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Reasoning is a basic cognitive ability in science learning, especially in 
chemistry, in which students must connect macroscopic, symbolic, and 
microscopic levels. However, most students seem to have difficulty 
learning chemical reasoning, especially in the ionization of weak bases 

(examples: NH₃). This study uses a scaffold-based assessment to 
evaluate students' explanations for ammonia as a base. A paper-and-
pencil test was applied to 91 first-year preservice chemistry students to 
test them on phenomenological, mechanical, and structural types of 
reasoning. Two raters rated responses, and scoring reliability was 
assessed using Cohen’s Kappa (0.925). The data analysis consisted of 
descriptive statistics, correlation analysis, clustering (K-Means and t-
SNE), and regression prediction with XGBoost. The results demonstrate 
that structural reasoning exhibits the highest level, but 
phenomenological reasoning has the most variation. There appears to 
be a high correlation between phenomenological empirical 
generalization and structural reasoning (r = 0.35+). Clustering outputs 
show three categories of students: high (R3), moderate (R2), and low 
(R1) reasoning, and most of the students are categorized at the 
moderate reasoning level, indicating some misconceptions. The 
XGBoost model performs well in predicting high-reasoning students but 
not in the moderate-reasoning classification. This paper indicates the 
power of scaffolding-embedded assessment for deducing reasoning 
patterns and misconceptions in ammonia ionization. The results can 
guide adaptive learning approaches for improving students' chemical 
reasoning. 
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INTRODUCTION 

Chemical reasoning is a form of critical 

thinking in chemistry education, which in turn 

helps a student develop conceptual links 

between the observed phenomenon and 

behavior at the molecular level and with 

symbolic representation in the domain of 

chemistry, which the Hong Kong 

postsecondary admission test for chemistry 

aims at [1]. The development of chemical 

reasoning is a key aspect of the high school 

chemistry curriculum, and it helps students 

grasp important topics like acid–base reactions, 

equilibrium, and molecular forces [2]. Students 

must fluidly navigate macroscopic 

observations, submicroscopic processes, and 
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symbolic equations to develop an integrated 

understanding of chemical phenomena. 

Without these linkages, knowledge becomes 

fragmented, and misconceptions can interfere 

with scientific reasoning. Similarly, proficient 

chemical thinking also supports problem 

solving, critical thinking, and other forms of 

engagement with more complex scientific ideas 

at the college level. Strong chemical reasoning 

is, therefore, recognized as a critical building 

block of meaningful learning of chemistry and 

the development of science literacy. However, 

despite its centrality, students’ difficulties 

creating coherently integrated, scientifically 

accurate explanations remain a key curricular 

challenge in chemistry education. 

One of such ideas, which provides 

continuous trouble to students, is regarding the 

behavior of ammonia (NH₃) as a weak base. 

The notion that all bases necessarily generate 

high pH values is a common misunderstanding 

due to confusion about solution ionization 

strength and equilibrium behavior [3], [4]. 

Students tend to take an overly condensed 

view of the term basicity on pH, without 

considering the molecule's level of ionization or 

nature. This is shallow reasoning and suggests 

ignorance of the mechanism of the impact of 

molecular structure on chemical behavior. 

Moreover, didactic methods that emphasize 

algorithmic problem solving at the expense of 

conceptual inquiry can continue to support 

superficial learning and the failure of learners to 

understand the subtle behavior of weak bases 

and ammonia in particular [5]. Learners, 

however, often do not appreciate that when 

weak bases react with water, reversible 

equilibria result, meaning that there are lower 

concentrations of hydroxide than in strong 

bases and only partial acceptance of protons. 

Consequently, they explain too superficially, 

without using the structure of explanations, and 

they show rather persistent alternative 

conceptions, not responsive to traffic 

instruction. 

To resolve these ongoing challenges, 

scaffolding-based pedagogical approaches 

have received growing interest in the science 

education literature. Scaffolding is defined as 

the instructional support, adapted to the 

learner’s needs and knowledge, and 

coordinated with the instruction that is going on, 

whereby the support is progressively removed 

as students become more independent [6]. In 

reasoning with chemical phenomena, 

scaffolding might help students make sense of 

the demanding connections required between 

their observations, the particulate behavior, and 

symbolic representations. Scaffolding-based 

assessments, such as these, are especially 

useful as they enable step-by-step cognitive 

support, enabling students to systematically 

engage with phenomenological, mechanistic, 

and structural levels of thinking. In this way, 

students can be helped to develop more 

complex explanations that include evidence, 

causal mechanisms, and molecular structures. 

However, despite increasing interest, empirical 

studies on how scaffolding affects students’ 

transitions from these reasoning dimensions 

are scarce, especially in explaining concretely 

observable weak base phenomena, such as 

ammonia ionization [5], [7]. Knowledge of this 

process is needed to develop effective 

interventions that foster more successful 

conceptual change in chemistry. 

Meanwhile, although diagnostic tools 

have been designed for identifying 
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misconceptions in chemistry education [8]-

[10], few studies have taken machine learning 

approaches to categorize and compare 

reasoning profiles of students. Novel machine 

learning methods such as XGBoost provide 

significantly more powerful tools to model 

cognition development and predict reasoning 

outcomes from student responses. Combining 

scaffolding-based assessments with 

predictive modeling improves the affordance 

for diagnosing conceptual difficulty and 

creates new opportunities for personalized 

adaptive support. Machine learning methods 

can detect hidden structures in student 

thinking, which is not easily revealed from 

traditional assessments, and offer a deeper 

understanding of learning trajectories [11]-

[15]. In addition, due to real-time feedback and 

analysis, predictive models are well-suited to 

dynamic classroom settings. Although these 

benefits exist, chemistry studies combining 

scaffolding supports and machine learning 

analysis are also limited. This discrepancy 

emphasizes the necessity of research 

integrating theoretical scaffolding, analysis of 

levels of reasoning development, and 

predictive modeling [16]. 

