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Scientific reasoning in chemistry involves the ability to apply conceptual 
knowledge in problem-solving, as well as to evaluate issues within 
broader social, ethical, and environmental contexts. However, 
conventional assessments often fail to capture this multidimensionality 
by reducing performance to a single final score. This study uses an 
integrated learning analytics approach to analyze students’ reasoning 
performance across two core domains of chemistry learning—applied 
reasoning and socio-chemical reasoning. A quantitative descriptive 
design was employed, involving 56 pre-service chemistry teachers who 
completed four open-ended essay questions, two in each reasoning 
domain. Student responses were scored using an analytical rubric 
assessing conceptual accuracy, logical coherence, and justification 
relevance. Data were analyzed using single-domain and 
multicomponent strategies, including quadrant profiling, trajectory 
mapping, clustering, and distribution analysis. Visual tools such as radar 
charts, spaghetti plots, contour density plots, and alluvial diagrams were 
used to depict students’ reasoning profiles. Results revealed that most 
students demonstrated moderate reasoning abilities, although notable 
inconsistencies were observed between the domains. Individual 
trajectories exhibited non-linear variations, highlighting diverse cognitive 
patterns. Clustering and heatmaps indicated distinct learner segments, 
while alluvial diagrams illustrated transitions between reasoning levels 
across domains. These findings suggest that students’ reasoning 
abilities are varied and dynamic. It is concluded that chemistry reasoning 
is multidimensional and should be assessed through integrated, data-
driven methods. The study recommends the adoption of formative, 
analytics-supported assessments to inform differentiated instruction and 
promote deeper conceptual and ethical engagement in chemistry 
education. 
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INTRODUCTION 

Scientific reasoning is a fundamental 

component of science education, particularly 

in chemistry learning, as it plays a crucial role 

in fostering deep conceptual understanding 

and supporting evidence-based decision-

making [1], [2]. In modern educational 

settings, students are expected not only to 

master chemical concepts symbolically but 

also to apply their knowledge meaningfully in 

real-world contexts that are socially and 

environmentally relevant [3]-[5]. 
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Consequently, higher-order thinking skills 

(HOTS), such as conceptual reasoning and 

scientific justification, have become central to 

curriculum and assessment reforms both 

nationally and internationally [6], [7]. Despite 

this, many existing studies have examined 

reasoning in a fragmented and one-

dimensional manner, neglecting that 

students often reason simultaneously across 

multiple domains by integrating macroscopic, 

microscopic, and symbolic representations in 

building chemical understanding [8], [9]. This 

highlights the need for a more holistic 

approach to chemistry assessment and 

instruction that evaluates outcomes and 

fosters analytical, reflective, and contextually 

grounded thinking through laboratory 

practices and problem-based learning 

experiences [10], [11]. 

In practice, students often 

demonstrate inconsistent performance in 

applied and sociochemical reasoning. Many 

students excel in procedural or symbolic 

tasks but struggle when required to engage 

with ethical, environmental, or societal 

dimensions of chemical issues [12], [13]. 

Standard assessments rely heavily on 

aggregated final scores, offering limited 

insight into students’ performance patterns 

across different question types or reasoning 

domains [14]. As a result, overly generalised 

analyses fail to capture the heterogeneity of 

students' reasoning trajectories and the 

nuanced interconnections between cognitive 

domains [15], [16]. This challenges teachers 

who must design pedagogical interventions 

responsive to each student’s cognitive profile. 

Accordingly, there is an urgent need for 

integrated and data-informed assessment 

models that map cross-domain reasoning 

performance and offer constructive formative 

feedback. Instruction that includes real-world 

contexts, social reflection, and 

multidimensional reasoning is more effective 

in supporting students’ robust scientific 

reasoning skills development [17], [18]. 

