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Resveratrol, a polyphenolic compound, possesses extensive biological 
activities; however, its use in clinical applications is restricted due to its 
poor bioavailability and rapid metabolism. In the present work, 
resveratrol and 14 of its structural analogs were screened by a 
combined in silico methodology. The methodology integrated density 
functional theory (DFT) calculations, quantitative structure–activity 
relationship (QSAR) modeling, physiologically based pharmacokinetic 
(PBPK) simulations, and microbiota-associated interaction 
considerations. Molecular descriptors were generated from optimized 
geometries at the DFT level of theory to predict permeability and 
metabolic characteristics. PBPK modelling was used to simulate the 
distribution of compounds in different physiological states. In contrast, 
bioinformatics analysis was used to support the gene expression 
modulation and the response of the microbial community to the analog 
structure. Several analogs predicted permeability and metabolic stability 
significantly better than native resveratrol. Furthermore, some 
compounds exhibited good associations with gut microbiota and 
metabolic pathways that may have regulatory functions. The results 
indicate that certain resveratrol analogs are potential drug candidates 
for further in vitro and in vivo studies. Furthermore, we report a full 
computational framework to aid the discovery of rational bioavailable 
polyphenol-related drugs. 
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INTRODUCTION 

Resveratrol is a natural polyphenol 

found in red grapes, nuts, and various 

medicinal plants, widely recognized for its 

antioxidant, anti-inflammatory, anti-cancer, and 

anti-aging properties. It exerts its biological 

effects by scavenging free radicals, activating 

SIRT1, and modulating inflammatory mediators 

such as TNF-α, COX-2, and NF-κB. In cancer 

models, particularly gastric and colorectal, 

resveratrol has demonstrated the ability to 

induce apoptosis, inhibit tumor proliferation, 

and regulate cell cycle progression [1], [2]. 

Despite these therapeutic potentials, its 

clinical application is hampered by 

pharmacokinetic limitations, including low oral 

bioavailability, rapid metabolism, and a short 

systemic half-life [3], [4]. These challenges 

reduce its effectiveness in vivo and contribute 

to inconsistent clinical outcomes. Addressing 

these issues requires formulation innovation 

and structural redesign to enhance resveratrol's 

absorption, stability, and bioavailability.
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Figure 1. Reaction Pathways for The Structural Modification of Resveratrol Into Thiophenyl, 

Sulfonyl, and Methoxy-Thiophenyl Analogs. 

 

One promising strategy is structural 

modification, which introduces functional 

groups such as thiophenyl, sulfonyl, and 

methoxy moieties. These modifications are 

designed to increase membrane 

permeability, improve resistance to 

enzymatic degradation, and prolong plasma 

retention by enhancing interactions with 

plasma proteins. [5]-[7]. Figure 1 illustrates 

the chemical transformation pathways used 

to synthesize these analogs. However, many 

existing studies focus only on isolated 

properties, lacking a comprehensive 

evaluation across pharmacokinetic, 

biological, and molecular dimensions. 

Recent advancements in 

computational modeling offer valuable tools 

to address this gap. Techniques such as 

physiologically based pharmacokinetic 

(PBPK) simulations, machine learning-based 

permeability and metabolism prediction, 

molecular docking, and bioinformatics allow 

researchers to assess compound behavior 

systematically and efficiently [8]-[10]. These 

methods expedite screening processes and 

support rational drug design based on 

molecular interactions and systemic 

predictions. 

 Another emerging aspect is the 

interaction of resveratrol with the gut 

microbiota. As the microbiome plays a critical 

role in drug metabolism, immune modulation, 

and host homeostasis, integrating microbiota 

analysis into resveratrol’s pharmacokinetic 

and pharmacodynamic profiling could 

enhance the accuracy of predictive models 

and reveal additional mechanisms of action 

[11], [12]. Despite its importance, this area 

remains underexplored in computational 

research. 

A multidisciplinary strategy is 

essential to comprehensively evaluate the 

pharmacological potential of resveratrol 

analogs. Spectroscopic characterization 

https://doi.org/10.3892/ol.2017.6458
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https://doi.org/10.2174/1871520621666211015140455
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ensures accurate structural identification and 

stability assessment, especially considering 

resveratrol’s sensitivity to oxidation and 

protein binding [13]-[15]. Meanwhile, 

computational techniques such as machine 

learning and PBPK modeling offer predictive 

insights into absorption, distribution, 

metabolism, and excretion [16], [17].  In 

parallel, bioinformatics analysis of gene 

expression and microbiota interactions 

contributes to understanding the compound’s 

systemic biological effects [18], [19]. 

Therefore, this study aims to evaluate 

resveratrol and its structural analogs using an 

integrated in silico framework that combines 

structural modification, PBPK modeling, 

permeability prediction, target interaction 

profiling, and gut microbiota analysis. This 

multidisciplinary approach is intended to 

optimize the pharmacokinetic performance 

and therapeutic potential of resveratrol-

based compounds, advancing their 

development for clinical and nutraceutical 

applications. 

METHODS 

1. Research Workflow 

The pharmacokinetic and 

pharmacodynamic characteristics of 

resveratrol and its 14 structural analogues 

(15 compounds) are computed by a synthetic 

computational in silico process in the present 

study. The workflow (Figure 2) comprises five 

interdependent modules: (1) molecular data 

preprocessing, (2) permeability prediction 

based on QSAR modeling, (3) metabolism 

and enzyme interaction profiling, (4) PBPK 

simulation, and (5) bioinformatics analysis 

including correlation with gene expression 

and gut tracts microbiota. 