In this context, this study explores 

students’ chemical reasoning patterns about 

the ionization of ammonia as a weak base. In 

particular, this paper aims to investigate the 

connections between phenomenological, 

mechanical, and structural reasoning levels 

and common misconceptions related to the 

weak base character of ammonia. Finally, the 

effectiveness of the scaffolding-based 

assessments in conjunction with XGBoost 

classification for revealing students’ cognitive 

profiles and reasoning transitions will also be 

tested. Through the use of such an integrated 

approach and iteratively interacting with it, a 

deeper understanding of the dynamics of 

chemical reasoning is believed to arise, which 

can ultimately lead to more targeted and 

flexible instructional strategies. Finally, the 

outcomes are expected to add to the ongoing 

debate on data-driven innovation in chemistry 

education in the wider community. This work 

stresses integrating theoretical scaffolding and 

machine learning techniques to treat classic, 

challenging chemical education reasoning 

questions. In the end, the project aims to 

contribute to developing evidence-based 

pedagogical resources for improving students' 

understanding of and reasoning about high 

school chemistry. 

METHODS  

1. Research Design 

The study used a descriptive 

quantitative research design relevant to 

systematically document and analyze 

students' chemical reasoning patterns when 

explaining the ionization of ammonia (NH₃) as 

a weak base. While the quantitative side 

makes reasoning measurable in a large 

dataset, the descriptive side enables 

researchers to identify new cognitive profiles 

by applying clustering, correlation studies, and 

predictive modeling. This aligns with the 

study's purpose of diagnosing, categorizing, 

and foretelling students' reasoning levels from 

empirical data. 

https://doi.org/10.12973/eurasia.2014.1128a
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Figure 1. Research Design. 

 

2. Participants  

The participants were pre-service 

teachers in their first year, consisting of 91 

people at one of the universities in Semarang 

City, Indonesia. All the students had been 

instructed on concepts of acid-base and the 

Brønsted–Lowry theory in prior studies; 

hence, they had acquired the basic 

knowledge necessary for performing 

chemical reasoning tasks. A convenience 

sampling method was used, and the 

participants were recruited from already 

identified classes in the school. Although not 

completely random, the sampling was 

designed to represent a broad range of 

student abilities and cognitive levels to 

support deeper analysis of reasoning 

patterns. 

3. Instrument Development 

A five-item scaffolding-based paper 

test was prepared to measure three levels of 

chemical reasoning: phenomenology, 

mechanism, and structure. Item development 

was based on extant theoretical frameworks 

in previous literature [1], [4], and was 

consistent with representational reasoning 

theory. The steps of the activities were 

scaffolded to help students move from 

concrete to abstract thought. 

Two-stage validation of the 

instrument was performed by three experts in 

the field of chemistry (two chemistry 

education researchers and a senior 

chemistry teacher, who also has a 

background in curriculum development). 

Expert feedback informed the rewording of 

questions, scoring rubrics, and the logic of 

scaffolding, thus ensuring the 

appropriateness and legibility of the content. 

4. Data Collection 

The data were obtained with a paper-

based test constructed within a scaffolding-

based assessment frame. This instrument 

included five task items that progressively led 

students from simple observations to more 

complex abstract reasoning along the 

phenomenological, mechanistic, and 

structural levels (as identified in Table 1). 

https://doi.org/10.1039/c5rp00208g
https://doi.org/10.1021/ed300765k
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The test was conducted under 

controlled classroom conditions in which the 

students were taking their regular classes 

and had a time limit of 60 minutes to complete 

the test. Examinations were proctored by the 

classroom teacher and by a research team 

member to standardize the conditions under 

which the test was administered and reduce 

extraneous distractions. 

Students were asked not to complete 

the task using their textbooks or digital 

resources. Responses were de-identified and 

collected directly following the session. 

Responses that were unclear or incomplete 

were excluded from analyses conducted for 

individual item responses, but remained in 

the dataset when calculating reliabilities, as 

appropriate. 

5. Data Analysis 

Data analysis was performed in 

multiple steps to gain deeper insights into 

students' ideas of chemical reasoning. 

First, descriptive statistics (mean, median, 

standard deviation, and range) were 

estimated for each reasoning category 

(phenomenological, mechanistic, and 

structural). The distribution of scores was 

presented with histograms and boxplots to 

visualize trends and anomalies [11], [12]. 

Pearson correlation tests were 

performed to examine the correlations 

between reasoning categories. Data 

assumed to be normal was tested using 

Pearson's test. A heatmap was created to 

show the strength and direction of these 

relationships [13]. 

Table 1.  Chemical reasoning test instrument 

Chemical Reasoning indicator Example Questions 

Phenomenological 
Referring to insights 
gained empirically 
about substances and 
chemical reactions. 

Classification 
Systems 

NH₃ is recognized as a weak base. According to the 

Brønsted-Lowry theory, explain how NH₃ functions as a base 
in its reaction with water. 

Empirical 
Generalization 

A 0.01 M solution of NH₃ has a pH of approximately 11. 

Calculate the concentration of OH⁻ ions in this NH₃ solution. 

