant color values from the 

images, then analyzing them to determine the 

substrate concentrations [6]. Modern 

smartphones are equipped with high 

resolution cameras and advanced 

computational abilities, which allows their use 

for field or onsite chemical analysis [7-9]. 

Applications of smartphone-based DIA in 

colorimetry include food spoilage monitoring 

[8, 9], heavy metal analysis in drinking water 

[10, 11], point-of-care diagnostics [12-15], 

and soil analysis for pH and organic content 

[16]. The smartphone DIA methods from the 

aforementioned studies were able to provide 

analytical results within a few seconds with 

accuracy achieved more than 90%. 

 Despite extensive research on 

smartphone colorimetry, most studies have 

focused on quantitative analysis, whereas 

applications in qualitative testing remain 

relatively limited [17]. However, qualitative 

analysis is equally important for rapid 

screening, such as detecting banned 

synthetic dyes, distinguishing between 

visually similar dyes like Tartrazine and 

Quinoline Yellow, or verifying label claims in 

commercial drinks without requiring precise 

concentration data.  

 Traditional colorimetric methods 

measure color intensity against a predefined 

color–analyte constant [18]. This optimizes 

them for tracking changes in substrate 

concentration based on color intensity, but 

not for classifying the substance type. For 

example, dyes like Allura Red and 

Carmoisine may produce similar color values 

at certain concentrations, making it difficult to 

distinguish them using conventional 

approaches. Additionally, color signal values 

are often dependent on substrate 

concentration, which limits their ability to 

identify specific compounds by color 

information alone [19]. Machine learning (ML) 

techniques can help overcome this limitation 

by learning multi-dimensional patterns in 

color space, enabling classification that 

remains robust across a range of 

concentrations. 

Machine learning (ML) has been 

increasingly integrated into the smartphone-

based DIA technique to improve the reliability 

and precision of the method [8, 20–22]. The 

ML models most commonly used in 

smartphone colorimetry are Support Vector 

Machines (SVM), Artificial Neural Network 

(ANN), and Convolutional Neural Network 

(CNN), with size of datasets typically around 

1200. Training the ML models on the image 

datasets can help compensate for the 

variations in lighting environment and camera 

setting [23]. Furthermore, deep learning 

networks can automate the feature extraction 

and classification processes, which could 

substantially improve the specificity and 

sensitivity of the colorimetric analysis [24, 

25].  

 In this study, we explore the utility of 

smartphone-based DIA for the qualitative 

identification of synthetic food dyes in liquid 

solutions, assisted by machine learning. This 

work is among the first to apply smartphone-

based DIA for synthetic food coloring 

analysis, combined with ML classification 

across different color spaces and lighting 

conditions. Digital images of nine food dye 
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solutions (including carmoisine, allura red, 

brilliant blue, and tartrazine), were captured 

under both controlled (closed) and open 

lighting conditions using a smartphone 

camera. These dyes were chosen for both 

their market prevalence in commercial food 

and beverage products, and their regulatory 

significance, since several of them have been 

re-evaluated for potential health risks.  

 The images of the dye solutions were 

analyzed to extract color values in four 

different color spaces, namely RGB, 

normalized RGB (rgb), HSL, and CIELAB. 

For food dye classification, the k-nearest 

neighbors (KNN) algorithm was employed, 

specifically chosen for its simplicity in data 

processing. Since the analyzed data consist 

primarily of three-dimensional color values, 

additional feature engineering or 

preprocessing was unnecessary. 

Consequently, more complex models, such 

as Support Vector Machines (SVM) or deep 

learning, were not employed to avoid 

excessive classification bias. Overall, this 

study demonstrates that ML-supported DIA 

can facilitate the qualitative analysis of food 

dyes in commercial products, providing a low-

cost, rapid, and on-site screening solution for 

real-world food safety applications. 

METHODS 

1. Materials 

Nine synthetic food dyes: Carmoisine 

(C, CI 14720, 94.5%), Sunset Yellow FCF 

(SY, CI 15985, 89.6%), Allura Red (AR, CI 

16035, 90.3%), Ponceau 4R (P, CI 16255, 

88.4%), Tartrazine (T, CI 19140, 90.9%), 

Fast Green FCF (FG, CI 42053, 92.2%), 

Brilliant Blue FCF (BB, CI 42090, 90.0%), 

Quinoline Yellow WS (QY, CI 47005, 72.1%), 

and Indigo Carmine (IC, CI 73015, 90.4%) 

were investigated in this study. The nine dyes 

were selected due to their prevalence in 

commercial food products. Industrial-grade 

dyes were used instead of analytical grade 

alternatives to better reflect real world 

conditions. All dyes were stored in a dark 

chemical cabinet at room temperature prior to 

use. 

