
6

Journal of Electrical, Electronic, Information, and Communication Technology (JEEICT)

Vol. 3 No. 1, April 2021, Pages 6-11

Monitoring Print Engine Output Using Arduino and

Raspberry Pi

1st Meiyanto Eko Sulistyo

Dept. of Electrical Engineering

Sebelas Maret University

Surakarta, Indonesia

mekosulistyo@staff.uns.ac.id

2nd Stephanus Hanurjaya

Dept. of Electrical Engineering

Sebelas Maret University

Surakarta, Indonesia

32.stephanushanurjaya@gmail.com

3rd Muhammad Danang Prastowo

IT Infrastructure Division

PT. Tiga Serangkai Inti Corpora

Surakarta, Indonesia

dprastowo@tigaserangkai.co.id

Abstract— In the printing industry process, monitoring is

necessary for quality control of the product. The making of the

tool on this project serves to monitor the output of the

production machine. This monitoring is done by detecting the

product output from the production machine using Sensor E18

D80NK. When the sensor detects the output, the sensor sends a

signal to the Arduino UNO R3 which will calculate the amount

of output from the product. Arduino will send information of

the number of outputs via a USB connection to a central

computer that is a Raspberry Pi 3 model B. The Python

program on Raspberry Pi will read input from each Arduino

address and display the data in realtime. At the same time, the

data will be stored as a text file. This text file contains the

number of product output and the time of the output. The

prototype of this tool has been successfully created and there is

still much development to do.

Keywords— arduino, monitoring, python, raspberry pi

I. INTRODUCTION

In a printing production process, monitoring needs to be
done in all aspects, from the pre-printing process, the
printing process, the finishing, to the distribution process. On
a printing machine, there is a screen to see how much input
and output the process is working on. This reading is carried
out by a sensor on the machine, and is displayed using a
seven segment screen or an LCD display. The displayed
figure will be manually checked by engine maintenance
personnel. If there is a problem with the machine, this officer
will handle the machine so that the production process is not
interrupted.

There are so many printing machines operating
simultaneously in a printing machine group that it is quite
difficult to monitor the performance of all machines
simultaneously. It takes a tool that can show the performance
of each machine operating on a computer screen.

II. RESEARCH METHODS

A. How the Production Machine Output Monitoring Tool

Works

PT. Tiga Serangkai Inti Corpora uses a variety of
production machines. The working concept of the sensor
output on each machine is similar. The sensor commonly
used in production machines is the E18D80NK infrared
sensor. The sensor reads the pause when the item passes
through the sensor.

The Sensor E18 D80NK will read the engine output. This
sensor is active LOW. When an item passes, the sensor will
provide a LOW input which will be read by the Arduino
UNO R3. The program in the Arduino UNO R3 will
calculate the amount of output from the production machine.

The results of the calculations carried out by the program on
the Arduino UNO R3 will be displayed on the TM1637 LED
display and also sent via a USB connection to the Raspberry
Pi for further processing.

Raspberry Pi requires a program to read input from the
Arduino UNO R3 which has been sent via USB. The
program on the Raspberry Pi is made using the Python
programming language. This program will read the input
from Arduino and then display it in realtime GUI. The
program will also save the displayed data in a text file. This
text data will store information about the engine output and
the time entered from the machine's output.

Figure 1 Block Diagram of Production Machinery
Monitoring Tools

B. Sensor E18 D80NK

The Sensor E18 D80NK is an infrared sensor that has a
far enough detection distance and little visible light
interference. The implementation of the modulated IR signal
makes this sensor immune to interference caused by normal
light from a light bulb or from sunlight. This sensor has a
detection distance that can be adjusted using a screwdriver.
This sensor produces a digital output when it detects
something within its detection distance. This sensor does not
measure distance from objects. This sensor can be used to
avoid collisions on robots and automated machines. This
sensor provides non-contact detection. [1]

7

Journal of Electrical, Electronic, Information, and Communication Technology (JEEICT)
Vol. 3 No. 1, April 2021, Pages 6-11