Mechanical 
Focused on evaluating 
the dynamics of each 
model component and 
the resulting changes 
in their positions and 
motions 

Static-
Deterministic 

When NH₃ dissolves in water, the NH₃ molecule, which has a 
lone pair of electrons on the nitrogen atom, accepts a proton 

from a water (H₂O) molecule. This reaction results in the 
formation of NH₄⁺ and OH⁻ ions, thereby increasing the 

concentration of OH⁻ ions in the solution, making it essential. 

The lone pair of electrons on the nitrogen atom in NH₃ allows 

it to bond with a proton (H⁺) from the water molecule, leading 

to the formation of NH₄⁺ and OH⁻ ions. 

Dynamic-
Probabilistic 

When the temperature of the NH₃ solution is increased, how 

does the temperature affect the movement of NH₃ and H₂O 
molecules? Explain how the rise in temperature impacts the 

probability of effective collisions between NH₃ and H₂O. 
 

Structural 
Based on an 
examination of the 
makeup and structure 
of chemical 
compounds shown 
through structural 
representations 

Structural NH₃ has a trigonal pyramidal structure with a lone pair of 

electrons on the nitrogen atom. This lone pair allows NH₃ to 

accept a proton from water. However, because NH₃ is a weak 
base, ionization does not occur completely, resulting in a 
solution with a pH above seven but not as high as a strong 

base. Describe the structure of NH₃ in its neutral state and 

after accepting a proton (forming NH₄⁺). Please explain how 
the trigonal pyramidal structure of NH₃ influences its basic 
properties. 

https://doi.org/10.1016/j.ijhcs.2024.103354
https://doi.org/10.6007/IJARBSS/v13-i5/17030
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Figure 2. Paper-Based Scaffolding Assessment 

 

To help identify patterns, K-Means 

clustering was used to cluster students into 

low, medium, and high reasoning groups. 

The clustering results were visualized using 

dimensionality reduction through t-distributed 

stochastic neighbor embedding (t-SNE) to 

facilitate visualization and interpretation in a 

low-dimensional representation. The choice 

of these tools is based on their widespread 

use for unsupervised learning and dimension 

reduction in educational data [14]. 

The flow of students across levels of 

reasoning was analyzed using Sankey 

diagrams. This technique was selected to 

graphically highlight how moves were used 

and how ideas evolved from one category to 

another, providing an image of the structure 

of students’ movement among categories of 

justification [15]. 

A predictive model, based on an 

XGBoost (extreme gradient boosting) 

algorithm [16], was configured to leverage the 

robustness and relatively high performance 

for small-to-medium scale educational 

datasets. The input features in the model 

were the students’ scores on each of the 

https://doi.org/10.1007/s10586-024-04560-x
https://doi.org/10.3758/s13428-021-01615-4
https://doi.org/10.1080/10494820.2021.1928235
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reasoning domains. Performance of the 

model was analyzed in terms of confusion 

matrices and feature importance plots to 

determine the accuracy and the reasoning 

categories that most influenced classification. 

All statistical and machine learning 

analyses were performed in Python (pandas, 

seaborn, scikit-learn, XGBoost) [17]. 

6. Validity and Reliability 

a. Inter-Rater Reliability 

To establish scoring consistency and 

objectivity, two trained raters rated students' 

solutions independently using an instrument 

designed to operationalize 

phenomenological, mechanistic, and 

structural reasoning levels. 

The scoring raters participated in a 

standardization session with sample 

responses before scoring to ensure 

consistent interpretation of the rubric criteria 

[18]. 

The inter-rater reliability was determined to 

be good with Cohen’s Kappa coefficient of 

0.925. According to Landis and Koch (1977), 

this value indicates almost perfect 

agreement, supporting the reliability and 

robustness of the scoring process in all 

reasoning dimensions [19]. 

b. Construct Validity 

The face validity of the scaffolding-

based assessment instrument was 

established through expert validation and 

pre-testing. Three chemistry education 

experts (two from a university and one from a 

senior high school) were invited to examine 

each test item's cognitive alignment with the 

chemical reasoning framework. 

Two rounds of iterative validation were 

applied, with feedback on both the 

appropriateness of the content in terms of 

cognitive level and the clarity of the 

scaffolding structure. Adjustments were 

made accordingly to improve item quality and 

alignment. 

A pilot test among a similar group of 

high school students was also conducted to 

ascertain the clarity, timing, and level of 

difficulty of the instrument. Pilot feedback 

influenced final revisions before full 

implementation, ensuring the instrument 

validly captured students' representational 

reasoning dimensions [20]. 

RESULTS AND DISCUSSION 

1. Distribution of Reasoning Score 

The scoring of the analysis of 

students’ reasoning according to the five 

chemical reasoning aspects provides a 

complete picture of their cognitive 

comprehension, mainly for explaining the 

ionization of ammonia. 

As presented in Figure 3, participants 

presented the best performance on 

Phenomenological System Classification with 

a significant peak of score 5.0 representing 

performance levels on classifying observable 

chemical phenomena [21]. 

This trend is also reflected in Table 2, 

where this domain has an average of 4.75, a 

median of 5.0, a S.D. of 0.58, and a skewness 

of -3.10, indicating that nearly all students 

achieved the maximum score on the scale. 

These performances were possible due to 

learning these chemical activity instruments 

in chemistry education, using indicators for 

the recognition of acids and bases [22]–[24]. 

https://doi.org/10.3390/pr11102897
https://doi.org/10.1111/bcp.14790
https://doi.org/10.2307/2529310
https://doi.org/10-2022.2326354
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Meanwhile, although still unimodal 

and right-leaning, Structural Reasoning has a 

lower central tendency with mean = 4.03, 

median = 4.0, and IQR = 0.0, as reflected in 

Figure 4 and Table 2. 