 

Figure 2. Research Workflow Flowchart 

 

2. Molecular Data Preparation 

This study started from searching 

the molecular structure of resveratrol and 14 

structural analogues (total 15 compounds) in 

the PubChem database to guarantee the 

correct chemical name and standardized 

structural format [20]. The resulting structures 

were geometry optimized using Density 

Functional Theory (DFT) with B3LYP 

functional and 6-311++G(d,p) basis set by 

Gaussian software, a standard strategy for 

the identification of a stable lowest energy 

molecular conformation necessary for 

rational spectroscopic and pharmacokinetic 

modelling [21], [22]. The B3LYP function in 

conjunction with the 6-311++G(d,p) basis set 

is notably appropriate for phenolic and 

polyphenolic compounds and presents a 

good compromise between the 

computational cost and the precision for the 

geometrical and electronic structures of a 

molecule [26], [27]. They are then plotted with 

https://doi.org/10.3390/foods9060780
https://doi.org/10.58332/scirad2023v2i3a04
https://doi.org/10.1002/minf.202300327
https://doi.org/10.1038/s41467-020-17910-1
https://doi.org/10.3390/metabo8010004
https://doi.org/10.1021/acs.jafc.5b00390
https://doi.org/10.1016/j.addr.2021.05.016
https://doi.org/10.1063/1.464913
https://doi.org/10.1063/1.438955
https://doi.org/10.1186/1758-2946-4-17
https://doi.org/10.1021/acs.jmedchem.5b00104
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GaussView to check the integrity of the 

structure, ensure that no imaginary 

frequencies are present, and to format the 

geometries for follow-on calculation [29]. This 

rigorous preparation ensures that for the 

purpose of further simulations, such as 

permeability, metabolism, and interaction 

modeling, only validated and energy-favored 

low-energy protein–ligand structures are 

used as inputs.

 

Figure 3. Optimised Molecular Structure Of Resveratrol. 

 

3. Molecular Docking Analysis 

Molecular docking analysis was 

conducted to evaluate the interaction profile 

of resveratrol with key enzymes and 

receptors involved in metabolic regulation, 

inflammation, and cellular longevity. Three-

dimensional structures of resveratrol and 

target proteins (e.g., SIRT1, AKT1, NR3C1, 

PTGS2, TNF) were retrieved from the 

PubChem and RCSB Protein Data Bank 

(PDB) databases. Protein structures were 

prepared by removing ligands and water 

molecules, followed by addition of polar 

hydrogens and Gasteiger charges using 

AutoDock Tools. Docking simulations were 

performed using AutoDock Vina, selected for 

its speed and binding affinity accuracy. The 

docking grid was centered on the active site 

of each protein, and exhaustiveness was set 

to 8 for standardization. 

Binding affinities were recorded in 

kcal/mol, and interactions were ranked based 

on docking scores. Heatmap visualization of 

the docking results was generated using 

Python’s Seaborn library to highlight 

interaction strength across multiple targets. 

This analysis enabled the identification of key 

protein targets for resveratrol and supported 

its multi-target therapeutic potential. 

4. Development of Permeability and 

Metabolism Prediction Models 

The computational workflow used in 

the present work to generate predictive 

models of permeability and metabolism is 

shown in Figure 4. After removing the hetero-

atoms and adding hydrogens, molecular 

descriptors including 1,444 features were 

https://doi.org/10.1002/mnfr.201200150
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calculated for resveratrol and 14 analogues 

(15 compounds in total) by using PaDEL-

Descriptor, which represented important 

physicochemical properties and MSAFs for 

QSAR modeling [24], [25]. These descriptors 

were then employed as input to the Random 

Forest Regressor, chosen due to its effective 

handling of non-linear and high-dimensional 

data with reduced risks of overfitting [23]. A 

feature selection process was performed to 

choose the top 10 significant descriptors for 

permeability prediction. The model was 

trained to estimate logPapp (log of apparent 

permeability), an established surrogate 

marker of passive membrane transport 

efficacy. Model performance was evaluated 

by 5-fold cross-validation, which gave a 

satisfactory R² value of 0.95 with mAE = 

0.18, indicating the effectiveness and quality 

of the predictions. Additionally, RMSE (0.22) 

was calculated to validate the model. 

Concurrently, a metabolic profiling 

model was developed to predict the 

metabolism of these compounds and their 

interaction with major hepatic enzymes, 

particularly the cytochrome P450 (CYP450) 

isoforms, including CYP3A4, the dominant 

enzyme involved in the metabolism of 

polyphenolic compounds. Metabolic affinities 

were predicted using the admetSAR and 

pkCSM platforms [28]. The resultant scores 

were presented in a heatmap, allowing early 

identification of hit compounds highly 

sensitive to oxidative metabolism or DDIs 

5. Pharmacokinetic Simulation 

(PBPK Modelling) 

Pharmacokinetic predictions in this 

report were calculated using a physiologically 

based pharmacokinetic (PBPK) model, 

combining the prediction of permeability and 

metabolism with pharmacokinetic 

parameters obtained from computational 

output and literature information [29], [30]. 

Model development was implemented in 

MATLAB’s SimBiology Toolbox, selected for 

its flexibility to design models, support 

complicated compartmental systems, and 

analyze parameter sensitivity—offering 

advantages over commercial PBPK 

platforms such as GastroPlus or PK-Sim for 

novel compounds. The model incorporated 

human ADME compartments (GI tract, liver, 

plasma, kidney, and peripheral tissues) with 

relevant organ volumes, blood flows, and 

enzymatic activities. Single-compartmental 

and multi-compartmental models were 

proposed to mimic oral and IV dosing, 

respectively. The reference scenario involved 

an oral dose of 100 mg, and alternative 

simulations were conducted for IV dosing of 

equivalent systemic exposure to compare 

direct oral bioavailability. 

Model validation was demonstrated 

by comparing the in silico plasma 

concentration–time profile of native 

resveratrol with available published clinical 

PK data [31]. In the absence of in vivo 

studies, available data of Cmax (10 µM) and 

Tmax (30−60 min) were referenced. 