Seven commercial products, labeled 

S1–S7, each containing one of the nine 

evaluated food dyes, were also used to 

validate the qualitative analysis across 

various color spaces. Details of these 

products are presented in Table 1. All 

commercial samples were purchased from 

local convenience stores in Jakarta, 

Indonesia. 

Table 1. Seven commercial samples (S1–S7) and their corresponding dye constituents. 

Sample Product Type Dye Constituent* 

S1 Mouthwash A Fast Green 

S2 Mouthwash B Fast Green 

S3 Mouthwash C Brilliant Blue 

S4 Blueberry Soda Brilliant Blue 

S5 Energy Drink Tartrazine 

S6 Cherry Soda Allura Red 

S7 Honey-Flavored Drink Quinoline Yellow 

*As stated in the product label. 
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The commercial samples used in this 

study were transparent liquid products which 

contain only one type of coloring and 

represent dye variants subject of this study. 

These products required minimal 

preprocessing and were selected for their 

suitability for direct analysis. 

2. Preparation of Standard Solutions 

and Samples 

To prepare the stock solutions of 

each dye, 100  mg of dye powder was 

accurately weighed using an analytical 

balance (Sartorius Entris 224i-1S) and 

dissolved in ultrapure water (Adrona B30 

HPLC system, Riga, Latvia) in a 100 mL 

volumetric flask (Iwaki, Japan), yielding a 

final concentration of approximately 

1000 mg/L. Five standard solutions for each 

dye, with the concentration range of  

approximately 5-50 mg/L, were prepared by 

pipetting appropriate volumes of the stock 

solution with a 1000 μL micropipette 

(Corning, New York) into separate 100 mL 

Grade A volumetric flasks (Iwaki, Japan), and 

then diluting to volume with ultrapure water. 

The concentrations of solutions were based 

on mass without purity adjustment.  

Commercial samples S4 and S6, 

which contained soda, were degassed before 

analysis to prevent interference with the color 

measurements. Degassing was carried out 

by heating the solution to 60°C and stirring for 

approximately 2–3 minutes until no bubbles 

were observed. The other commercial 

samples required no prior treatment and were 

analyzed directly. 

3. Data Collection 

Each standard and commercial 

sample solution was placed in a 1.5 mL 

polystyrene cuvette (Kartell, Italy) with a 10 

mm path length for digital image analysis 

(DIA). The cuvette was positioned inside a 

Puluz PU5060 photo box (40 × 40 × 40 cm) 

with a white background and illuminated by 

two 30W, 5500K LED light strips. The lighting 

was adjusted to a uniform intensity of 500 ± 5 

lux using an AS803 lux meter to ensure 

consistent illumination conditions. 

Images taken in JPG format were 

captured using a smartphone (OPPO F11; 48 

MP camera, f/1.8 aperture, wide-angle lens, 

1/2.0" sensor size, 0.8 µm pixel size) 

positioned 30 cm from the cuvette. The 

camera operated with automatic settings and 

no flash. Five images for every concentration 

of the dye standard standards were taken, 

thus producing a balanced dataset across all 

variants of food dyes. The experimental setup 

followed the procedure described in a 

previous study [26]. In this work, the 

experiments were conducted under two 

different setups, namely closed (Figure 1a) 

and open lighting conditions (Figure 1b). The 

open setup allowed ambient environmental 

light to enter, introducing lighting noise into 

the measurements. Data from both setups 

were used to evaluate the sensitivity and 

utility of the DIA measurements. 

https://jurnal.uns.ac.id/jkpk/article/view/72928/40549
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a. b. 

Figure 1. (a) Open and (b) closed setups for the DIA measurements 

A total of 1368 images were 

collected: 1228 images of standard solutions 

(comprising 9 different dyes, 5 concentration 

levels, triplicate sample solutions, 4-5 images 

per sample, and 2 lighting setups) and 140 

images of commercial samples (comprising 7 

product samples, duplicate sample solutions, 

5 images per sample, and 2 lighting setups). 