Figure 2. Sensor E18 D80NK [1]

Table 1. Specifications of the Sensor E18 D80NK [1]

Input Voltage +5V DC

Current consumption > 25mA (min) ~ 100mA

(max

Dimension 1.7cm (diameter) x 4.5cm

(length

Cable length 45cm

Detection of objects Transparan atau buram

 Diffuse reflective type

Sensing range 3cm to 80cm (depends on

obstacle surface)

 NPN output (normally high)

Environment temperature -25 °C ~ 55 °C

Red wire +5V

Green wire GND

Yellow wire DIGITAL OUTPUT

C. Arduino UNO Rev 3

Arduino Uno is a microcontroller board based on the
ATmega328P. The Arduino has 14 digital input / output pins
(6 of these pins can be used as PWM outputs), 6 analog
inputs, 16 MHz quartz crystals, a USB connection, a power
jack, an ICSP header and a reset button. The Arduino has
everything you need to support a microcontroller; Connect
the Arduino with a USB cable, AC-DC adapter, or battery to
run Arduino. "Uno" is taken from Italian which means
"first". The word "Uno" was chosen to commemorate the
release of arduino software (IDE) 1.0. Arduino Uno and
version 1.0 arduino software (IDE) are the version numbers
of Arduino, currently a newer version has been developed.
The Uno board is the first in the series of USB Arduino
boards, and the reference mode for the Arduino platform. [2]

Figure 3. Arduino UNO Rev 3 [2]

Table 2. Specifications of Arduino UNO Rev 3 [2]

Microcontroller ATmega328P

Operating Voltage 5V

Input Voltage

(recommended)

7-12V

Input Voltage (limit) 6-20V

Digital I/O Pins 14 (of which 6 provide

PWM output)

PWM Digital I/O Pins 6

Analog Input Pins 6

DC Current per I/O Pin 20 mA

DC Current for 3.3V

Pin

50 mA

Flash Memory 32 KB (ATmega328P)

of which 0.5 KB used

by bootloader

SRAM 2 KB (ATmega328P)

EEPROM 1 KB (ATmega328P)

Clock Speed 16 MHz

LED_BUILTIN 13

Length 68.6 mm

Width 53.4 mm

Weight 25

D. TM1637 LED display

The TM1637 LED display is a 7 segment 4 digit LED
screen integrated with the TM1637 chip which functions to
control the LED display. This screen has 4 pins [3]:

▪ VCC

▪ GND

▪ CLK - Clock; connected to the digital pin of the Arduino

▪ DIO - Data I / O; connected to the digital pin of the
Arduino

Figure 4. LED TM1637 Display [3]

E. Raspberry Pi 3 Model B

The Raspberry Pi is a single-board computer made by the
Raspberry Pi Foundation that is used to teach basic computer
science in schools and in developing countries. [4]

The Raspberry Pi used for this study was the Raspberry
Pi 3 Model B.

8

Journal of Electrical, Electronic, Information, and Communication Technology (JEEICT)
Vol. 3 No. 1, April 2021, Pages 6-11

Figure 5. Raspberry Pi 3 Model B [4]

Table 3. Specifications of the Raspberry Pi 3 Model B [4]

Processor Broadcom BCM2837 64bit ARMv7 Quad

Core Processor powered Single Board

Computer running at 1.2GHz

RAM 1 GB

Fitur • BCM43143 WiFi on board

• Bluetooth Low Energy (BLE) on board

• CSI camera port for connecting the

Raspberry Pi camera

• DSI display port for connecting the

Raspberry Pi touch screen display

• Upgraded switched Micro USB power

source (now supports up to 2.4 Amps)

• Expected to have the same form factor

has the Pi 2 Model B, however the LEDs

will change position

• Full size HDMI

Pin 40pin extended GPI

USB 4 x USB 2 ports

Audio 4 pole Stereo output and Composite video

port

Storage Micro SD port for loading your operating

system and storing data

F. Design of Production Machine Output Monitoring Tool

The design of production machine output monitoring
equipment is divided into two parts; a tool for reading engine
output and software for monitoring on the Raspberry Pi 3
Model B. The following is a picture that shows a production
machine output flowchart.