Simulations of analogs [Analog-

2/Thiophenyl-DPP-Conjugate and others] 

were conducted under the same 

physiological conditions to enable 

comparison of peak concentrations, area 

under the curve (AUC), and half-life of the 

compounds. 

https://doi/org/10.4028/www.scientific.net/amm.835.308
https://doi.org/10.1155/2021/7375058
https://doi.org/10.3390/molecules21010127
file:///C:/Users/user/AppData/Local/Microsoft/Windows/INetCache/IE/KR5K3WUQ/https;/doi.org/10.1002/mnfr.201200150
https://doi.org/10.1002/mnfr.201200150
https://doi.org/10.1002/jat.4409
https://doi.org/10.1002/jps.24339
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Plasma concentration–time profiles, 

tissue distribution heat maps, and drug 

elimination trends are presented in Figures 

10–12. These results provide insights into 

important pharmacokinetic differences 

among the analogues and guide selection for 

further development. This PBPK modeling 

strategy supports rational dose-reduction 

studies, enhances translation efficiency from 

in silico to in vivo, and underlines a 

mechanistic basis for improving the clinical 

potential of resveratrol-based therapeutics 

6. Bioinformatics and Gut Microbiota 

Analysis 

The MG-RAST, STAMP (version 

2.1.3), GraphPad (Prism, version 5.01), and 

QIIME platform (version 7.0.0) were used to 

process all the sequence data in this study. In 

this work, an integrative bioinformatics 

approach was used to investigate molecular 

and microbiota phenotypes following 

resveratrol intervention. RNA-Seq data were 

obtained from GEO accession GSE85530, 

consisting of transcriptomes of resveratrol-

treated and control human cells under 

inflammatory conditions. This library was 

chosen based on resveratrol’s known 

biological activities, including SIRT1 

activation, NF-κB inhibition, and oxidative 

stress response pathways. 

Gene expression data were 

processed using the DESeq2 pipeline 

comprising filtering low-expression genes, 

normalizing count data with the median-of-

ratios method, and conducting Wald tests to 

identify differentially expressed genes 

(DEGs) [32]. Criteria for significant gene 

regulation were adjusted p-value < 0.05 and 

|log-fold change| ≥ 1. A total of 1245 DEGs 

were identified. DEGs were visualized with 

volcano plots and PCA to depict the 

distinction between treatment and control 

groups. Functional annotation was carried 

out against the KEGG Pathway Database 

[33], identifying enrichment in chemokine 

signaling, oxidative stress response, and lipid 

metabolism. 

Concurrently, gut microbiota 

information was extracted from the 

GutMGene database version 2.0, which 

compiles experimentally validated 

interactions among gut microbes, microbial 

metabolites, and host gene targets [34]. 

Microbial alterations post-resveratrol 

intervention were analyzed based on 

changes in genus-level relative abundance 

and assessed with Shannon and Simpson 

diversity indices. 

A novel linear regression analysis 

was conducted to investigate potential 

systemic relationships where microbial 

abundance parameters (mean, standard 

deviation) served as independent variables 

and gene expression fold changes or 

docking-derived compound binding affinities 

served as dependent variables. Correlation 

significance was tested with p < 0.05, and a 

correlation heatmap was generated. This 

approach provided a mechanistic 

understanding of the complementary 

mechanisms by which resveratrol acts via 

direct molecular interactions and the host–

microbiota axis modulation. The 

methodological strategy developed here 

encompasses cell simulation and systems 

biology approaches, enabling complete in 

silico assessment of resveratrol analogues at 

https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.18632/aging.203616
https://doi.org/10.1038/s41591-018-0222-4
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the molecular, pharmacokinetic, and 

biological levels. 

RESULTS AND DISCUSSION 

1. Molecular Permeability Prediction 

Model 

15 compounds were employed, 

including native resveratrol and 14 

structurally adapted analogues (such as 

thiophenyl, sulfonyl, and methoxy). The 

Random Forest prediction model of 

membrane permeability (Figure 4) provided 

a selection of key molecular descriptors that 

control passive membrane permeation. All 

descriptors were computed, holding 

geometries optimized at the DFT level to 

guarantee structural consistency and quality 

in the dataset. We used feature importances 

from the Random Forest algorithm to choose 

the top 10 descriptors; there was no 

additional dimensionality reduction (e.g., 

PCA or LASSO) in light of the relatively small 

sample size and focused descriptor set. The 

Random Forest model was internally 

validated employing a 5-fold cross-validation 

for prediction strength. Resveratrol and its 

thiophenyl analogues (15 compounds) were 

represented in the dataset used to develop 

and test the model. 

Descriptor 377, which also 

contributes >70% to the overall feature 

importance, is directly related to the 

molecular surface area, which in turn is used 

to determine whether molecular interactions 

can occur with lipid bilayers and the ability of 

the molecule to diffuse across them. By the 

permeability theory, larger but optimally 

balanced molecular surfaces favor lipid 

partitioning without too much steric 

hindrance. Descriptor 324, with a contribution 

of about 20%, shows similar factors, namely, 

electronic effect and molecular polarity; it has 

already been accepted that moderate polarity 

is a good contributor for passive diffusion 

rather than a too hydrophilic nature. 

Descriptor 228 (~5%) indicates hydrogen 

bonding potential, which has a reverse 

relationship to permeability; high hydrogen 

bond donors and acceptors will reduce 

diffusion by increasing affinity to water and 

diminishing membrane penetration potential 

[35]. Secondary properties such as 

topological indices and flexibility (Descriptors 

272, 154, 141) further tune permeability 

behavior. 