Despite this need, a critical research 

gap in chemistry education exists in 

analyzing students’ scientific reasoning 

performance, particularly in integrating 

multidimensional profiling. Most previous 

studies have focused on final scores as 

isolated achievement indicators, neglecting 

the interaction between cognitive domains 

such as applied and socio-emotional 

reasoning [19]. This limited focus fails to 

capture how students integrate knowledge 

across procedural, conceptual, and 

contextual dimensions, thereby reducing the 

diagnostic value of assessments. Moreover, 

learning analytics approaches such as 

quadrant visualisation, individual trajectory 

mapping, and clustering analysis are still 

rarely employed in chemistry education 

research, despite their potential to reveal 

detailed and personalised patterns of student 

reasoning. The absence of analytic 

techniques that map students’ performance 

across score combinations (rather than 

averages) hinders a nuanced understanding 

of reasoning diversity within a cohort. 

Consequently, teachers struggle to design 

interventions that match the cognitive profiles 

of individual learners. 

To address these analytical and 

pedagogical limitations, there is a growing 

recognition that data visualisation tools can 

play a central role in bridging the gap 
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between traditional assessments and the 

complexity of students' reasoning. Recent 

advancements in science education research 

have increasingly applied data-driven 

methods such as cluster analysis, heatmaps, 

and multilevel modelling to investigate 

learning patterns at both individual and 

institutional levels [20]-[22]. This reflects a 

shift from static, summative assessments 

toward more diagnostic approaches that 

reflect the dynamic nature of scientific 

reasoning. Although multidimensional 

reasoning frameworks, including two-

dimensional and multicomponent models, 

have gained theoretical traction, their 

practical application in chemistry education 

remains limited [23]. In contrast, fields such 

as mathematics and literacy have 

successfully implemented these frameworks 

to identify cognitive profiles and inform 

adaptive instruction [24], demonstrating their 

utility in enhancing learning outcomes. 

Chemistry education, however, continues to 

rely heavily on score aggregation, 

overlooking the diagnostic power of 

advanced analytics in revealing students’ 

underlying cognitive structures [25], [26]. 

Thus, more comprehensive assessment 

models are needed to integrate learning 

analytics with reasoning frameworks to 

support evidence-informed, responsive 

pedagogy. 

In response to these challenges and 

opportunities, this study introduces an 

integrated multidomain reasoning analysis 

that combines Applied Reasoning and Socio-

chemical Reasoning through advanced data 

visualisation techniques. Unlike prior studies 

that relied on aggregated scores, this 

research conducts granular analysis at the 

item level and across individual reasoning 

trajectories, enabling the identification of 

nuanced performance patterns [27]. The 

study applies underutilised visual tools in 

chemistry education—including spaghetti 

plots, quadrant scatter plots, contour density 

plots, and alluvial diagrams—to uncover 

cognitive variability and cross-domain 

interactions in more interpretable forms [28], 

[29]. 

These tools offer methodological and 

pedagogical value by making complex 

learning data accessible and actionable. 

Spaghetti plots illustrate individual reasoning 

progressions over time, revealing dynamic 

fluctuations in student thinking [30], [31]. 

Quadrant scatter plots map performance 

across two reasoning dimensions, enabling 

the detection of reasoning asymmetries and 

student profiles that support differentiated 

feedback [32], [33]. Contour density plots 

reveal dominant response distributions and 

transitional zones, facilitating diagnostic 

insight into reasoning diversity [34]. At the 

same time, alluvial diagrams visualise shifts 

in reasoning categories, capturing how 

students transition across applied and 

contextual domains [35], [36]. Together, 

these tools support a data-informed approach 

to formative assessment and instruction. 

Furthermore, this study presents a practical 

model of how multicomponent profiling can 

inform pedagogical decision-making by 

identifying student needs and guiding 

targeted [37]. As a result, the research 

contributes methodologically and 

pedagogically to advancing visual, formative, 

and evidence-based assessment practices 

https://doi.org/10.31234/osf.io/7nzx2
https://doi.org/10.3390/bs14060506
https://doi.org/10.1108/jarhe-11-2023-0507
https://doi.org/10.1186/s40536-020-00093-y
https://doi.org/10.15294/jpii.v12i1.41457
https://doi.org/10.1109/access.2021.3095958
https://doi.org/10.18280/ria.350112
https://doi.org/10.1002/widm.1355
https://doi.org/10.14689/ejer.2020.89.10
https://doi.org/10.1021/acs.jchemed.1c00203
https://doi.org/10.1021/acs.jchemed.9b00261
https://doi.org/10.1021/acs.jchemed.9b00637
https://doi.org/10.1021/acs.jchemed.6b01009
https://doi.org/10.1021/acs.jchemed.9b00368
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that promote scientific reasoning literacy in 

chemistry education. 