This indicates that even though most 

students can use chemical formulae and 

molecular structures more or less equally at 

a medium-to-high level, they hardly arrive at 

the highest level of representational 

integration. The absence of dispersion may 

also suggest overscaffolding or mechanistic 

symbolic procedure, but not genuine 

conceptual development [25]. 

Table 2.  Distribution Score 

Indicator Mean Median SD Skewness IQR 

Phenomenological system-Classification 4.75 5.0 0.58 -3,10 0.0 
Phenomenological Empirical-Generalization 4.62 5.0 0.54 -1,29 0.75 
Mechanistic static-Deterministic 4.18 4.0 0.58 -0.29 0.5 
Mechanistic Dynamic-Probabilistic 4.48 4.5 0.65 -1.63 1.0 
Structural-Structural 4.03 4.0 0.43 -1.46 0.0 

 

Figure 3. Histogram of Score Distribution 

 

Figure 4. Boxplot Comparison of Reasoning 

Outside of these areas of stability, 

Phenomenological Empirical Generalization 

entails greater cognitive diversity. 

Although this result also has a median of 5.0, 

its IQR (0.75) and skewness (–1.29) indicate 

that for some students it is possible to 

generalize the pattern they observe, while for 

others it is not. This result is congruent with 

past work, revealing the tendency of many 

students to be good at surface-level trend 

https://doi.org/10.1145/2470654.2481390
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recognition but facing generalization 

challenges, especially when teaching does 

not involve explicit demonstration of inductive 

reasoning [3]. 

The mechanistic justification types 

exhibit the most distinguished pattern in 

students’ cognitive patterns. 

Mechanistic Static-Deterministic Reasoning 

has a mean of 4.18, median of 4.0, IQR = 0.5, 

and similar slight negative skewness (–0.29), 

reflecting consistent procedural reasoning, 

typical of algorithmic-type work like 

calculating pH or predicting products. 

The students seem to rely on straightforward 

or rote rules but may lack an understanding 

of causality. 

In contrast, Mechanistic Dynamic-

Probabilistic Reasoning shows the greatest 

range of scores (mean = 4.48, IQR = 1.0, 

skewness = –1.63). This trend, as observed 

in Figure 4, indicates a distinct cognitive 

barrier in students’ capacity to model 

chemical systems' reversible, inconclusive, 

and time-related nature, such as the 

equilibrium reactions participating in weak 

base ionization. These activities go beyond 

mechanical rule application and require 

conceptual flexibility for dynamically relating 

symbolic, macroscopic, and submicroscopic 

representations [26], [1]. 

These results support Talanquer’s 

(2022) representational learning model, 

stating that chemical reasoning develops 

from recognition at the phenomenological 

level to explanation at the mechanistic level 

and finally reaches abstraction at the 

structural level. Yet the data also show that 

this growth is not linear or homogeneous. 

Some students may excel at classification but 

not generalization or dynamic reasoning, 

which indicates incomplete understanding 

[27], [5]. 

From an instructional perspective, 

the findings may underline the need for 

domain-adequate scaffolding. Although tasks 

involving multiple representations may be 

well-established in today’s curricula, students 

need explicit guidance for transfer within 

cognitive tools, such as scaffolding in the 

form of structured observation and 

explanation cycles, dynamic visualizations, 

or simulations to facilitate the understanding 

of the constructs of equilibrium and 

reversibility, and cross-representational 

activities to establish the connection of 

formulas, particle models, and macrological 

outcomes. 

The strong negative skewness and 

large IQR in empirical and dynamic domains 

indicate the demand for flexible instructional 

interventions in these domains because they 

are critical leverage points for orchestrating a 

shift from descriptive to analytical reasoning, 

provided that appropriate cognitive tools and 

pedagogical support are given [5]. 

2. Correlation Between Reasoning 

Levels 

The Pearson correlation studies of 

Figures 5 and 6 present the degree of the 

relationship of students’ scores over five 

chemical reasoning domains. Although all are 

positive,  their strengths and statistical 

significance vary, suggesting important 

differences in how students link different 

kinds of reasoning. The most highly 

correlated pair is Phenomenological System 

Classification and Phenomenological 

Empirical Generalization (r = 0.50, p < 0.001), 

https://doi.org/10.1021/acs.jchemed.6b00417
https://doi.org/10.1021/acs.jchemed.2c00511
https://doi.org/10.1039/c5rp00208g
https://doi.org/10.1021/acs.jchemed.5b00589
https://doi.org/10.1021/jacsau.2c00498
https://doi.org/10.1021/jacsau.2c00498
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which implies that chemistry learners with 

high proficiency in chemical phenomena 

classification are likely to perform well in 

forming generalizations of empirical data. 

This profile illuminates a robust 

developmental connection between surface-

form recognition and inductive reasoning—a 

key precursor of conceptual understanding 

[28], [29]. 

 

Figure 5. Pearson Correlation Heatmap Between Reasoning Levels 

 

Figure 6. p-value Pearson Correlation Heatmap 

 

A moderate and statistically 

significant relationship is also found between 

Empirical Generalization and Structural 

Reasoning (r = 0.36, p = 0.0005), suggesting 

that students who can generalize from data 

are likelier to link those patterns to symbolic 

https://doi.org/10.1039/c3rp00012e
https://doi.org/10.1039/b6rp90035f
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and molecular level representations. This 

indicates an increasing representational 

proficiency, where students recontextualize 

macroscopic observations on a level of the 

submicroscopic and symbolic, as it is 

described for example in Johnstone’s triplet 

model and Eduktion, and is also supported by 

research on representational fluency [28], [4]. 