In Figure 5, the model's predictive 

power is further validated by comparing 

experimental logPapp (a well-known 

permeability measure) values against model 

predictions. All logPapp values used in this 

study were estimated by reported literature 

ranges for structurally similar molecules and 

corrected by in silico DFT-optimized 

geometries. There were no experimental 

measurements taken. The statistical 

information of the model (R² = 0.95; MAE = 

0.18) indicates that the model's accuracy is 

good enough. The majority of data clusters 

very closely along the line y = x, 

demonstrating a high predictability quality of 

the model. The small differences seen for 

highly hydrophilic or highly lipophilic outliers 

are expected based on known restrictions of 

passive diffusion, where extremely 

hydrophilic molecules get trapped in the 

aqueous milieu, and extremely lipophilic 

molecules become sequestered in 

membrane bilayers before they traverse. To 

test the robustness of the fitted model, a 

https://doi.org/10.1021/jm020017n
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confidence region around the line of identity 

or a residuals plot can be added, to show the 

inherent variability around the predictions and 

possible discrepancies in the form of the 

relationship [36]. 

The relationship of descriptors and 

permeability is theoretically justified by 

Lipinski’s Rule of Five [17], [18] and extended 

models such as BCS, which underline the 

importance of molecular weight, logP, 

hydrogen bonding capacity, and polar 

surface area as leading factors that 

determine drug absorption. Descriptor 377 

correlated with polar surface area and 

molecular volume, Descriptor 324 with logP 

and charge distribution, and Descriptor 228 

with hydrogen bonding; this triplet forms the 

essential physicochemical molecular triad 

necessary for membrane penetration. 

Incorporation of these features into the 

machine learning model makes it possible to 

estimate permeability across resveratrol 

analogues reliably. In application, these 

findings offer a strong computational 

screening tool for early-stage drug discovery, 

allowing chemists to remove compounds 

predicted to have poor absorption, while 

prioritizing analogues showing the finest 

balance of surface area, polarity, and 

hydrogen bonding for further 

pharmacokinetic studies.

 

Figure 4. Feature Importance Plot 

 

Figure 5. Scatter Plot Comparison of Experimental vs Predicted log Papp 

 

2. Metabolic Profiling by CYP450 

Enzymes 

Several CYP450-based metabolic 

profiling have been reported to date. This 

prediction is visible in the metabolic 

interaction prediction heatmap (Figure 6). It 

reflects compound-specific tendencies for 

httpps://doi.org/10.1016/S0169-409X(96)00423-1
https://doi.org/10.1038/s41467-020-17910-1
https://doi.org/10.3390/metabo8010004
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CYP450-mediated metabolism, which 

strongly determine pharmacokinetics, 

clearance rates,  and possible drug-drug 

interactions. CYP450 interaction scores were 

considered probabilistic values between 0 

and 1, with values higher than 0.75 indicating 

high metabolic susceptibility, 0.65 to 0.75 for 

moderate susceptibility, and below 0.65 for 

low metabolic susceptibility. These cut-offs 

were applied identically across all 

compounds to ensure an objective 

assessment of metabolic capacity. 

Thiophenyl-3 and Methoxy-

Thiophenyl analogues showed the highest 

CYP450 metabolism scores (0.80), which 

indicates that these molecules are likely to be 

extensively metabolized in the liver, mainly 

conducted by the CYP3A4 isoform, which 

was the primary target of this study. This 

sensitivity suggests that high clearance rates 

and short systemic half-life would limit the 

clinical use of these analogues despite their 

possibly high pharmacological potency. The 

high metabolism potential would generally 

require structural optimization or formulation 

approaches to extend the exposure time in 

plasma and increase the therapeutic window. 

In comparison, resveratrol had an 

intermediate metabolism score of 0.70, with a 

balanced metabolic capability, providing 

adequate systemic exposure, but still 

allowing metabolic clearance to prevent 

accumulation and toxicity. Analog-1 (0.71) 

and Analog-2 (0.73) likewise reside within 

this satisfactory range, suggesting they 

achieve an optimal balance between 

metabolic stability and clearance. These 

differences highlight the influence of 

structural changes, including introducing 

thiophenyl and methoxy groups, on the 

probability of interaction with CYP450. This is 

in line with the rules of medicinal chemistry, 

where electron-donating groups and 

aromatic heterocycles strongly promote 

metabolic transformation by oxidation 

catalyzed by CYP enzymes [37]. 

The interaction scores utilized in the 

present investigation are likelihood-of-

classification-based scores from a CYP3A4-

specific substrate-likeness predictor and do 

not derive from binding (or docking) energies. 

The model does not yet incorporate multiple 

isoforms explicitly, but CYP3A4 was chosen 

considering its predominant involvement in 

hepatic drug metabolism. Furthermore, the 

predictive model does not yield confidence 

intervals or standard deviations, because it is 

a stand-alone probabilistic classifier. A 

default probability value of 0.5 was used as 

the cutoff to differentiate predicted 

metabolizable and non-metabolizable 

compounds. However, this method allows a 

very fast and easy screening; the predictive 

uncertainty of the results could be addressed 

in future work by using model-ensemble 

approaches or Bayesian methods to estimate 

predictive uncertainty. 

The predicted interaction scores in 

the present study describe classification 

probabilities obtained from a machine 

learning model optimized to recognize 

CYP3A4 substrates, not actual binding 

affinities or docking results. Although 

CYP3A4 was the only isoform directly 

included due to its major role in hepatic drug 

metabolism, the model captures general 

tendencies in metabolic stability. Scores are 

reported as point estimates without 

https://doi.org/10.1021/tx700079z
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confidence intervals or standard deviations, 

since our model relies solely on a single 

probabilistic classifier. A cutoff threshold 0.5 

was chosen to determine a positive CYP-

based metabolism prediction. While this is 

effective for easy screening, future studies 

might improve predictive robustness using 

ensemble models or uncertainty estimation 

methods covering Bayesian inference or 

dropout-based approximations. 

