Scalable Microservices Architecture for Face
Recognition-Based Employee Attendance Systems

1% Ridwan Setiawan*
Department of Computer Science
Institut Teknologi Garut
Garut, Indonesia
ridwan.setiawan@itg.ac.id

2" Wawan Hermawan
Department of Computer Science
Institut Teknologi Garut
Garut, Indonesia
2106144@itg.ac.id

3 Asep Trisna Setiawan
Department of Computer Science
Universitas Bandar Lampung
Bandar Lampung, Indonesia
Asep.iot@ubl.ac.id

*Corresponding author: ridwan.setiawan@itg.ac.id
Received: 2025-08-26; Accepted: 2025-10-21

Abstract—We present a face-recognition-based employee
attendance system built on a microservices architecture and
integrated with the external Worker Al (LSKK) inference
API. The design separates camera /O, verification,
persistence, and presentation into independently deployable
services, enabling targeted scaling and resilient operation
through asynchronous queues. The system was developed
using Rapid Application Development (RAD) and evaluated
via black-box testing that covered authentication, camera and
Al data views, filtering and pagination, reporting, and
employee CRUD. The results show conformance to
specifications: the interface renders the expected outputs, and
the cooldown policy effectively prevents duplicate entries,
while the separation of history (raw) and history_ai (verified)
supports traceability and clean reporting. These findings
indicate that combining microservices with API-based face
recognition offers a practical and maintainable alternative to
RFID-based workflows with fewer operational frictions.
Limitations include the use of an external inference API
(model configuration and thresholds are outside our control)
and testing within a single organizational setting. Future work
will focus on operational measurements of the deployed
pipeline, particularly end-to-end latency under load spikes
and queue formation, as well as monitoring misread/error
rates to inform model improvements.

Keywords— Black-Box Testing; Employee Attendance System;
Face Recognition; Microservices Architecture; Rapid
Application Development

1. INTRODUCTION

Information and communication technology has made
significant advancements, particularly in managing
employee attendance. People are increasingly using web-
based system innovations, artificial intelligence, and
biometric technologies like facial recognition to accurately
and efficiently record attendance [1], [2]. Microservices
architecture is a modern approach in software development.
In contrast to monolithic systems that combine all features
in a single application, microservices divide the system into
separate services that can run independently but are
connected to each other via an Application Programming
Interface (API) [3].

Microservices architecture has advantages in
scalability, modularity, and ease of system maintenance
[4]1, [5]. Meanwhile, face recognition technology is widely
used in security and attendance systems because it is able
to identify individuals automatically without requiring
physical contact based on facial characteristics. This

technology can reduce the potential for fraud and increase
the efficiency of attendance recording [6], [7].

Based on observations at PT LSKK, the attendance
system used still uses Radio Frequency Identification
(RFID) cards. Although it is considered modern, this
system has several shortcomings, such as the possibility of
employees forgetting to bring their cards, the potential for
absenteeism, and development constraints because every
feature change can affect the entire system. This study
shows the limitations of the system in handling the ever-
growing needs of the company [8], [9].

Previous research shows that microservices architecture
can make the system flexible and keep it running even if
parts of the service are updated or repaired [10], [11], [12].
Face recognition technology, utilizing various algorithms
like Eigenfaces, Fisherfaces, and LBPH, has demonstrated
accuracy in face detection [1].

This research uses Rapid Application Development
(RAD), which is considered effective because it allows
rapid iteration, prototyping, and direct user involvement
during the development process [13], [14]. The attendance
system developed utilizes the advantages of microservices
architecture and face recognition technology as employee
identification methods. With this approach, the attendance
system that is built is expected to be able to provide a more
flexible solution that is easy to develop for the needs of
modern industry.

II. METHODS

This research adopts the Rapid Application
Development (RAD) method, an incremental (multi-level)
software development technique. The RAD model is a life-
cycle strategy intended to deliver software faster and with
better quality than conventional methods [15], [16].
According to [14], the RAD model has three main stages:
requirement planning, design workshop, and
implementation. The first version of the system is
developed iteratively by dividing the overall project into
several incremental releases. Fig. 1 provides an overview
of the proposed system architecture.

A. Requirement Planning

This stage identifies problems where the author
analyzes the attendance system currently used at PT LSKK,
which is based on Radio Frequency Identification (RFID)
cards, through direct observation of the attendance process
and interviews with related parties. Based on the results of

Journal of Electrical, Electronic, Information, and Communication Technology (JEEICT) 33
Vol. 07 No. 2, October-2025, Pages 53-58 DOI: https://dx.doi.org/10.20961/jeeict.7.2.108430

Copyright © 2025 Universitas Sebelas Maret

https://creativecommons.org/licenses/by-nc/4.0/

observations and discussions with PT LSKK, the author
then identified system requirements, which were grouped
into functional and non-functional requirements.