A less conclusive relationship is 

found between mechanistic reasoning and 

structural reasoning. The relationship 

between Mechanistic Static-Deterministic 

Reasoning and Structural Reasoning, r = 

0.22 (p =0.0393), and the correlation 

between Mechanistic Dynamic-Probabilistic 

Reasoning and Structural Reasoning, r = 

0.20, is not significant (p = 0.0607). These 

results suggest that the students who reason 

causally about chemical processes, 

especially reversibility and uncertainty, may 

not translate this understanding into symbolic 

or structural representations [28]. 

This separation suggests that 

mechanistic reasoning is not implicitly linked 

to representational reasoning unless taught 

in an integrated manner. Students might 

understand what happens during a chemical 

change but struggle to describe it with 

structural pictures, chemical formulae, or 

symbolic representation. This fragmented 

view can hinder students’ capacity to work 

with open-ended tasks and transfer ideas 

across settings [30]. 

The conclusion to be drawn from 

these findings is that students are quite 

competent when working with stories 

(phenomenological reasoning). Still, they 

struggle with mechanical reasoning, 

especially bringing these two representations 

together. Consistent with that argument, we 

find that mechanistic reasoning, especially of 

a dynamic nature, is more cognitively 

challenging and does not receive as much 

instructional emphasis. The weak or 

nonexistent connections between 

mechanistic and structural reasoning 

domains suggest that the latter cannot be 

treated as stand-alone skills, but must be 

seen instead as part and parcel of a larger 

frame of scientific understanding [1], [5]. 

The above cognitive cleavages must 

be addressed consciously to bridge the gap 

between mechanistic and structural thinking 

for the learners. A successful strategy is to 

provide instruction based on multiple 

representations (going back and forth 

between particle diagrams, reaction 

mechanisms, and symbolic equations). This 

enables them to observe how microscopic 

changes are expressed in macroscopic 

representations. Also, scaffolding causal 

explanations (why, how) of a chemical 

process to structural representations (e.g., 

molecular structure, or a balanced equation) 

can help children overcome conceptual 

hurdles. The visual explanation through 

molecular animations and visual simulations 

is also necessary to help students visualize 

how the structure of the substances changes 

during the chemical reactions, even in 

complex situations such as the ionization of 

weak bases and dynamic equilibria. Without 

these focused instructional supports, 

students can persist in performing relatively 

well on discrete reasoning tasks. Still, they 

struggle to achieve the deeper integration 

required for advanced scientific problem 

solving and conceptual transfer [4], [31]. 

https://doi.org/10.1039/c3rp00012e
https://doi.org/10.1021/ed300765k
https://doi.org/10.1039/c3rp00012e
https://doi.org/10.1021/acs.jchemed.2c00572
https://doi.org/10.1039/c5rp00208g
https://doi.org/10.1021/jacsau.2c00498
https://doi.org/10.1021/ed300765k
https://doi.org/10.17509/jsl.v5i2.42656
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Figure 7. Scatter Plot of the Relationship Between Reasoning Categories 
 

To support and visually strengthen 

the conclusions drawn in the Pearson 

correlation heatmap, we show in Figure 7 four 

scatter plots involving regression lines, the 

corresponding slopes, and R² values. These 

plots further demonstrate relations between 

the reasoning constructs and confirm the 

nature and magnitude of the associations 

identified in the heatmap earlier (Figure 5). 

The upper left scatterplot between 

Phenomenological System Classification and 

Empirical Generalization reveals the tightest 

and consistent relationship between any pair 

of domains. The regression line has a slope 

of 0.47, r = 0.50, p < 0.001, and R² = 0.25, 

with classification ability accounting for 25% 

of the variance in students’ empirical 

generalization scores. This map aligns with 

the heatmap, exhibiting a strong and 

moderate positive correlation in these two 

domains. The concentrated data points and 

fast upward trend also make the point that the 

ability to classify systematically goes with the 

ability to make empirical generalizations, 

supporting a developmental connection 

between recognition and inductive reasoning 

[32]. 

The top-right scatter plot, in which we 

examine the relationship between Empirical 

Generalization and Static-Deterministic 

Mechanistic Reasoning, reveals an even 

weaker trend (r = 0.29, slope = 0.31, R² = 

0.09). The relationship is statistically 

significant (p = 0.005), but with the large 

spread and small slope, we again see what 

we noticed in the heatmap. A weak relation 

exists between students’ ability to generalize 

from data and their procedural, rule-based 

reasoning. This implies that procedural 

proficiency develops independently from 

inductive reasoning and that success in 

https://doi.org/10.1007/s11023-017-9428-3
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algorithmic tasks does not necessarily imply 

a deep conceptual understanding [30]. 

The bottom-left graph (Static-

Deterministic vs. Dynamic-Probabilistic 

Reasoning) also presents a small-to-

moderate but significant (r = 0.28, p = 0.008, 

R² = 0.08). This is also in line with the 

heatmap and means that some successful 

students in the case of fixed, rule-based 

reasoning would start interacting with 

complex, probabilistic processes, though not 

surely nor reliably. The data points also 

reveal a great diversity of dynamics in the 

students' transition from static to dynamic 

mode [33]. 

Lastly, the bottom-right scatter plot 

that connects Dynamic-Probabilistic 

Reasoning to Structural Reasoning 

evidences the weakest correlation (r = 0.20, 

p = 0.0607, slope = 0.13, and R² = 0.04). That 

would be a flat regression line, and the data 

would be all over the place. The lack of 

significant correlation directly opposes this 

finding in the heatmap. It suggests that the 

visualization of students’ capacity to reason 

about dynamic chemical processes 

(equilibrium, etc.) is not well related to their 

use of the symbolic or structural 

representations. This disparity represents a 

cognitive and pedagogical chasm [34]. 