Images of the standard solutions were used 

to construct the training and testing datasets 

for the machine learning models, whereas 

images of each commercial sample were 

averaged and directly analyzed for 

classification. All images were transferred to 

a computer, and the average red, green, and 

blue (RGB) values were extracted from a 

region of interest (ROI) of approximately 

1000 pixels using Adobe Photoshop CS6. 

The ROI for each picture was taken from the 

center of the cuvette. 

4. Computational  

4.1. Color Space Models 

Color is an important descriptor in 

image analysis, and selecting an appropriate 

color space is necessary for accurate image 

representation. The effectiveness of many 

image processing algorithms often depends 

on the choice of a suitable color space [27].  

In this study, RGB values obtained 

from digital images were transformed into 

other color spaces, namely normalized RGB 

(rgb), HSL, and CIELAB. These 

transformations were performed using 

equations previously described by Chavolla 

et al. [28]. Transformation formulas are 

provided in Section A of the Supplementary 

Material. 

Normalized RGB (rgb) is a variant of 

RGB color space, first developed for the 

purpose of reducing color effects from lighting 

changes. This color space expresses the 

proportion of red, green, and blue in an object 

to a total of 100%. This color space is capable 

of minimizing color variations caused by 

shadow or irregular lighting intensity, but this 

effect may result in a loss of contrast [28]. 

HSL color space (Hue, Saturation, 

Lightness) uses a cylindrical coordinate 

system and separates the color gamut into 

more visually intuitive dimensions. CIELAB 

consists of lightness channel (L) and two 

https://doi.org/10.2174/2666255814666210308152108
https://doi.org/10.1007/978-3-319-63754-9_1
https://doi.org/10.1007/978-3-319-63754-9_1
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chromatic channels (a* and b*). This color 

space represents a wider range of colors than 

the RGB space and is typically used to 

enhance and analyze color images [28]. 

The RGB color model parameters for 

all images taken in this study are made 

publicly available as an open access 

resource on Kaggle [29]. 

4.2. KNN Classification 

The k-nearest neighbors (KNN) 

algorithm was utilized to classify the food 

dyes based on their color features. KNN is a 

non-parametric, instance-based learning 

algorithm that assigns a label to a test sample 

by identifying the most frequent class among 

its k nearest neighbors in the training set. In 

this study, the number of neighbors (k) was 

set to 5, and the euclidean distance metric 

was used. These parameters were 

heuristically selected to consider a balance 

between bias and variance. 

Figure 2 illustrates the working 

principle of the k-nearest neighbors (KNN) 

algorithm within a two-dimensional feature 

space. In this example, two classes of 

training data are shown, namely blue circles 

(⏺) and orange crosses (⛌). A purple triangle 

(▲) denotes a new, unlabeled test instance. 

To classify this point, the algorithm identifies 

its five nearest neighbors, indicated by the 

points within the dashed circle. Among these 

neighbors, three belong to the blue circle 

class and two to the orange cross class. As 

the majority class is the blue circle, the test 

instance is accordingly assigned to that class.

 

Figure 2. Visualization of the KNN (k=5) algorithm. 

 

The dataset was subsequently 

randomly partitioned (using random seed 

103) into training and testing subsets using 

an 80:20 split ratio, to ensure robust model 

training and unbiased evaluation. This means 

that 80% of the samples were used to train 

the classification model, while the remaining 

data were reserved for evaluating its 

performance. Since the dataset contains 

generally balanced numbers of instances 

among all dye labels, the uniformly random 

train-test split would provide each data 

partition with all possible dye labels with high 

probability. 

Moreover, separate KNN classifiers 

were trained and tested for each combination 

of color space representation and sampling 

lighting conditions (open and closed setups) 

to evaluate how both aspects influence 

classification accuracy. All computations and 

https://doi.org/10.1007/978-3-319-63754-9_1
https://doi.org/10.34740/KAGGLE/DSV/10386234
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modeling procedures were carried out using 

the scikit learn library version 1.5.1 [30] in 

Python 3.12.3.  

The performance of the KNN 

classifiers was evaluated using standard 

classification metrics, namely accuracy and 

F1-score. Accuracy metric measures the 

proportion of correctly classified instances. 

Meanwhile, F1-score measures the harmonic 

mean of precision (the proportion of true 

positive predictions among all predicted 

positives) and recall (the proportion of true 

positive predictions among all actual 

positives). The latter metric is particularly 

useful for further understanding of each 

class’s performance. These metric values 

range from 0% to 100%, with values closer to 

100% indicating better classification 

performance. All metrics were calculated in 

this study for each food dye in every color 

space representation and lighting sampling 

condition, to facilitate comparative analysis 

and to determine the most robust color model 

for food dye classification. 