 

Figure 6. Heatmap of Predicted Interaction Scores with CYP450 

 

3. Compound Interaction with Target 

Proteins 

However, despite well-established 

genetic findings and potential clinical use, the 

precise viral and host cell factors and 

mechanisms underlying HPV/SV-frame/cell 

frame interaction are mostly unclear. The 

molecular docking study (Figure 7) provides 

important clues about the multi-target 

interaction profile of resveratrol with major 

enzymes and receptors involved in 

metabolic, inflammatory, and longevity 

pathways. AutoDock Vina produced the 

conformers for docking, and the structures of 

proteins were downloaded from the RCSB 

PDB. Five target proteins were selected from 

the PDB database, namely (PDB ID: 4ZZH) 

for SIRT1, (3O96) for AKT1, (2AZ5) for TNF, 

(5F19) for PTGS2, among others. All proteins 

were processed by stripping waters,  adding 

polar hydrogens, and calculating Gasteiger 

charges. For all target proteins, 15 

compounds, including native resveratrol, 

Analog-1, Analog-2, and several thiophenyl-

modified analogues, were docked to 

determine relative binding interactions. For 

reliability, all ligands were prepared with 

Open Babel and minimized with the MMFF94 

force field to reach conformations with low 

energy before docking. Ligands were 

transformed into PDBQT format and 

protonated at physiological pH. All docking 

simulations utilized the scoring function 

developed in AutoDock Vina, which predicts 

binding free energy (ΔG) using a hybrid 

empirical scoring algorithm. All water 

molecules and non-target ligands or 

cofactors were removed from the binding 
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pocket in the protein preparation to eliminate 

steric hindrance in docking. Moreover, a 

redocking protocol was used, consisting of 

re-docking native co-crystallized ligands into 

their corresponding binding locations. The 

RMSD values (all <2.0 Å) indicated that the 

docking parameters used for the simulations 

could reproduce the native bound 

conformation with precision. It is important to 

note that while redocking provides protocol 

validation, de novo docking evaluates the 

binding of new compounds. 

The most negative binding energy 

was recorded for SIRT1 (-7.5 kcal/mol), an 

NAD+-dependent deacetylase identified as a 

master controller of metabolic homeostasis, 

mitochondrial function, and cellular longevity 

[38]. This interaction demonstrates that 

resveratrol might directly activate SIRT1, 

which is also supported by functional studies 

showing increased mitochondrial biogenesis 

and beneficial effects on health and lifespan 

in a SIRT1-dependent manner [39]. This 

supports the potential of resveratrol as a 

therapeutic agent for metabolic diseases and 

age-related pathologies. 

The next highest affinities were 

observed for NR3C1 (glucocorticoid receptor; 

-7.2 kcal/mol) and AKT1 (-7.0 kcal/mol). 

NR3C1 is an important player in stress 

response, inflammation control, and 

metabolic regulation, while AKT1 is a critical 

kinase in cell survival, glucose metabolism, 

and anti-apoptotic pathways. Their high 

affinity aligns with the ability of resveratrol to 

control stress adaptation and insulin 

sensitivity, supported by experimental data 

showing that this molecule stimulates insulin 

signaling and prevents metabolic disorders 

(Das & Das, 2007). Strong binding to PPARG 

(-6.8 kcal/mol) and ESR1 (-6.8 kcal/mol) 

further substantiates its involvement in lipid 

metabolism, adipogenesis, and hormonal 

balance, supporting its potential use in 

obesity and hormone-dependent cancers 

[40] 

 

Figure 7. Heatmap of Resveratrol Interaction with Key Enzymes and Receptors 

 

Binding to PTGS2 (COX-2; -6.9 

kcal/mol) is particularly interesting in the 

context of inflammation. PTGS2 is a key 

enzyme in the inflammatory cascade, and its 

suppression explains part of the anti-

inflammatory properties of numerous 

pharmacological agents. The binding to 

COX-2 by resveratrol corroborates its nature 

as a natural anti-inflammatory agent 

responsible for regulating prostaglandin 

release [41]. Weaker but still significant 

binding with MAPK1 (-5.8 kcal/mol), NF-κB1 

(-6.1 kcal/mol), and TNF (-5.5 kcal/mol) 

demonstrates modulation of important pro-

https://doi.org/10.1038/nrm3293
https://doi.org/10.1016/j.cell.2006.11.013
https://doi.org/10.1073/pnas.94.25.14138
https://doi.org/10.1074/jbc.273.34.21875
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inflammatory pathways. The NF-κB and TNF 

signaling pathways are master regulators of 

chronic inflammation, and the therapeutic 

potential of resveratrol can be linked to its 

binding affinity with these targets, providing a 

molecular explanation for its observed anti-

inflammatory and immune-modulating effects 

[42]. However, due to the variety and 

inhomogeneity of the binding site 

environments, the crystallographic 

complexes consist of residues from 

structurally different and biologically non-

equivalent classes. Thus, the binding 

affinities are not strictly comparable across all 

proteins. Affinity scores are most informative 

when considered relative to each target's 

individual binding profile and ligand 

compatibility. 

 

Figure 8. Validation of Molecular Docking Accuracy via Redocking RMSD Analysis of 15 

Compounds 

 

In conclusion, this docking analysis, 

alongside the strong molecular and cellular 

support for this activity, highlights 

resveratrol's diverse and complementary 

target profile, through interactions with 

modulators of metabolic, stress, and 

inflammatory pathways—including SIRT1, 

AKT1, NF-κB1, and TNF—resveratrol 

functions as an orchestrated 

pharmacological agent unmatched by single-

target therapies. These observations are 

consistent with polypharmacology,  where 

drugs induce modulations on multiple 

molecular targets to exert therapeutic effects, 

particularly for complex, multigenetic 

diseases [43]. The heatmap (Figure 7) further 

validates such multi-target interactions, thus 

guiding further structural optimization to 

achieve higher selectivity and potency in 

clinical applications towards metabolic 

syndrome, chronic inflammation, and age-

related decline. To validate these docking 

results, redocking of the 15 representative 

compounds (Figure 8) was conducted, and 

the majority of the structures yielded RMSD 

values less than 2.0 Å—indicating the 

robustness and predictability of the docking 

protocol. 