The scatter plots and correlation 

matrix confirm this pattern: the development 

of students' reasoning entails some 

structured development (e.g., from 

classification to generalization, from static to 

dynamic causality), but these developments 

do not automatically lead to the development 

of their structural knowledge. Both sorts of 

analysis give us the same insight: structural 

reasoning is poorly integrated, particularly 

when combined with higher-order 

mechanistic reasoning. 

This triangulated approach between 

statistical correlation and visual regression 

supports the robustness of our findings and 

overcomes the limitation of a single evidence. 

There is evidence for the same issue: 

students can reason well within domains but 

struggle connecting between them, 

especially between mechanistic reasoning 

and structural reasoning [35], [36]. 

 

3. Clustering of Reasoning Patterns 

The elbow method presented in the 

WCSS plot (Figure 8) also supports that k=3 

is the optimal number of clusters to choose. 

The approach shows a steep decrease of 

WCSS with an increase in k from k = 1 to k = 

3, where there are few added gains. This 

corroborates the three-cluster solution,  

which combines computational efficiency 

with interesting data partitioning [37]. Adding 

clusters beyond k = 3 does not significantly 

improve clustering outcome, as indicated by 

the elbow in the plot, validating our choice to 

cluster students into three separate 

reasoning groups. These results highlight the 

need to integrate cluster analysis to inform 

instructional decisions, provide a more 

complex picture of students’ reasoning 

abilities, and provide a foundation for growth 

in an organized learning environment [38]. 

https://doi.org/10.1021/acs.jchemed.2c00572
https://doi.org/10.29303/jppipa.v9i11.5657
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192 Y. Faturohman et al, Unveiling Students' Understanding of ........... 

 

 

Figure 8. Elbow Method for optimal Cluster Selection 

 

Figure 9. t-SNE Clustering 

K-means clustering analysis, illustrated 

in Figure 9 through t-distributed Stochastic 

Neighbor Embedding (t-SNE), divides the 91 

students into three different reasoning 

groups, namely the High Reasoning Group 

(teal), the Moderate Reasoning Group (dark 

blue), and the Low Reasoning Group (light 

green). The High Reasoning Group shows 

students who have consistently high-level 

abilities in each of the phenomenological, 

mechanistic, and structural reasoning 

categories, reflecting a well-developed ability 

to interrelate empirical observations, 

mechanistic logic, and structure-based 

representations—strands considered to be 

critical assets to fostering expertise in 

complex chemical ideas [39]. The tight 

grouping of this cluster indicates good 

cognitive stability and conceptual maturity 

[35], [36]. Conversely, the Moderate 

Reasoning Group shows prototypical 

cognitive profiles in transition, with some 

reasoning aspects well developed, others left 

weak. Their proximity to the cluster 

boundaries indicates the possibility of 

passing or failing according to the 

instructional support [40]. The Low 

Reasoning Group identifies students with low 

reasoning ability for whom successful 

interventions will be targeted and intensive. 

https://doi.org/10.18637/jss.v061.i06
https://doi.org/10.1039/c9rp00241c
https://doi.org/10.1039/c5rp00064e
https://doi.org/10.4018/ijdet.2016100104
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Such overlap between the Moderate and 

High Reasoning Groups underscores the 

developmentally plastic nature of reasoning, 

and the importance of individualized teaching 

plans that reinforce weaknesses while 

spinning the gains of students into a leverage 

for their advance toward a more coherent and 

advanced reasoning [1], [5]. 

These results have critical 

implications for the chemistry education 

teaching and learning practices. The first 

observation from the clustering analysis is 

that students’ logical reasoning ability is not 

homogeneous but falls into different clusters 

with different performance levels. This 

indicates that there is a need for an 

educational approach based on their 

knowledge level. High Reasoning Group: 

They should continue to stretch and deepen 

their thinking by giving them complex,  real-

life situations of chemical concepts. The 

Moderate Reasoning Group should focus on 

bolstering weak reasoning areas by 

scaffolding targeted activities, such as probe-

and-improve tasks and relating empirical 

evidence to theoretical representations. For 

the Low Reasoning Group, extensive 

interventions are necessary, including: 

diagnostic tests to detect errors focusing on 

misconception, and instructional design 

centered on cognitive development of that 

reasoning foundation area [1], [4], [5]. 

4. Reasoning Transition Between Levels 

Fig. 10 Sankey Diagram: flows of 

students’ reasoning profiles from a narrow 

category (Structural Reasoning, 

Phenomenological Empirical Generalization, 

Phenomenological System Classification, 

Mechanical Static-Deterministic, Mechanical 

Dynamic-Probabilistic) to the general 

reasoning domain and then to one of the 

proficiency levels: High, Moderate, Low. The 

clearest, most direct bounces into High 

Reasoning come from the Structural 

Reasoning and the Phenomenological. In 

particular, in the transition from Structural 

Reasoning into the High Reasoning category, 

88 students appear, and 78 move from the 

Phenomenological System Classification. 

This is supported by the observation that 

students who can generalize from empirical 

observations or classify phenomena 

phenomenologically in this way, who 

demonstrate strong representation at the 

structural level, are the most capable of 

achieving advanced chemical reasoning [15]. 

With this Archimedean point, 

phenomenological reasoning becomes a 

cognitive bridge facilitating learning towards 

mastery in structural reasoning [1].