Moreover, we provide a confusion 

matrix for each classification model in the 

Supplementary Material (Section B) to further 

assess misclassification. A confusion matrix 

is a tabular representation that compares the 

actual class labels with the predicted labels 

generated by a model. Rows correspond to 

the true classes, while columns correspond to 

the predicted classes, allowing clear 

identification of both correct predictions and 

misclassifications. This makes the confusion 

matrix a valuable tool for evaluating model 

performance, as it reveals not only overall 

accuracy but also specific error patterns, 

such as which classes are most frequently 

confused 

RESULT AND DISCUSSION 

1. Classification Results 

The performance of the k-nearest 

neighbors (KNN) classifier was evaluated 

across all color spaces, namely RGB, rgb, 

HSL, and CIELAB, using model standard 

solutions containing food dyes. The overall 

classification accuracy for both training and 

testing datasets are summarized in Table 2.  

Across all color spaces, the KNN 

model successfully achieved strong 

classification results, with a minimum 

accuracy of 86% across all color spaces and 

lighting conditions. This high accuracy is 

likely due to the simplicity of the model 

sample solutions, which contain no interfering 

constituents. As shown in Table 2, the test 

accuracy is slightly lower than the training 

accuracy, as the model encounters new color 

values in the test set, which are previously 

unseen during training. The most notable 

decrease in accuracy was observed in the 

RGB color space under the closed lighting 

condition, decreasing from 98.84% on the 

training set to 88.89% on the test set. Further, 

a simple one-sided paired t-test is conducted 

to provide statistical justification using eight 

pairs of train-test accuracy values among the 

four-color spaces and two lighting conditions. 

As the test yields a p-value of 0.9848, this 

suggests that there is no statistically 

significant decrease between the models’ 

performance on the training and test dataset. 

Hence, this considerably negligible 

performance drop between training and test 

https://www.researchgate.net/publication/51969319_Scikit-learn_Machine_Learning_in_Python
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dataset could affirm that the model avoids 

both overfitting and underfitting issues.

Table 2.  Training and test classification accuracy on different color spaces and lighting 

conditions (closed and open setups). 

Color Space Training Dataset Accuracy Test Dataset Accuracy 

Closed Open Closed Open 

CIELAB 0.9977 0.9982 0.9444 0.9928 

HSL 0.9536 0.9365 0.8611 0.9565 

RGB 0.9884 0.9927 0.8889 0.9710 

rgb 0.9884 0.9964 0.9167 0.9855 

A comparison of test results between 

two different lighting setups in Table 2 shows 

that images analyzed under the open setup 

consistently resulted in higher classification 

accuracy across all color spaces (t-test, p = 

0.02354). This comparison indicates that 

ambient lighting conditions support the 

model’s ability to generalize, likely due to 

increased variability in training data (see 

section C in Supplementary Material). This 

suggests that the open setup is more suitable 

for dye classification analysis. The presence 

of lighting noise in the open setup may have 

exposed the model to a wider range of 

conditions, leading to improving its 

generalization and robustness in 

classification. 

Analyzing metrics of F1-scores 

(Table 3) offers useful insights into class-

specific food dye performance. As shown in 

Table 3, all dyes show high macro average 

F1-scores across all color spaces (i.e. above 

90%) when analyzed in open setups. This 

indicates that the classification model can 

successfully distinguish between the dyes in 

these model solutions. However, the macro 

average F1-scores of dyes obtained under 

the closed setup indicate that some dyes are 

relatively more difficult to differentiate. 

Specifically, Allura Red (AR), Brilliant Blue 

(BB), and Fast Green (FG) show average F1-

score below 90%. In addition, examination of 

the confusion matrices (see in Section B of 

the Supplementary Material) further 

highlights the specific challenges faced by 

the classifiers. Among all dyes, Brilliant Blue 

(BB) and Fast Green (FG) consistently 

emerge as the most difficult to distinguish, 

with many models frequently interchanging 

prediction results between these two classes. 

This suggests a high degree of visual 

similarity between their color profiles, leading 

to systematic misclassifications. A smaller 

number of errors were also observed for 

Allura Red (AR), although these occurred 

less frequently. In contrast, Carmoisine (C) 

and Quinoline Yellow (QY) achieved perfect 

F1-scores across all conditions, implying 

highly reliable classification. 