Aligned with the identified gaps and 

emerging practices, this study aims to 

analyse students’ performance across two 

critical domains of scientific reasoning: 

Applied Reasoning and Socio-chemical 

Reasoning. These domains capture students’ 

ability to apply chemical concepts 

procedurally and engage in reflective, ethical 

reasoning on socially embedded issues [38]. 

By examining both, the study seeks to 

construct a nuanced understanding of 

students’ cognitive functioning in chemistry, 

extending beyond symbolic mastery toward 

decision-making grounded in real-world 

contexts. To achieve this, the research 

adopts a multicomponent profiling approach 

to map combinations of student performance 

across domains, enabling the identification of 

reasoning patterns often obscured in 

traditional, unidimensional assessment 

models [39]. Furthermore, it investigates 

individual trajectories across tasks to uncover 

performance fluctuations and clustering 

tendencies, offering insight into student 

segmentation based on reasoning profiles 

[40]. Central to this endeavour is the use of 

advanced visual tools, which serve not only 

as analytic techniques but also as 

pedagogical instruments that support 

differentiated instruction and informed 

decision-making in classroom contexts [41]. 

Through the integration of domain analysis, 

trajectory mapping, and learning analytics, 

this study contributes to a more responsive 

and evidence-informed model of chemistry 

education that fosters holistic scientific 

reasoning. 

METHODS  

1. Research Design  

This study used a quantitative 

descriptive approach and learning analytics 

methods to explore students' multicomponent 

reasoning ability profiles. The main focus of 

the research design was to analyse and 

identify patterns of student performance in 

two cognitive domains central to chemistry 

learning, namely Applied Reasoning and 

Socio-Chemical Reasoning. Applied 

Reasoning refers to students' ability to apply 

chemical concepts technically and 

conceptually in an academic context. At the 

same time, Socio-Chemical Reasoning 

encompasses the ability to reason about 

contextual chemical issues involving social, 

ethical, and environmental dimensions. 

These two domains were chosen because 

they reflected students' real challenges in 

integrating scientific knowledge into everyday 

situations. 

 

 

Figure 1. Research Design 

 

https://doi.org/10.1111/bjet.13108
https://doi.org/10.1111/bjet.12846
https://doi.org/10.3102/0002831216637346
https://doi.org/10.1007/s10639-022-11176-4
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This study employed a multi-layered 

analysis approach to gain a deeper 

understanding of cognitive variation between 

individuals and groups. This analysis 

included examining student performance at 

the individual level to explore their thought 

processes and the consistency of their 

responses across different questions. It also 

included collective-level analysis to identify 

common patterns in score distributions and 

domain combinations. Through this design, 

the study aimed to reveal students' final 

achievements and uncover the dynamics of 

their reasoning processes, which provided a 

foundation for developing more adaptive and 

responsive assessment and learning 

strategies. 

2. Participant 

The subjects in this study were 56 

first-year pre-service teachers who had 

completed a series of reasoning-based tasks 

in the context of chemistry learning. 

Participants were selected purposively using 

strict inclusion criteria to ensure data validity. 

Only students who had completed all four 

reasoning questions in full, without any blank 

answers, and who had achieved full scores in 

the two main domains of Applied Reasoning 

and Socio-Chemical Reasoning were 

included in the analysis. These criteria were 

established to ensure that each participant 

provided representative data that could be 

analyzed comparatively across reasoning 

dimensions. All data used in this study were 

anonymized to protect the confidentiality of 

the participants' identities. Before the data 

collection, the researchers obtained official 

approval from the relevant institutions, per 

applicable research ethics procedures. This 

step ensured the entire research process was 

conducted ethically and responsibly, 

providing a safe participatory space for 

students to contribute to developing 

chemistry education studies. 