 

Figure 10. Sankey’s Diagram of Reasoning Transition

https://doi.org/10.1039/c5rp00208g
https://doi.org/10.1039/c5rp00208g
https://doi.org/10.1021/ed300765k
https://doi.org/10.1021/jacsau.2c00498
https://doi.org/10.3758/s13428-021-01615-4
https://doi.org/10.1039/c5rp00208g
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The mechanical reasoning, static-

deterministic, and dynamic-probabilistic 

paths undergo more diffuse shifts in contrast. 

There are 24 more students in the 

Mechanical category who enter the Moderate 

group, and the students of the Mechanical 

strength are 65 to enter the High Reasoning 

group. This suggests that it is not the type of 

procedural problem solving, but rather the 

purposeful inclusion of conceptual integration 

that promotes the development of higher 

order reasoning. Although minor, their flow 

into the Low Reasoning group comes 

principally from mechanical pathways with no 

conceptual base. It emphasizes to what 

extent procedural content can appear to 

become stagnant if not bound to construct 

frameworks (cf. [41]). For instance, only two 

students make a transition related to 

Mechanical Static-Deterministic and 

Mechanical Dynamic-Probabilistic reasoning, 

confirming then the notion that, absent the 

integration of dynamic or procedural 

reasoning and structural reasoning together, 

students could be experiencing considerable 

cognitive limitations [42]. 

These trends highlight the need for 

pedagogical strategies that combine higher-

order empirical, procedural, and structural 

reasoning skills to help students progress 

above a moderate level of reasoning and 

develop a more complete view of chemistry. 

The challenge is not just to offer instruction in 

such a way (scaffolded learning 

environments) that students can bridge the 

gap from phenomenological observations 

through mechanistic reasons and symbolic 

forms, but to ensure that for all procedural 

knowledge mechanisms there is an 

equivalent domain of conceptual and 

structural reasoning [1], [42]. 

5. Dominant Misconception 

Examining students' reasoning 

patterns (Figure 9) showed the presence of 

prevailing erroneous views on the ionization 

of ammonia. A large number of students who 

were placed into the moderate or low 

reasoning groups seemed to think that all 

bases had high pH, without sufficiently taking 

the ionizing power of the substance into 

account. This misunderstanding was 

particularly evident in students who 

demonstrated reasoning based more on 

procedural and mechanical reasoning, as 

indicated by the clustering and transitioning 

analyses [43]. 

 

Figure 11. Example of a Student's Response Illustrating Misconceptions about Ammonia 

Ionization. 

 

https://doi.org/10.3390/educsci14060570
https://doi.org/10.21831/cp.v38i2.23062
https://doi.org/10.1039/c5rp00208g
https://doi.org/10.21831/cp.v38i2.23062
https://doi.org/10.33394/jtp.v8i1.6192
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Certainly, students in the lower 

reasoning cluster seemed to recall the basic 

character of ammonia mostly around the pH, 

not offering sometimes an explanation of the 

incomplete ionization typical of weak bases. 

Their responses often revealed a naive level 

of presentation of the acid-base concept, 

which focused mainly on macromechanical 

behaviour, but did not consider 

submicroscopic and symbolic 

representations. This trend is consistent with 

previous studies that reported identical 

misconceptions in the acid-base chemistry 

[43], [44]. 

Furthermore, the Sankey diagram 

(Figure 10) interpretation revealed that a 

large proportion of students with poor 

structural reasoning skills could not move up 

towards higher levels of reasoning, and the 

naive idea of universal high pH values for 

bases might have affected their progress 

towards a more embedded, integrated 

understanding of chemical phenomena [35]. 

A student's response in Figure 11 

provides an illustrative case of this 

misunderstanding. He correctly describes the 

molecular shape of ammonia (trigonal 

pyramidal) because of the presence of the 

lone pair on nitrogen. Still, he wrongly infers 

that from the shape he can predict the base 

strength and relate it to a high pH of 10 (aq). 

This is a conceptual error on the degree of 

ionization since ammonia is a weak base and 

ionizes partially in water. These 

misconceptions were not rare: 5.5% of 

students in our sample also displayed 

reasoning errors, such as considering that all 

bases had high pH, independently of their 

basicity. This misguided generalization is due 

to premature access of strong bases such as 

NaOH, limited treatment of its equilibrium 

context and inappropriate models of 

acquisition which do not consider 

representations and integration of molecular 

concepts [45]. 

These results confirm the necessity 

of explicit instruction, which forces students 

to differentiate between strong and poor 

bases and incorporate macroscopic, sub-

microscopic, and symbolic levels, so that 

students can relate structure, behavior of 

ionization, and the observed chemical 

properties in a consistent and scientifically 

accurate way [46]. 

 

6. Predicting Reasoning Categories 

A predictive analytics approach was 

undertaken using the XGBoost model to 

group students into high, moderate, and low 

reasoning categories for the 

phenomenological, mechanistic, and 

structural reasoning scores [16]. Students 

were categorised as high, moderate, or low 

reasoning students based on broad 

phenomenon, mechanistic, and structural 

reasoning classifications using a predictive 

analysis approach with an XGBoost model. 

As can be observed from Figure 12 and 13, 

the accuracy of the model is extremely good 

with 95% as overall accuracy and excellent 

accuracy to discriminate students within 

High Reasoning group. It achieved precision, 

recall and F1-score of 0.95, 1.00 and 0.97 for 

this group, indicating that the model correctly 

classified all high-reasoning students without 

errors—a good show of its diagnostic 

capability in identifying well-developed 

reasoning profiles [47]. 

https://doi.org/10.33394/jtp.v8i1.6192
https://doi.org/10.21831/jrpm.v8i1.14995
https://doi.org/10.1039/c9rp00241c
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https://doi.org/10.1080/10494820.2021.1928235
https://doi.org/10.13189/ms.2021.090320
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But the model performed zero 

precision, recall, and F1-score for that 

category for students of Moderate Reasoning 

when they were classified. This suggests that 

all Moderate category students were 

incorrectly classified as either High or Low, 

which is a core problem for machine 

classification of transitional cognitive profiles. 