4. KEGG Pathway Analysis 

(Network Pharmacology) 

According to these PPI-associated 

targets, KEGG pathway analysis (network 

pharmacology) was carried out. The KEGG 

pathway enrichment analysis (Figure 9) 

works as an important clue on the multi-target 

pharmacological effects of resveratrol. The 

https://doi.org/10.1152/ajpheart.00368.2009
https://doi.org/10.1038/nchembio.118
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chemokine signaling pathway was the most 

significantly enriched in the top 10 enriched 

pathways according to functional annotation 

analysis (adjusted p-value < 0.001, FDR-

corrected) and was associated with nine 

correlated pathways. The pathways' adjusted 

p-value(using the Benjamini–Hochberg false 

discovery rate correction approach) was used 

to rank and obtain statistically reliable 

enrichment results. This indicates a central 

role for resveratrol in the control of 

chemokine-related immune signaling and 

inflammation. 

The eight pathways of the cAMP 

signaling pathway indicate its role inside the 

cell in intracellular signaling, metabolic 

regulation, and stress responses. Ultimately,  

the Rap1 (7 pathways) and Ras (6 pathways) 

signaling pathways also reflect the impact of 

the compound on cell adhesion, growth, and 

survival. The enrichment of ErbB signaling 

pathway (5 pathways, involvement in cell 

proliferation and cancer progression), as well 

as platinum drug resistance (4 pathways) and 

endocrine resistance (3 pathways), indicates 

the possible effect of resveratrol to reduce 

chemoresistance and to improve the 

efficiency of the treatment of cancer. 

Moreover, two pathways associated with the 

resistance to EGFR tyrosine kinase 

inhibitors, one pathway related to metabolism 

and one pathway related to inositol 

phosphate metabolism, further illustrate its 

various efficiency mechanisms in different 

processes. 

No DEG filtering was conducted 

since this analysis was target prediction 

rather than differential gene expression 

(DEG). Then, pathway analysis was 

performed using the KEGG pathways in the 

DAVID functional annotation tool. Other 

pathway databases, such as Reactome or 

Gene Ontology (GO), were not addressed 

here. Background correction was performed 

with the full set of human genes, normalizing 

for gene length bias and variances in 

expression levels with the enrichment tool. 

This broad influence implies that 

resveratrol may function at the systems level 

rather than as a single-target agent. It has 

anti-inflammatory, immune-modulatory, 

metabolic, and potentially anti-cancer 

properties by modulating essential signalling 

networks. The evidence indicates that 

resveratrol-mediated regulation of 

chemokine and MAPK signaling may be 

implicated in its capacity to decrease 

systemic inflammation and protect cellular 

viability [11], [44], [45]. Even though these top 

pathways are presented in the ordered bar 

form (Figure 9), further network visualization 

exhibiting the network crosstalk of enriched 

pathways and common target genes for 

future studies should be explored for deeper 

system-level relationships. In addition, its 

participation in drug resistance pathways 

sheds light on its potential as an adjuvant to 

chemotherapy, which could improve drug 

susceptibility and resistance in cancer. The 

high counts of pathway enrichment combined 

with relevancy to key cellular functions 

highlight the diversity of resveratrol's 

therapeutic potential and lend it as a strong 

contender for future clinical research in multi-

target pharmacology and combination 

therapies for metabolic disorders, 

inflammation, and oncology. 

https://doi.org/10.1155/2023/1097706
https://doi.org/10.3389/fphar.2020.01064
https://doi.org/10.1208/s12249-021-02076-w


 JKPK (Jurnal Kimia dan Pendidikan Kimia), Vol.10, No. 1, 2025,  pp. 28-52         41 

  

 

Figure 9. Top 10 KEGG Pathways Related to Resveratrol Target Receptors 

 

5. Pharmacokinetics and 

Bioavailability of Compounds 

Pharmacokinetic simulations 

(Figures 10–12) of resveratrol and its 

polymorphic derivatives based on the 

absorption, systemic exposure, and 

elimination are shown. Simulations were 

performed with a physiologically based 

pharmacokinetic (PBPK) model implemented 

in SimBiology (MATLAB R2022b) and 

assumed oral intake of 100 mg of each 

compound in a typical immediate release 

formulation. Key model assumptions were a 

first-order Ka of 1.2 h⁻¹, and fast gastric 

emptying. The model considered human 

physiology parameters such as liver 

metabolism, gastrointestinal pH, blood flow 

rates. 

The model was initially verified with 

resveratrol as a reference compound. After 

oral administration, the maximum 

concentration of resveratrol in plasma 

(Cmax) (10 µM) was achieved after 30–60 

minutes (Tmax ≈ 30–60 minutes) and rapidly 

decreased to less than 1 µM (4 hours). The 

model predicted an elimination half-life of 1 to 

8 hours, which compares favourably to 

experimental pharmacokinetic profiles from 

the literature. Binding of plasma protein 

(~98%) and first-pass hepatic metabolism by 

CYP450 enzymes was incorporated into the 

simulation to account for known clearance 

mechanisms. These average plots of plasma 

concentration vs. time (Figure 12) were 

illustrative and not presented with shaded 

confidence intervals or error bars, which will 

be recommended in future versions to 

eliminate absence of representation of 

interindividual variability and parameter 

uncertainty. 

