MODEL HUBUNGAN JUMLAH PENGANGGURAN DAN INDEKS KEDALAMAN KEMISKINAN DI PULAU SUMATERA TAHUN 2019 MENGGUNAKAN REGRESI NONPARAMETRIK SPLINES

Aida Meimela

Abstract

Poverty does not only focus on decreasing the number of poor people. There is an important thing that must also be considered, namely the Poverty Gap Index (P1). From year to year, the poverty gap index for all regencies/cities in Sumatra tends to stagnate. While the island of Sumatra is the second island with the largest population in Indonesia. This should be a serious concern for the government. One of the factors that influence the poverty gap index is unemployment. The more people who are unemployed can increase the poverty gap index. Therefore we need to model the relationship between the number of unemployment and poverty gap index. The approach used is nonparametric regression modeling where the residual value is not normally distributed. The model is smoothing splines regression and quantile splines regression (median, τ = 0, 5). Meanwhile, to see the best model performance by looking at the RMSE values of both models. From the results of the study, it was found that the quantile regression smoothing splines model was better because the RMSE value was lower than the regression smoothing splines.

Keywords: poverty gap, unemployment, quantile regression

JEL Classification: I32, J64, C21

Full Text:

PDF

References

Ahmaddien Iskandar, Faktor Determinan Keparahan dan Kedalaman Kemiskinan Jawa Barat dengan Regresi Data Panel. Forum Ekonomi. Vol 21 No 1 (2019).

Badan Pusat Statistik.(2020). Keadaan Angkatan Kerja di Indonesia Agustus 2019. Jakarta. Badan Pusat Statistik.

Craig, Steven G., & Ng, Pin T. 2001. Using Quantile Smoothing Splines to Identify Employment Subcenters in a Multicentric Urban Area. Journal of Urban Economics 49, 100–120.

Craven, P., & Wahba, G. 1979. Smoothing Noisy Data with Spline Functions: Estimating the Correct Degree of Smoothing by The Method of Generalized Cross-Validation. Numerische Mathematik 31: 377–403.

Eubank, R. 1999. Nonparametric Regression and Spline Smoothing. New York: Marcel Dekker

Hardle, W. (1990). Applied Nonparametric Regression. Cambridge University Press.

Hastie, T.J, R.J. Tibshirani. 1990. Generalized Additive Models. Chapman and Hall, London.

https://www.bps.go.id/statictable/2014/02/18/1274/proyeksi-penduduk-menurut-provinsi-2010---2035.html diakses pada tanggal 1 Mei 2020

https://www.bps.go.id/subject/23/kemiskinan-dan-ketimpangan.html#subjekViewTab6 diakses pada tanggal 1 Mei 2020.

Koenker, R., & Basset, JR.G. 1978. Regression Quantile. Econometrica 46, 1, 33-50.

Koenker, Roger, et.al. 1994. Quantile Smoothing Splines. Biometrika 81,4, pages 673-680.

Koenker, R. 2011. Additive Models for Quantile Regression: Model Selection and Confidence Bandaids. Brazilian Journal of Probability and Statistics 25, 239-262.

Mulyani, Sri. 2017. Pemodelan Hubungan Indeks Pembangunan Manusia Dan Persentase Penduduk Miskin Menggunakan Regresi Kuantil Smoothing Splines. Tesis: Universitas Padjadjaran.

Tambun, Juhar Monang S, Rita Herawaty. Pemodelan Faktor-Faktor yang Mempengaruhi Indeks Kedalaman Kemiskinan dan Indeks Keparahan Kemiskinan Kabupaten/Kota di Sumatera Utara Menggunakan Regresi data Panel. Jurnal Ilmu Administrasi Publik. Vol 6 No 1.2018.

Refbacks

  • There are currently no refbacks.