3. Instrumentation 

The main instrument used in this 

study consisted of four short essay questions 

developed using a tiered reasoning 

approach, or two-level reasoning. Each 

question evaluated the depth of students' 

thinking through conceptual understanding 

and reason-based justification. The first two 

questions (Questions 1 and 2) focused on 

measuring applied reasoning, which is 

defined as students' ability to understand and 

apply chemical concepts through symbolic 

representation and scientific logic. The next 

two questions (Questions 3 and 4) were 

designed to assess Socio-Chemical 

Reasoning, which included interpreting 

chemical problems in a social and ethical 

context and making decisions based on 

considerations of their impact on society and 

the environment. 

Each question was scored using an 

analytical scoring rubric ranging from 0 to 4, 

based on three main indicators of reasoning: 

conceptual accuracy, logical coherence, and 

the justification and relevance of the reasons 

provided by the student. With two questions 

in each domain, the maximum score that 

could be obtained was 8 per reasoning 

domain, resulting in a total score of 16 points. 

This scoring structure allowed for a 

comprehensive and balanced measurement 

of student performance across both technical 
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and socio-chemical contexts, while providing 

a solid quantitative basis for further analysis 

of reasoning profiles. 

4. Data Collection and Scoring 

The data collection process in this 

study was conducted through documentation 

of students’ written responses to four 

reasoning questions designed around two 

core cognitive domains: Applied Reasoning 

and Socio-Chemical Reasoning. Each 

student completed the tasks individually in a 

short essay format, without strict time 

constraints, allowing for the elaboration of 

reasoning depth and clarity. Student 

responses were subsequently evaluated 

using a rubric-based quantitative scoring 

system developed with reference to 

established educational frameworks to 

ensure rigour, validity, and alignment with 

current practices in chemistry education 

research.  

The rubric incorporated four key 

indicators: mechanistic and causal 

reasoning, quantitative model-based 

reasoning, contextual and representational 

application, and risk–benefit evaluation. 

Mechanistic and causal reasoning was 

informed by the work of Heisterkamp and 

Talanquer (2015), who emphasised that 

articulating causal mechanisms enhances 

students’ conceptual understanding of 

chemical phenomena. Quantitative model-

based reasoning drew upon Gilbert and 

Justi’s (2016) framework on modelling in 

science education, reflecting students’ ability 

to apply mathematical or symbolic 

representations in constructing scientific 

arguments. The contextual and 

representational application indicator was 

adapted from contextual learning approaches 

such as those discussed by Dewi and 

Primayana (2019), assessing how students 

related chemical ideas to real-life contexts 

using appropriate scientific representations. 

The risk–benefit evaluation indicator 

reflected the growing emphasis on socio-

chemical reasoning. It was grounded in 

frameworks advocating the integration of 

ethical and environmental considerations into 

science education, as highlighted by 

Mendonça and Justi (2013). Together, these 

indicators provided a comprehensive and 

theoretically grounded framework to assess 

technical and socio-contextual dimensions of 

students’ reasoning, thereby supporting a 

valid, reliable, and educationally meaningful 

evaluation of their chemical reasoning. 

To maintain the objectivity and 

consistency of the assessment results, the 

scoring process was carried out by two 

independent assessors with backgrounds in 

chemistry education and experience in 

reasoning-based assessment. The validity of 

the scoring results was strengthened through 

interrater reliability testing, which in this study 

was calculated using Cohen's Kappa 

coefficient. This approach was chosen to 

ensure that the interpretation of student 

responses was not subjective and that the 

assessment of reasoning indicators was 

conducted consistently. The high reliability 

test results formed the basis for the validity of 

the evaluation process and provided 

confidence in the quality of the data used in 

further analysis. 
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5. Data Analysis Procedure 

 The instruments used in the research 

were (1) an online research platform using 

webcam eye-tracking (RealEye); (2) 

computer devices; (3) chemistry problem-

solving questions consisting of 2 main 

questions with six sub-questions each, 

arranged according to the problem-solving 

steps; (4) interview guidelines. 