While experimental data for the 

analogues are not available at present, 

ADME properties of the compounds were 

estimated using a hybrid approach based on 

QSAR (e.g., pkCSM) predictions, similarity to 

the parent resveratrol structure, and curated 

literature data, where available. The model 

also assumes similar binding to plasma 

proteins and renal clearance for all 

analogues, unless major structural 

differences advocate other 

recommendations. Interestingly, whereas 

peak plasma concentration (Cmax) was 
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reduced for Analog-2 (~0.1 µM) compared to 

Compound 1, plasma concentrations 

remained above 0.01 µM for >24 hours as a 

result of a slower absorption and prolonged 

systemic persistence. This kinetic profile 

should result in increased dosing efficiency 

and extended pharmacologic exposure 

relative to the parent compound 

 

Figure 10. Predicted Bioavailability Values of Resveratrol and Its Analogues 

 

Figure 11. Heatmap of Predicted Drug Elimination Rates in Body Compartments 

 

 As a measure of their calculated oral 

bioavailabilities, each compound was 

quantified in Figure 10. Analog-2 was the 

most bioavailable (35.2%), followed by 

Thiophenyl-2 (34.1%), Thiophenyl-DPP-

Conjugate (33.5%), and Sulfonic-Thiophenyl 

(33.3%). On the other hand, resveratrol, with 

the lowest expected bioavailability (28.3%), 

demonstrates poor absorption and great first-

pass effects. The analogues are spread in a 

small window (31%−35%), indicating that 

structural alterations have increased 

gastrointestinal permeability primarily due to 

thiophenyl and sulfonic substitution without 

losing metabolic stability. 
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Also, it is interesting to note that the 

compound behaviour is further characterised 

by elimination rates (Figure 11). The 

predicted elimination rate constant of 

resveratrol was the highest (9.789), indicating 

fast systemic elimination. Analog-2 (1.174) 

and Analog-1 (1.714) followed,  attesting to 

slower depuration. Minimal elimination 

(indicative of extended circulation time and 

potential for 1×/day dosing) was observed for 

compounds Methoxy-Thiophenyl (0.000) and 

Thiophenyl-3 (0.028). These data are in line 

with the excellent pharmacokinetic profiles of 

Analog-1 and Analog-2 observed before, and 

demonstrate a further screening that 

identifies the optimal analog encompassing 

increased bioavailability, extended systemic 

exposure, and reduced excretion—three 

important traits for oral drug development 

[46], [47] 

 

Figure 12. Plasma Concentraion-Time Profilles for Resveratrol and Its Analogues 

 

6. Gene Expression Analysis and 

Epigenetic Impact 

a. Differential Gene Expression 

Analysis 

Resveratrol treatment generates 

marked and statistically significant changes 

in gene expression (Figure 13: Volcano 

plots). The data were from the publicly 

available GSE85530, derived from a well-

defined resveratrol intervention. Biologically 

matched sample groups were analyzed 

through the DESeq2 pipeline. Normalization 

of gene counts was done with the median-of-

ratio method, and batch effects were adjusted 

for by including sample groupings as 

covariates in the design. 1,245 DEGs were 

obtained with the filter of |log2 fold change| > 

1 and False Discovery Rate (FDR) adjusted 

p < 0.05. Of these, 723 genes were up-

regulated and 522 genes were down-

regulated, highlighting the widespread effects 

resveratrol has on regulation. The PCA 

analysis (Figure 14) demonstrated a clear 

separation between treated and control 

groups, indicative of a global rewiring of the 

hypoxic response upon exposure to 

resveratrol. 

Most upregulated genes are 

associated with antioxidant defense, cellular 

stress response, and inhibition of pro-

https://doi.org/10.1007/s00280-010-1525-4
https://doi.org/10.1016/j.cmet.2011.10.002
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inflammatory signals. By contrast, down-

regulated genes were over-represented 

among those involved in disturbed metabolic 

dysregulation, oxidative stress, and chronic 

inflammation pathways. These changes 

would represent a coordinated 

reprogramming towards a protective and 

homeostatic cellular state. DEG set 

enrichment analysis (data not shown) 

showed significant association with NF-κB 

signaling, cytokine activity, and oxidative 

phosphorylation (resveratrol has been 

reported to act on inflammation and 

mitochondrial bioenergetics). Transcription 

factor binding motif analysis was conducted 

based on curated databases (e.g., TRRUST) 

to address the potential regulatory 

mechanism. NF-κB, FOXO1, and SIRT1 

were among the most enriched upstream 

regulators, which further suggests a role for 

resveratrol in altering gene expression and 

the networks controlling transcriptional 

dynamics. 

Table 1. Top 10 Differentially Expressed Genes (DEGs) Following Resveratrol Treatment 

Gene Symbol log2 Fold Change Adjusted P-Value 
(FDR 

Functional Annotation 

SOD2 2.45 0.0001 Mitochondrial antioxidant 

NRF2 1.98 0.0003 Oxidative stress regulator 

IL6 -2.10 0.0005 Pro-inflammatory cytokine 

TNF -1.85 0.0008 Inflammatory mediator 
SIRT1 1.76 0.0010 Longevity and metabolism 

regulator 

HMOX1 2.15 0.0012 Heme degradation enzyme 

HDAC1 -1.67 0.0015 Histone deacetylase 
(epigenetics 

FOXO3 1.53 0.0020 Stress resistance 
transcription factor 

CXCL10 -2.45 0.0025 Chemokine involved in the 
immune response 

PPARG 1.90 0.0030 Lipid metabolism and 
insulin sensitivity 

 

b. Epigenetic Mechanisms of Action 

Mechanistically, this modulation 

aligns with resveratrol's well-established 

epigenetic modulatory properties, impacting 

chromatin structure, histone acetylation, and 

the activity of transcription factors [48], [49]. 

Genes associated with histone-modifying 

enzymes, especially the HDACs and SIRT1, 

were also considerably impacted. Resveratrol 

is reported to activate SIRT1 and repress 

several HDACs, driving transcriptional 

patterns related to stress resistance, 

metabolic efficiency, and anti-inflammatory 

status. 

The reversible nature of HDAC and 

sirtuin activity modulation suggests that these 

epigenetic changes are reversible upon 

discontinuation of therapy. This system's 

flexibility also makes resveratrol a relatively 

attractive compound in terms of the potential 

https://doi.org/10.18632/oncotarget.9578
https://doi.org/10.18632/aging.103338
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to use as a therapeutic, with temporal 

adjustment of gene expression in the absence 

of a permanent alteration to the genome. 