 

 

 



 JKPK (Jurnal Kimia dan Pendidikan Kimia), Vol. 10, No. 2, 2025,  pp. 309-322         317 

  

Table 3. F-1 score for each dye class in the KNN classification. 

Color 

Space 
Setup 

Dye label 

AR BB C FG IC P QY SY T 

Macro 

Average 

CIELAB 
Closed 1.00 0.73 1.00 0.84 1.00 1.00 1.00 1.00 1.00 0.95 

Open  1.00 0.96 1.00 0.97 1.00 1.00 1.00 1.00 1.00 0.99 

HSL 
Closed 0.54 0.87 1.00 0.92 0.67 1.00 1.00 1.00 1.00 0.89 

Open  0.89 1.00 1.00 1.00 0.89 0.92 1.00 0.94 1.00 0.96 

RGB 
Closed 1.00 0.56 1.00 0.68 1.00 1.00 1.00 1.00 0.82 0.90 

Open  0.96 0.89 1.00 0.89 0.96 1.00 1.00 1.00 1.00 0.97 

rgb 
Closed 0.97 0.67 1.00 0.78 0.96 1.00 1.00 1.00 1.00 0.93 

Open  0.93 1.00 1.00 1.00 0.92 1.00 1.00 1.00 1.00 0.98 

Macro 

Average 

Closed 0.88 0.70 1.00 0.81 0.91 1.00 1.00 1.00 0.95 0.92 

Open  0.95 0.96 1.00 0.96 0.94 0.98 1.00 0.98 1.00 0.98 

 

2. Classification of Commercial 

Samples 

To evaluate the utility of the DIA-

based classification model in more complex 

settings, seven commercial food and health 

products (S1–S7) were analyzed. Digital 

images of the sample solutions were taken 

under two lighting conditions (open and 

closed setups). The sample images are 

provided in Figure 3. Subsequently, these 

images were directly analyzed using four 

color spaces (RGB, rgb, HSL, and CIELAB), 

to determine the most suitable representation 

for accurate qualitative dye identification. It is 

important to note that these samples are 

compositionally richer than the previous 

model solutions, due to the presence of 

additional constituents. Furthermore, the 

dyes concentrations in these commercial 

samples may differ from or fall outside the 

concentration range of dyes used in the 

training classification models. 

 
Figure 3. Commercial sample images measured under open and closed setups in the DIA 

measurements. 

A summary of the classification 

results is presented in Table 4. As shown in 

Table 4, applying the KNN method to 

commercial samples resulted in lower 

accuracy than when used on model solution 

samples. This is likely influenced by the 

presence of other constituents, such as 

sugar, acids, and artificial flavouring, that 

might interfere with colorimetric 

measurement [5, 31].

 

https://link.springer.com/article/10.1007/s12161-021-02059-4
https://doi.org/10.1016/j.foodchem.2024.140333


318 Y. Tjandra et al, Smartphone-Based Digital Image ........... 

 

 

Table 4. Classification performance of RGB, rgb, HSL, and CIELAB color spaces on commercial 

products. 

Sample* Dye 
Constituent 

Setup Correct Prediction 

RGB rgb HSL CIELAB 

S1 Fast Green Closed   ✓  

S2 Fast Green Closed        ✓  

S3 Brilliant Blue Closed ✓ ✓ ✓ ✓ 

S4 Brilliant Blue Closed     

S5 Tartrazine Closed ✓  ✓ ✓ 

S6 Allura Red Closed     

S7 Quinoline 
Yellow 

Closed 
✓ ✓ ✓ ✓ 

   42.9% 28.6% 71.5% 42.9% 

S1 Fast Green Open   ✓  

S2 Fast Green Open   ✓ ✓ 

S3 Brilliant Blue Open ✓ ✓ ✓ ✓ 

S4 Brilliant Blue Open ✓ ✓  ✓ 

S5 Tartrazine Open ✓ ✓ ✓ ✓ 

S6 Allura Red Open   ✓  

S7 Quinoline 
Yellow 

Open 
✓ ✓ ✓ ✓ 

   57.1% 57.1% 85.7% 71.5% 

 

Among the color spaces explored, 

the HSL color space achieved the most 

robust classification performance and could 

outperform other color spaces. It successfully 

identified the dye constituents in five out of 

seven samples (71.4%) under the closed 

setup, and in six out of seven samples 

(85.7%) under the open setup.  