6. Ethical Consideration 

This study was conducted per the 

ethical principles of educational research to 

ensure the integrity of the process and the 

protection of participants' rights. Before data 

collection, the researcher obtained official 

approval from the relevant educational 

institutions, including the program 

administrators and the authorized academic 

ethics unit. All data collected from 

participants were anonymized, so that 

students' personal identities could not be 

identified either in the analysis process or in 

the reporting of results. This anonymization 

included removing names, student ID 

numbers, and other sensitive information 

from answer sheets and databases. 

Furthermore, participation in this 

research had no implications for students’ 

academic assessments. Students were 

informed openly about the purpose and 

scope of data use and were assured that their 

participation would not influence their 

academic outcomes. This process was 

conducted transparently before data 

collection, with researchers providing both 

verbal and written explanations that included 

the right to opt out or withdraw at any time 

without consequence. Through this 

approach, the study ensured compliance with 

academic ethical standards and created a 

safe, voluntary, and trust-based environment 

for student participation. 

RESULT AND DISCUSSION 

1. Distribution of Applied and Socio 

Scores 

The initial analysis focused on the 

distribution of students’ scores in the two 

domains of chemical reasoning, namely 

Applied Reasoning and Socio-Chemical 

Reasoning. As illustrated in Figure 2, the 

histogram on the left shows that Applied 

Reasoning scores exhibit a right-skewed 

distribution. Most students scored between 5 

and 7, with a mean of 5.72 and standard 

deviation of 1.81, indicating a concentration 

in the moderate to high proficiency range. 

However, a group of students fell in the lower 

tail (scores 1–2), suggesting a substantial 

performance gap. In contrast, the histogram 

on the right representing Socio-Chemical 

Reasoning showed a more symmetrical 

distribution, with a concentration of scores in 

the 4–5 range and a smaller standard 

deviation (1.45), reflecting more uniform 

performance in this domain. 

This divergence in score distributions 

suggests different cognitive and instructional 

influences underlying the two reasoning 

domains. The broader spread of applied 

reasoning may be due to its alignment with 

traditional teaching methods emphasizing 

algorithmic and procedural problem-solving 

using chemical equations and symbolic 

representations. These methods often 

advantage students with stronger 

backgrounds in mathematics and formal logic 
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[42]. In contrast, the tighter clustering of 

Socio scores implies a shared challenge 

among students in articulating value-based or 

ethically grounded reasoning, possibly due to 

limited exposure to socioscientific issues in 

standard curricula [43]. Thus, while the 

technical domain shows stratification, the 

contextual domain highlights a systemic 

instructional gap. 

 

Figure 2. Histogram of Applied and Socio-Chemical Reasoning Scores. 

From a pedagogical perspective, 

these findings underscore the need for a 

more integrated curriculum that addresses 

procedural fluency and contextual reasoning. 

Current educational reforms stress the 

importance of cultivating 21st-century skills 

such as ethical reasoning, systems thinking, 

and decision-making under uncertainty—

skills encapsulated within Socio-Chemical 

Reasoning [44]. The fact that some students 

perform well in Applied Reasoning but 

underperform in Socio-Chemical Reasoning 

suggests that cognitive proficiency in one 

domain does not ensure competence in the 

other. Therefore, curriculum strategies such 

as project-based learning, scenario analysis, 

and value clarification must be systematically 

embedded in chemistry education to close 

this reasoning divide. 

2. Quadrant Profile of Combined 

Reasoning 

The analysis of student performance 

across the two reasoning domains, Applied 

Reasoning and Socio-chemical Reasoning, 

revealed important patterns of cognitive 

variability, as visualised in Figures 3 and 4. 

The contour plot in Figure 3 showed a high 

concentration of student scores around an 

Applied score of 6 and a Socio Chemical 

score of 5, indicating that most students 

performed moderately in both domains. This 

cluster corresponded to mid-level indicators 

in the rubric, where students demonstrated 

basic conceptual accuracy and procedural 

logic in the applied domain, yet showed 

limited integration of ethical or contextual 

reasoning in the socio-chemical domain. 

These responses often included partially 

correct chemical representations and 

acknowledgment of social issues but lacked 

deep causal justification or evidence-based 

evaluation. Regarding rubric alignment, the 

dense region of the plot reflected moderate-

level performance primarily characterised by 

accuracy in procedural application and 

general contextual awareness, but with 

limited evidence of mechanistic reasoning, 

model-based support, or ethical evaluation. 