RAD Design Workshop

Requirements
Planning /—\

Idaendrlnl":igf,r‘:ac:l};:s j—> Work with Users | Build the | ——p| Introduce the

Implementation

Requirsments to Design System System New System

Fig. 1. Rapid Application Development Cycle

B. Workshop Design

This stage aims to identify solutions and choose the best
one. Next, develop a business process design and a
programming design for the collected data, utilizing the
Unified Modeling Language (UML).

C. Implementation

This stage builds a microservices-based employee
attendance system using NestJS for backend services and
React]S for the frontend interface and integrates face
recognition services into the system. After the system was
completed, the author conducted functional testing using
the black box testing method to ensure that each function
ran according to the established specifications, without
checking the internal structure of the program code [17].

III. RESULTS AND DISCUSSION

The employee attendance system was developed using
the Rapid Application Development (RAD) approach and
a microservices architecture to ensure components could be
scaled and maintained independently. Initial analysis with
PT LSKK showed limitations of the existing RFID-based
system—reliance on physical cards (lost/exchanged),
potential for buddy punching (use of cards by others),
vulnerability to UID duplication/cloning, which reduces
data trust, and administrative burden for card issuance and
blocking [18], [19]. The system workflow is shown in Fig.
2: employees swipe their RFID cards, the system verifies
against the database, and attendance records are written if
the data is valid.

o

|"fEmpone Tap Thelr\\ <
RFID Card)

/ Attendance \

Successfully

\ Recorded /

I@I

Fig. 2. Previous system flow

To overcome these limitations, we propose a face
recognition-based system. Fig. 3 shows the use case

diagram with two external actors, Employee and Admin.
The core use case, Perform Attendance, requires two
internal processes—Detect Employee by Camera and Face
Classification—before attendance recording is authorized,
thus reducing the likelihood of incorrect or duplicate entries
within a short interval. On the governance side, the admin
runs the Login, View Dashboard, View Camera Data,
Manage Employee Data, View Al Data, and View Report
use cases for monitoring and reporting. The face
classification component is provided as an external Worker
Al (LSKK) API accessed through an inference endpoint;
the payload contains an encoded image and device
metadata, while the response returns candidate identities
and verification scores. The cooldown policy per
employee-device pair is implemented to prevent duplicate
entries, and message queue configuration is used to limit
stale frames. Functional requirements include facial image
capture, metadata transmission via RabbitMQ, raw data
logging in history, identity verification via Worker Al, and
history presentation through a web interface; non-
functional requirements encompass device specifications
(CPU/RAM/camera) and the software stack
(TypeScript/NestJS, React]S, MongoDB, RabbitMQ).

Use Case
Diagara
Face Classification

<cincludes>
Vlew Dashboard
/@

Detect Emplnfyee
bv Camera

Data <<Include>>
Perform
Anendance
Admin
Manage Employe Employe
Data
Vlew Al Data

Fig. 3. Use Case Diagram

<zdevice>>

Laptop Client
L A
— Server <<executionEnvironment=>
Worker Server _va_e Ei; E it R Web Browser
<<component>>] DB Data Mentah <o —
Worker Service = Hitp Rbquest <<device>>
- ez
: i :
I]
i
Query Dat
Subscibe uw : ‘:’
i | !
1 vl
Message Broker BackEnd Server Web ServerServer
<<components> <<component=> &]|| [“HTT7RAES! | ceeomponents»
RabbitMQ d | HipResporsS] website d
A | N '
I
! Quer-Data ' :
! | P REYUEEARENTaRce
| ' ‘
' A S— Vi
: MongoDB Server
\ <<components> Foare-Date llServer
' DB Data Absensi <<component=> E
| Al Service
I
|

Fig. 4. Microservices System Architecture

Fig. 4 illustrates the microservices architecture
connecting the client side, application services, message
broker, Al Worker (LSKK), and two separate databases.

Journal of Electrical, Electronic, Information, and Communication Technology (JEEICT) 54
Vol. 07 No. 2, October-2025, Pages 53-58 DOI: https://dx.doi.org/10.20961/jeeict.7.2.108430

Copyright © 2025 Universitas Sebelas Maret

https://creativecommons.org/licenses/by-nc/4.0/

From the client laptop (browser with camera access), the
face image and metadata are sent to the web server. The
request is then forwarded to the backend server (API) for
validation and payload formatting. For asynchronous
processing, the API publishes events to RabbitMQ. The
Worker Service subscribes to the queue, stores the raw data
in MongoDB (Raw Data DB), and then calls the AT Worker
(LSKK) via the inference endpoint for identity verification.
Valid classification results are published back to the service
path and recorded in MongoDB (Attendance Data DB).
The web server takes the summary and presents it to the
user through the web interface. This system is designed
using a microservices architecture, which allows each
service to be developed independently using different
technologies, programming languages, and databases
according to the needs of each component [20].