Two factors may account for HSL's 

superior performance. First, HSL color space 

effectively decouples color information (Hue) 

from brightness and saturation, which helps 

to minimize interference from lighting 

variability [32]. Secondly, its cylindrical 

representation provides clearer boundaries 

between color classes, facilitating better dye 

color classification by the KNN algorithm [28]. 

However, this explanation should be 

regarded as qualitative and limited by the lack 

of quantitative justification. 

Similar to the results of the previous 

standard model solution testing (Section 4.1), 

the open setup consistently achieved better 

classification results than the closed setup. 

This may be attributed to the broader 

histogram RGB channel (see in Section C in 

Supplementary Material) and the smartphone 

camera’s automatic settings (i,e., white 

balance, ISO). Such conditions may better 

align with the variability encountered during 

training, improving generalization. In 

contrast, the uniformity of the closed setup 

limits variability, making the model more 

sensitive to deviations and requiring stricter 

conditions to maintain classification 

performance. 

https://doi.org/10.18280/ts.380504
https://doi.org/10.1007/978-3-319-63754-9_1
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In general, this study underscores 

the utility of the DIA approach combined with 

machine learning for qualitative classification 

of food dyes. These results highlight the 

method’s potential used in routine quality 

control and regulatory monitoring, where 

environmental variability is unavoidable. The 

demonstrated robustness of the HSL color 

space and the open setup further supports 

the applicability of smartphone-based image 

analysis in low resource and field-based 

settings. 

3. Challenges and Opportunities of 

DIA 

This study demonstrates that the 

application of smartphone-based digital 

image analysis (DIA) in combination with 

machine learning algorithms supports its use 

for the qualitative classification of food dyes 

in transparent liquid samples. This technique 

shows promise for implementation in limited 

resource environments, such as small 

laboratories. The portability of this approach 

can support onsite applications, including 

food quality monitoring and regulatory 

inspections. In educational settings, the 

affordability and accessibility of the 

smartphone-based DIA facilitates learners to 

engage with colorimetry techniques. 

Despite the above-mentioned 

advantages, the DIA model still poses several 

challenges. First, the current approach was 

validated strictly using relatively simple 

solutions containing only a single type of dye. 

However, commercial products often contain 

more than one type of dye. Furthermore, food 

and health products may contain complex 

constituents such as proteins, acids, or 

alcohols, which may interact with the food 

dye, that could alter its color properties. This 

led to lower classification accuracy compared 

to when the approach was applied to 

standard solutions. 

To mitigate these limitations, future 

work should expand training data beyond 

single-dye standard solutions to include 

samples that reflect real commercial 

products, including mixtures of multiple dyes, 

and a wide range of pH, alcohol, and protein 

contents. Additionally, standardized sample 

preparation, such as buffering, controlled 

dilution, or inclusion of internal standards, 

can minimize matrix effects from other 

constituents. It is also beneficial to explore 

the influence of varying smartphone 

hardware and software specifications on 

classification performance, as such factors 

could affect consistency and reliability in real-

world applications.  

Nevertheless, the result of this study 

can provide a foundational step toward 

reliable and low-cost colorimetric analysis 

using smartphones. Future research on 

smartphone-based DIA can focus on the 

development of machine learning models for 

simultaneous quantitative and qualitative 

analysis of analytes. With this development, 

the machine learning-assisted DIA approach 

has potential for wider use across fields such 

as food science, healthcare, and 

environmental monitoring. 

CONCLUSION 

This study demonstrates the 

qualitative classification of food dyes using 

smartphone-based digital image analysis 

(DIA) with the k-nearest neighbors (KNN) 
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algorithm. The open lighting setup 

consistently produced higher classification 

accuracy, suggesting that ambient lighting 

improves the model’s generalizability. The 

KNN model performed well on model 

solutions, with at least 86% accuracy across 

all color spaces and lighting conditions. 

Among the color spaces, HSL showed the 

best performance on commercial samples 

because it separates color components into 

segments that are more intuitive for 

qualitative classification. The results highlight 

that both color space selection and lighting 

conditions are essential factors and could 

significantly affect classification performance. 

These findings also show that the 

machine learning-assisted DIA is a practical 

and affordable method for colorimetric 

analysis, especially in settings with limited 

resources like small laboratories, field testing 

sites, or classrooms. With further 

development, this method could potentially 

become a simple and reliable tool for broader 

analysis in areas such as food science, 

healthcare, and environmental monitoring. 
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