The macro-average F1-score (0.49) 

accounts for this imbalance but the weighted 

average (F1 = 0.92) is biased by the large 

number of correct high-level classifications 

[47], [48]. 

This performance difference 

indicates that moderate reasoning is, by 

nature, more ambiguous and structurally 

domain-adjacent. It also raises the questions 

of class imbalance and collinearity between 

some features, preventing the model to learn 

"pure" decision boundaries. These 

constraints suggest the necessity for higher-

quality feature designing, potential reduction 

of dimensionality, or even some adopting 

sampling strategies (e.g., SMOTE) to achieve 

better classification credibility of all groups 

[5], [47]. 

 

Figure 12. Confusion Matrix-XGBoost 

 

Figure 13. XGBoost Classification Metrics 

https://doi.org/10.13189/ms.2021.090320
https://doi.org/10.1177/15501329221106935
https://doi.org/10.1021/jacsau.2c00498
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Figure 14. Future Importance Analysis 

 

Additional inspection of Figure 14 

demonstrates that the Phenomenological 

System Classification is the strongest feature 

in the prediction of reasoning categories, with 

such factor contributing to over 50% of the 

model's predictive efficacy. Mechanical 

Static-Deterministic and Mechanical 

Dynamic-Probabilistic reasoning and 

corresponding centrality scores (about 19% 

and 16% in size) followed, whereas 

Structural Reasoning makes the smallest 

contribution (about 14%). These findings 

reiterate that sorting phenomena is a 

fundamental skill from which higher-order 

reasoning skills grow [1]. The relatively lower 

weight of structural thinking as a predictor 

indicates that it acts more as a distillate of the 

other components rather than a precursor. 

This requires a phase-based structure of 

instruction structure that initially nourishes 

phenomenological reasoning, and then 

slowly merges mechanistic and structural 

reasoning [49]. Further, the model’s 

challenge in predicting moderate reasoning 

also emphasizes the need for the use of 

adaptive formative assessment, and an 

inquiry-based teaching approach that can aid 

students in overcoming cognitive plateaus to 

develop stable, transferable chemical 

reasoning abilities [49], [50]. 

7. Limitations 

Although it offers insight into 

students’ chemical reasoning perspective, 

clearly there remains to be a significant 

amount of empirical work that needs to be 

done to better understand such patterns of 

reasoning. First, reliance on the paper 

scaffolding assessment, which effectively 

structures student responses, may not 

adequately capture the dynamic and 

process-oriented trajectory of conceptual 

development that might be elicited in 

interviews, think-aloud protocols, or live 

digital environments. Second, the sample in 

this study was only 91 students from a high 

school in Semarang, so that the findings 

cannot certainly be generalized into broader 

and more diverse educational settings. 

Third, the predictive model, XGBoost, while 

being very accurate in identifying students in 

the High Reasoning category, did not classify 

any students in the Moderate group – 

demonstrating the challenges of feature 

https://doi.org/10.1039/c5rp00208g
https://doi.org/10.2991/icesre-18.2019.3
https://doi.org/10.2991/icesre-18.2019.3
https://doi.org/10.1016/j.edurev.2017.09.002
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sensitivity and class imbalance. It is worth 

mentioning that cross-validation methods 

were not in use here, and in the future models 

robust validation and rebalancing methods 

should be integrated to improve the fairness 

and accuracy of the predictions. 

Further, the rationale test is expert 

validated, however, it might not be completely 

representative of the entire range of 

chemical reasoning, particularly for less-

scaffolded or inter-disciplinary environments. 

The study also did not investigate the 

influence of demographic variables (e.g., 

gender, academic track) on reasoning 

performance and learning trajectories. 

Finally, analysis of misconceptions, although 

high on inter-rater agreement, was based on 

manually coded student responses and may 

contain subjective biases despite the well-

structured rubric. These limitations should 

be redressed in future research with mixed-

methods approaches, larger/more diverse 

samples, and the use of automated or 

interceding coding techniques to enhance the 

reliability and validity of the identification of 

cognitive patterns. 

CONCLUSION 

In the present study, we outline 

students’ patterns of chemical reasoning 

about ammonia and its characterization as a 

weak base. Results indicate that 

phenomenological reasoning plays an 

important role as an intermediate level of 

reasoning in students’ phasing out of 

structural reasoning, and that good 

classification- and generalization-skilled 

students work with a higher degree of 

cognitive integration. Mechanical reasoning, 

in contrast, develops as if in silos, with less 

and less chance to emerge fully during the 

advancement of everyday thinking without 

teaching intervention. Moderate reasoning 

profiles were predominant among students, 

highlighting the importance of well-designed 

scaffolding strategies. 

Dialogic teaching methods that 

progressively bridge empirical events, 

phenomenological conjectures, and symbolic 

representations are necessary for fostering 

higher-order development of chemical 

reasoning. Greater investigation is needed of 

these transition processes between levels of 

reasoning, to address the ongoing levels of 

misconceptions around the ionizing strength 

of weak bases, the incorporation of 

scaffolding platforms that allow for enriched 

time-lapsed assessment, and the fine-tuning 

of predictive models to improve the accuracy 

in classification, especially in the moderate 

profiles of reasoning categories. 
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