The low-score zones aligned with responses 

that lacked all four indicators: superficial 

explanations, lack of symbolic or model-

https://doi.org/10.62775/edukasia.v4i2.619
https://doi.org/10.33225/pec/21.79.585
https://doi.org/10.1002/rev3.3374
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based reasoning, and minimal socio-

contextual engagement. Conversely, the 

sparsely populated high-score regions 

corresponded to responses demonstrating 

integrated reasoning across all indicators, 

including causal mechanisms, quantitative 

modelling, appropriate contextual 

representations, and risk-benefit justification. 

 

Figure 3. Contour Plot of Combined Reasoning Scores 

 

Figure 4. Quadrant Mapping of Multicomponent Reasoning Profiles 

Lower-density regions of the plot 

reflected students who either 

underperformed or excelled across both 

domains. Students in the low-score region, 

with Applied and Socio scores below 4, 

tended to exhibit fragmented reasoning, 

minimal use of models, and superficial 

references to context. In contrast, the high-

score region, with scores above 7 in both 

domains, represented students whose 

responses aligned with the highest-level 

rubric indicators such as strong causal 

explanations, model-supported reasoning, 

and thoughtful consideration of ethical 

implications. These findings suggest that 

high-level multicomponent reasoning 

remains rare, while moderate procedural 

reasoning is more prevalent. 

The quadrant map in Figure 4 further 

illustrates the distribution of students based 

on their combined domain performance. 
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3. Individual Reasoning Trajectories 

Only a small number of students, 

fewer than five percent, were categorised as 

High High, indicating balanced reasoning 

across all dimensions. Nearly twenty percent 

fell into the Low Low group, revealing 

widespread difficulty in both technical and 

contextual reasoning. Most students in the 

High Low quadrant showed strong procedural 

thinking but weak socio-contextual 

reasoning. This imbalance reinforces prior 

research that science education often 

prioritises technical mastery while 

overlooking ethical and contextual 

dimensions [6]. As observed by Dewi and 

Yahdi [45], this imbalance may result in 

students being prepared to solve textbook 

problems but underprepared to respond to 

real-world chemical issues. 

The scarcity of High High performers 

highlights a gap in instructional models that 

do not adequately foster the development of 

scientific and ethical reasoning skills. 

Addressing this challenge requires chemistry 

education to go beyond content delivery and 

encourage students to reflect on the broader 

impact of scientific practice [43]. As [46] This 

development demands learning experiences 

connecting disciplinary knowledge with social 

and environmental contexts. Introducing 

authentic case studies such as climate 

change, pollution management, and decision 

making in chemical industries can support the 

formation of well-rounded reasoning and 

prepare students to apply chemistry in 

scientifically sound and socially responsible 

ways [47].

 

Figure 5. Spaghetti Line Plot of Individual Reasoning Trajectories. 

 

Individual analysis of student 

performance trajectories visualized in Figure 

5 (Spaghetti Line Plot) shows significant 

variation in how students respond to four 

reasoning questions covering two domains. 

The pattern shown generally indicates 

fluctuations in scores between questions, 

with a sharp decline from Applied Reasoning 

to Socio-Chemical Reasoning. Socio 1 is the 

question with the lowest average score, 

which may be influenced by the order in 

which the questions are presented or the 

increased cognitive demands due to a more 

complex social context [48]. The steeply 

declining trajectory lines reflect a cognitive 

gap between students' procedural and 

https://doi.org/10.1021/acs.jchemed.8b00508
https://doi.org/10.23960/jpmipa.v26i1.pp457-475
https://doi.org/10.33225/pec/21.79.585
https://doi.org/10.14529/ped230303
https://doi.org/10.4102/curationis.v38i2.1523
https://doi.org/10.1037/pas0000102
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reflective abilities. This indicates that success 

in solving applied questions does not 

necessarily translate into success in solving 

questions that require contextual and ethical 

thinking [49]. This condition underscores the 

importance of viewing student performance 

as a dynamic process involving interrelated 

but cognitively distinct domains of 

knowledge. 