Figure 6. Flow Chart of Engine Output Reader

Next, here is a picture that shows a production machine
output flowchart.

Figure 7. Flow Chart of the Machine Output Monitoring
Program

III. RESULTS AND DISCUSSION

A. Engine Output Reader

This production machine output reader will be placed in
the output section of the production machine to calculate the
amount of output from the machine. The Ardunino pins used
are pins 8, 9, and 10. Pins 8 and 9 are connected to the DIO
and CLK of the TM1637 LED Display. Pin 10 is used to

9

Journal of Electrical, Electronic, Information, and Communication Technology (JEEICT)
Vol. 3 No. 1, April 2021, Pages 6-11

receive digital input from the sensor E18 D80NK. Each Vcc
TM1637 LED Display and Sensor E18 D80NK are
connected to a 5V voltage source that can be taken from the
Arduino. The GND TM1637 LED Display and the Sensor
E18 D80NK are also connected to the GND on the Arduino.

The image below shows the schematic of the engine
output reader.

Figure 8. Schematic of Engine Output Reader

After the tools are assembled, a program for Arduino is
created using the Arduino software (IDE). This program
functions to calculate the number of outputs from the
production machine. The Sensor E18 D80NK is active LOW
so that when the sensor detects an object, the sensor will
provide LOW input. When the Sensor E18 D80NK provides
LOW input via pin 10, the program will add a counter value
of 1. The result of adding this value will be displayed on the
TM1637 LED screen and also sent to the Raspberry Pi via a
USB connection. This program will be LOOP so that the
counter will continue to count until the appliance is reset.

The following programs are used:

#include <TM1637Display.h>;

const int SENSOR=10;

const int CLK = 9;

const int DIO = 8;

int sensorValue = digitalRead(SENSOR);

int counter;

TM1637Display display(CLK, DIO);

void setup() {

 Serial.begin(115200);

 pinMode(SENSOR, INPUT_PULLUP);

 display.setBrightness(0x0a);

}

void loop() {

 while (

digitalRead(SENSOR)==LOW){DealWithSwitchPre

ss();};

};

void DealWithSwitchPress()

 {

delay(1);

 counter++;

 display.showNumberDec(counter);

 Serial.println(counter);

 while (digitalRead(SENSOR)==LOW){;};

 delay(1);

B. Monitoring on the Raspberry Pi

There are many production machines used at PT. Tiga
Serangkai Inti Corpora. These machines will be monitored in
real time via a central computer. This central computer is the
Raspberry Pi. To monitor these production machines, a
program that can be run on the operating system of the
Raspberry Pi is needed. The Python programming language
is suitable for use in making this monitoring program.

PySerial needs to be added to Python 2.7 to read
addresses and communicate with Arduino. The address of
the Arduino can be seen from the Arduino Software (IDE).
After knowing the address of Arduino, this address needs to
be included in the program to be created. The program has a
Graphical User Interface (GUI), which will read the input
from two Arduinos. This is done to show that this
Monitoring can be applied to a larger scale.

The Python program will read data from two Arduino
series connected to the Raspberry Pi. When an input is
entered, it will be displayed in the GUI and also saved into a
text file. This text file contains the engine output data and the
time when that output occurred. This program will be LOOP
until the program is closed.