Pathway enrichment of epigenetically 

associated DEGs revealed functions in 

immune modulation, oxidative stress 

protection, and cell survival signaling. This 

further supported resveratrol’s significance as 

a systems-level regulator of cellular fitness. 

Collectively, these transcriptional 

changes suggest that resveratrol has the 

potential to be a versatile therapeutic agent 

that modulates transcriptional networks 

controlling inflammation, oxidative stress, and 

metabolic reprogramming. The coordinated 

regulation of similar stress- and energy-

responsive targets indicates a specific, yet 

broad effect upon the epigenome, consistent 

with previous evidence for resveratrol on 

cellular longevity pathways and organismal 

health at a molecular level. 

 

Figure 13. Volcano Plot of Differentially Expressed Genes Following Resveratrol Treatment 

 

Figure 14. Principal Component  Analysis (PCA) Plot of Gene Expression Profiles Between 

Control and Treated Groups  
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7. Effects of Resveratrol on Gut 

Microbiota and Abundance 

Prediction 

This study explored the effects of 

resveratrol on gut microbiota composition 

using data derived from the GutMGene 

database (version 2.0), which compiles 

experimentally supported interactions 

between microbial species, host genes, and 

bioactive compounds. Microbial profiles were 

simulated rather than experimentally 

sequenced, and the data do not originate 

from 16S rRNA or shotgun metagenomics but 

are inferred from known associations. The 

analysis included 20 representative microbial 

taxa and focused on genus-level abundance 

metrics. 

A paired t-test (p < 0.01) revealed 

statistically significant increases in the 

abundance of beneficial bacteria following 

resveratrol treatment. Genera such as 

Bacteroides and Parabacteroides, known for 

their anti-inflammatory and metabolic 

regulatory functions, showed the most 

pronounced gains. [50], [51]. Figure 15 

demonstrates a clear increase in post-

treatment microbial counts and a more 

balanced species distribution, suggesting an 

enhanced microbial ecosystem.

 

Figure 15. Comparison of Microbiota Population Before and After Resveratrol Treatment 

 

 

Figure 16. Heatmap of Correlation Between Microbiome Abundance and Resveratrol Binding 

Affinity 

https://doi.org/10.3389/fphar.2020.01249
https://doi.org/10.3390/biomedicines10081797
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Figure 17. Predicted vs Actual Abundance Model Performance for Gut Microbiota 

Shannon and Simpson indices were 

calculated to assess diversity, which 

indicated an increase in microbial alpha 

diversity post-treatment. These findings 

support the role of resveratrol in promoting a 

richer and more resilient gut microbiome. 

A Random Forest regression model 

was trained using 1444 molecular descriptors 

of resveratrol analogues and their docking-

derived binding affinities to key host targets 

for abundance prediction. Input features 

included abundance mean, standard 

deviation, and compound-target interaction 

scores. As shown in Figure 17, the model's 

performance yielded an R² of 0.42, MAE of 

97.6, and a p-value < 0.05, indicating a 

moderate but statistically significant 

correlation between predicted and actual 

microbiota abundance values. While some 

outliers deviate from the perfect prediction 

line, the model captures core abundance 

trends, acknowledging biological variability 

as a confounding factor. 

The heatmap in Figure 16 further 

explores correlations between microbiota 

features (mean, median, standard deviation) 

and resveratrol binding affinities. A weak 

positive correlation was observed between 

binding affinity and microbial abundance 

variability (r = 0.08). This suggests that 

fluctuations in microbiota populations may 

result indirectly from host-mediated 

metabolic modulation rather than direct 

microbial targeting. Strong intercorrelations 

among abundance metrics (r > 0.76) 

confirmed the reliability and internal 

consistency of the abundance dataset. 

In summary, these findings illustrate 

the potential of resveratrol to beneficially 

influence gut microbiota composition and 

diversity, likely through indirect systemic 

effects via host signaling pathways. 

Integrating molecular docking, microbiota 

data, and machine learning-based modeling 

demonstrates a robust framework for linking 

compound-target interactions to downstream 

ecological shifts in the microbiome. 
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Future work should validate these findings 

through experimental 16S rRNA sequencing 

or shotgun metagenomic profiling, 

incorporate broader metadata (e.g., diet, age, 

host genetics), and apply multi-omics 

integration such as metabolomics and 

transcriptomics to strengthen causal 

inference. Longitudinal studies are also 

recommended to capture dynamic changes 

and recovery phases post-treatment, 

enhancing predictive generalizability across 

populations. 

CONCLUSION 

The study is aimed at the integrated 

evaluation of resveratrol and its structural 

analogs using in silico permeability 

prediction, metabolic profiling, molecular 

docking, and pharmacokinetic modelling. 

Introduction of alkylsulfinyl and alkoxy 

substituents, in particular, led to increased 

cell-penetrating, metabolic stability, and 

whole body exposure, indicating the 

improvement of the pharmacokinetics of 

parent resveratrol. And Analog-2 and 

Methoxy-Thiophenyl consistently emerged 

as leads across permeability, metabolic 

interaction, and docking affinity. They 

predicted bioavailability in all the analogs 

tested, suggesting the selection of these 

compounds for in vitro and in vivo validation. 

Molecular docking indicated strong 

interactions between resveratrol and several 

important targets, including SIRT1, AKT1, 

and TNF, underpinning its 

polypharmacological activity in metabolism, 

inflammation, and cellular lifespan regulation. 

In silico analysis also indicated regulation of 

chemokine, cAMP, and MAPK signaling 

pathways, thus its candidacy for treating 

multifactorial chronic diseases. Although the 

results provide useful predictive clues, they 

are computational, and need to be validated 

experimentally. Our models need to be 

further dissected using bigger datasets, 

screened in synergy with other bioactives, 

and combined with multi-omics 

(metabolomics, transcriptomics, microbiome) 

to account for the broader systemic context. 

Such approaches will be critical for 

progressing the clinical translation and 

therapeutic application of resveratrol-like 

compounds. 
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