This design separates the camera I/O path from the
inference process so that peak loads can be handled without
degrading the user experience. HTTP request/response
communication is used for synchronous interaction
between the browser, web server, backend server, and Al
worker (LSKK). The publish/subscribe pattern in
RabbitMQ handles presence flows that require buffering
and retries. Separating the two databases—Raw Data for
the audit trail and Attendance Data for verified records—
makes it easier to track verification failures while
maintaining operational query performance.

Fig. 5 illustrates the system class diagram, which
includes utility classes ‘DB _data mentah® and
‘DB _absensi' for database connection, along with business
classes like "Data_kamera’, ‘Data_AI', and "Employees’ to
store their respective data. Additionally, there's an interface
that displays a list and details of camera data, Al data,
attendance reports, and employee information. All of these
components work together to manage and display data
within the system.

Class Digram |
Kelas bisnis

Data_Kamera Data_Al Karyawan
@— - id: objectid - id objectid - id: objectid
- guid: sring - quid: string - quid: sting
D8_data_mentah - gambor: sting userGuid: sing J name: string
~host - datetime: string - nama: string - gamtr.string
- database <h - timestamp: number - gambar:string -~ address string
- usemame - unt: string - status_absen: string - jabatan: string
-password - Brocess: boolean - datetme: sting - fip: numper
- checkStatus: boolean - jam_masuk siring - birtDate: date
RN S5 S pw— EE— J—
-host . . - jam_masuk_actual sting - gajiHarian: number
- catabase - jam_keluar_actual: sting - status: booiean
usemame - jumiah_teiat number JR— L
- password - total_fam_telat: number © admaryavan)
- tmestam: pumbey + updatekaryawan)
“unt sting + deletekaryawan()

- process: boolean
1 - getal) ™

+ 808AI0)

~ updateAl()

+ deleteAl)

kelas antarmuky/

ks <<Interface>>
Karyawan

Data Kamera Data Al Laporan

+ view daftar karyaw:
+ view daftar kamera() cviewdstarAl) | | |+ view laporan() + fiter()
« fiter() - fiter() + ekspor pdl) :f

form
+ forrm update karyawan))

<<interface>> <<intertaces>
Detall Data Kamera Detall Data Al <<intertace>>
Detail Karyawan

vvvvv Kamea() ke |+ view cata Al kg
+ delete data() + delete datal)
« form update data()

E
+ delete karyawan()
+ form update karyawan()

Fig. 5. System Class Diagram

Code 1 is the implementation of the API endpoint
recognize frame on the Worker AI (LSKK) service for face
detection and verification. This endpoint receives a POST
request containing a base64-encoded image, decodes it into
an image format, and then analyzes it to generate candidate
identities along with their scores. Each result is verified
with a cooldown policy to prevent duplicate entries within
a short time interval; only results that pass the cooldown
are processed as attendance and sent back to the application
in JSON format so that the backend module can record
them in verified storage.

Code 1. Facial Recognition Process

226. def recognize_frame():

227. data =request.get_json()

228. image_data_b64 = data['image'].split(’,")[1]

229. img_bytes = base64.b64decode
(image_data_b64)

230. img = cv2.imdecode(np.frombuffer
(img_bytes, np.uint8), cv2.IMREAD_COLOR)

231.

232. results = face_analyzer.analyze_image
(img,user_details_map)

233. for person in results:

234. guid = person.get('guid')

235. cooldown_ok = _check_cooldown(guid)
236. if cooldown_ok:
237. person['presence_sent'] =

_process_detection(person, img, lat, lon)
238. return jsonify({"results": results})

The integration of this flow is shown in Fig. 6, which
displays the face recognition results when the attendance
system is operated. The camera captures the employee's
face, the application calls the recognize frame API, and the
response containing the GUID is mapped to the employee's
name in the attendance module. The name was then
displayed directly on the face area outlined in a green box,
indicating successful detection. When verification is valid,
an attendance record is created; if it doesn't meet the
verification threshold or is blocked by a cooldown, the
system doesn't add a new entry, keeping the history clean
of duplicates.