The Python program that is made is as follows:

import Tkinter as tk

from serial import *

from datetime import datetime

import io

 #ensure non-blocking

ser = Serial('COM3', 115200, timeout=0)

ser2 = Serial('COM4', 115200,

timeout=0)

root = tk.Tk()

serBuffer = ""

serBuffer2 = ""

def readSerial():

 while True:

 c = ser.read() # attempt to read a

character from Serial

 #was anything read?

 if len(c) == 0:

 break

 # get the buffer from outside of this

function

 global serBuffer

 if c == '\n':

 serBuffer += "\n" # add the

newline to the buffer

10

Journal of Electrical, Electronic, Information, and Communication Technology (JEEICT)
Vol. 3 No. 1, April 2021, Pages 6-11

 #add the line to the TOP of the

log

 log.insert('0.0', serBuffer)

 serBuffer = "" # empty the buffer

 else:

 serBuffer += c # add to the buffer

 outfile='Mesin1.txt'

 with open(outfile,'a') as f:

f.write(datetime.now().isoformat() + '\t' +

serBuffer + '\n')

 f.flush()

 root.after(1, readSerial) # check serial

again soon

def readSerial2():

 while True:

 d = ser2.read() # attempt to read a

character from Serial

 #was anything read?

 if len(d) == 0:

 break

 # get the buffer from outside of this

function

 global serBuffer2

 # check if character is a delimeter

 if d == '\r':

 d = '' # don't want returns. chuck

it

 if d == '\n':

 serBuffer2 += "\n" # add the

newline to the buffer

 #add the line to the TOP of the

log

 log2.insert('0.0', serBuffer2)

 serBuffer2 = "" # empty the buffer

 else:

 serBuffer2 += d# add to the

buffer

 outfile='Mesin2.txt'

 with open(outfile,'a') as f:

f.write(datetime.now().isoformat() + '\t' +

serBuffer2 + '\n')

 f.flush()

 root.after(1, readSerial2) # check

serial again soon

root.after(1, readSerial)

root.after(1, readSerial2)

w = tk.Label(root, text="Pembaca

Output Mesin Cetak").pack()

w2 = tk.Label(root, text="Output mesin

1:").pack(padx=5, pady=10,side=tk.LEFT)

log = tk.Text (root, width=10, height=1,

takefocus=0)

log.pack(padx=20,

pady=10,side=tk.LEFT)

w3 = tk.Label(root, text="Output mesin

2:").pack(padx=5, pady=10,side=tk.LEFT)

log2 = tk.Text (root, width=10,

height=1, takefocus=0)

log2.pack(padx=20,

pady=10,side=tk.LEFT)

tombol = tk.Button(root, text='Stop',

width=15, command=root.destroy)

tombol.pack(padx=15, pady=10,

side=tk.LEFT)

root.mainloop()

Furthermore, the image below is the GUI display of the
production machine monitoring program that will be
operated on the Raspberry Pi.

And the results of monitoring data storage from the
engine output are stored in the form of a txt file, as shown in
the following figure:

Figure 10. The results of the production machine output
monitoring data storage

IV. CONCLUSION

The production engine output monitoring tool consists
of a central computer which is the Raspberry Pi 3 model B
and a program in the Python programming language. This
program will display the input from Arduino UNO R3 which
is communicated via USB on the GUI and also saves this

11

Journal of Electrical, Electronic, Information, and Communication Technology (JEEICT)
Vol. 3 No. 1, April 2021, Pages 6-11

input data into a text file. Arduino devices must be defined
and addressed manually in the coding of the Python program.
This GUI program is still in hard code form, this program
does not have its own database, there is no plug and play
feature for machine output readers. In storing the data into a
text file, there is a repetition of the stored data which is most
likely the result of two LOOPING programs. The first LOOP
occurs in the Arduino and the second LOOP occurs in a
Python program.

ACKNOWLEDGMENT

The authors are grateful to the IT Infrastructure Division
of PT. Tiga Serangkai Inti Corpora, Surakarta, Indonesia for
conducting this research.

REFERENCES

[1] _____, Proximity Sensor/Switch E18-D80NK,

https://www.rhydolabz.com/documents/27/E18-D80NK.pdf Accessed
17 Januari 2021

[2] _____, Arduino UNO Rev 3, https://store.arduino.cc/usa/arduino-uno-
rev3 Accessed 17 Januari 2021

[3] _____, TM1637, https://playground.arduino.cc/Main/TM1637/
Accessed 17 Januari 2021

[4] _____, Raspberry Pi 3 Model B,
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
Accessed 17 Januari 2021