4. Performance Distribution and 

Domain Interaction 

However, not all students exhibit 

uneven trajectory patterns. Some students 

managed to maintain stable scores across all 

questions, reflecting consistency in 

understanding and the potential application of 

adaptive cognitive strategies. Additionally, 

some students showed a sudden spike in 

scores on Socio 2, which is suspected to be 

related to the relevance or familiarity of the 

question context. This supports the view that 

the connection between context and personal 

experience can enhance the quality of 

reasoning [50]. These findings reinforce the 

diagnostic value of spaghetti line plots, which 

present general trends and reveal individual 

dynamics often hidden in aggregate 

analyses. The implication is that assessment 

design needs to consider the order of 

questions to avoid detrimental sequential 

effects and integrate performance trajectory 

visualization approaches to provide more 

personalized, contextual, and process-

focused formative feedback [51], [52].

 

Figure 6. Heatmap of Applied and Socio Reasoning Levels. 

Visualizing the interaction between 

student performance categories in Applied 

Reasoning and Socio-Chemical Reasoning 

provides significant insights into the 

distribution of abilities and transition patterns, 

as shown in Figure 6 (Heatmap Applied × 

Socio) and Figure 7 (Alluvial Diagram). 

Figure 6 shows that the highest density is in 

the Medium–Medium combination, where 

Applied scores range from 5–6 and Socio 

scores from 4–5. This finding indicates that 

most students are at a moderate 

performance level in both domains. However, 

there is also a fairly high concentration in the 

Low–Low region (Applied ≤4, Socio ≤3), 

indicating the presence of a group of students 

https://doi.org/10.1159/000299064
https://doi.org/10.1007/s40279-023-01927-9
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with overall low competencies who require 

special pedagogical attention [53]. This 

distribution creates two dominant poles—a 

group of students with relatively stable 

performance in the middle and a group 

needing deep intervention—which illustrates 

a sharp segmentation of abilities within the 

class. 

 

Figure 7. Alluvial Diagram of Reasoning Level Transitions. 

Meanwhile, Figure 7 (Alluvial 

Diagram) shows the dynamics of 

performance trajectories between far more 

complex and non-linear levels. This diagram 

shows that some students with high scores in 

Applied Reasoning actually move to the 

Socio category at the moderate or low level, 

confirming that performance is not always 

synchronized across domains. Conversely, 

some students move from low to medium or 

high levels, and vice versa, reflecting the 

diversity of learning trajectories that 

conventional statistics cannot capture [54]. 

The Alluvial Diagram helps to visually reveal 

these transitions, showing that interactions 

between levels form a dynamic cognitive 

profile of students. Therefore, the evaluative 

implications are clear: adaptive and 

continuous cross-domain formative 

assessments must complement conventional 

summative assessments. With this approach, 

educators can more accurately understand 

students' performance development, design 

appropriate interventions, and ultimately 

support learning more responsive to 

students' cognitive variations [53], [54]. 

CONCLUSION 

This study demonstrated that 

students’ reasoning in chemistry is 

multidimensional, with significant intra- and 

inter-individual variations. Integrating Applied 

Reasoning and Socio-Chemical Reasoning 

in assessment highlighted a pattern of 

imbalanced proficiency across domains. 

Learning analytics tools like quadrant 

profiling, performance trajectory tracking, and 

cluster-based segmentation enable deeper 

insights into students’ reasoning patterns and 

transitions. Theoretically, these findings 

extend existing models of chemical reasoning 

by emphasizing its non-linear and context-

sensitive nature. Practically, the study implies 

the importance of adopting data-informed, 

integrated assessments to support 

instructional decision-making and curriculum 

https://doi.org/10.1080/07370008.2010.507318
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development. However, the study was limited 

by its reliance on digital response formats, 

which may not capture all aspects of 

reasoning in diverse learner populations. 

Future research is recommended to validate 

these findings across different educational 

settings and explore the integration of socio-

emotional reasoning indicators. This study 

contributes to developing responsive and 

inclusive assessment practices in science 

education. 
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