D Training & Ab:

Fig. 6. Face recognition integration

The implementation results interface shows the
integration of all components after integration with Worker
Al (LSKK). Fig. 7 shows a dashboard that summarizes
daily operational conditions concisely but informatively:
the number of entries received from the cameras, the
number of verification results, and the check-in and check-
out history for the current day. The presence of this
summary is important not merely as a display but as proof
that the processing pipeline from image capture to
inference calling to attendance record writing runs
consistently within the system. At the same time,

Journal of Electrical, Electronic, Information, and Communication Technology (JEEICT) 35
Vol. 07 No. 2, October-2025, Pages 53-58 DOI: https://dx.doi.org/10.20961/jeeict.7.2.108430

Copyright © 2025 Universitas Sebelas Maret

https://creativecommons.org/licenses/by-nc/4.0/

operational indicators (e.g., total successful and rejected
verifications) provide early warning signals about the
health of the service and the quality of the data being
processed.

Fig. 7. Dashboard View

Fig. 8 illustrates how the separation of storage space
supports data consistency and traceability. Here, the raw
entries from the camera device are presented as a complete
audit trail, including device identity and timestamps. This
practice aligns with a database design that separates history
(raw data before verification) from history Al (verified
records for daily operations). With this separation, the
cause of any discrepancies is traced; if an entry fails
verification, the raw data is still available for incident
analysis without contaminating the operational summary.

GUID: CAN-PO72 GUID: CAM-POT23 GUIC: CAM-FO72) GUID:CAM-POT2Y GUIC: CAN-FD72)

n
]
ark

GUIL: CAM-PO72) GUID: CAM-20721 GUID: CAM-POZZY GUID: CAM-FO721 GUID:CAM-POTZY

-
Fig. 8. Camera Data Display

The impact of integrating the classification service is
shown in Fig. 9. The employee's name is displayed directly
on the blue-boxed area of the face, which serves as a valid
detection marker. This visual interpretation is not merely
cosmetic but a direct representation of the inference
endpoint output that has passed verification thresholds and
cooldown policies. Thus, only truly unique and valid

Data Al

[|B
s

o

b g

Fig. 9. Al Data Display

The accumulation of verified records then forms the
basis for reporting in Fig. 10. Attendance records can be
filtered by period and presented in a format ready for
administrative action. Its practical value lies in the direct
connection between the reporting interface and the
history Al data source, eliminating the need for separate
manual reconciliation. This also shows that the
microservices design not only improves the technical
processing path but also facilitates governance functions at
the organizational level.

3 iran.
g

Prae -

Fig. 10. Report View

Finally, Fig. 11 shows the employee data management
that supports identity consistency in face recognition. The
availability of profile searching, filtering, and updating
ensures that the references used by Worker Al (LSKK) are
always up-to-date. In practice, this layer acts as a quality
controller, preventing accuracy degradation due to changes
in user attributes, and serves as the cornerstone for
operational sustainability—both for onboarding new
employees and deactivating inactive accounts.

Absensi Al Data Karyawan
[ET S| |

s =

attempts are recorded as legitimate attendance; repeated
attempts within short intervals do not add new entries, . o :
thereby maintaining data quality. This mechanism S T
addresses the weaknesses of the physical card approach, - o :
particularly the potential for misuse, without adding = men
administrative burden on the user side.

Fig. 11. Employee View
Journal of Electrical, Electronic, Information, and Communication Technology (JEEICT) 36

Vol. 07 No. 2, October-2025, Pages 53-58 DOI: https://dx.doi.org/10.20961/jeeict.7.2.108430

Copyright © 2025 Universitas Sebelas Maret

https://creativecommons.org/licenses/by-nc/4.0/

Black-box testing is used to assess the functionality of
a system without looking at the source code or internal
structure [21]. This approach is appropriate because face
recognition capabilities are provided through the Worker
Al API (LSKK), and several services are run as
independent microservices; what is evaluated is the

observable behavior at the interface (HTTP endpoints,

TABLE I. BLACK BOX TESTING

No. Test Expected Result Observed Outcome
Scenario
1 Login with An error message Error message
an invalid “Incorrect username or shown: access
username and password” is displayed; denied.
password access is denied.
2 Login with a The user is Login succeeds; the
valid authenticated and dashboard is
username and redirected to the rendered.
password dashboard.
3 Open the Camera entries are Camera data loads
Camera Data listed with images and ~ with timestamps and
page metadata. device IDs.

4 Apply a date
filter, then
click “Reset”

Records are filtered by
the selected date;
“Reset” restores the
default range.

Filtering works as
specified; reset
restores defaults.

5 Use Page-2 camera records Page-2 entries
pagination to are displayed in the appear in order; no
navigate to correct order without gaps or duplicates.
page 2 omissions.
(Camera
Data)
6 Open the Al Recognized and Al Data loads;
Data page unknown faces are recognized/unknown
listed with attendance labels are shown
information. with attendance
fields.
7 Apply a Results are restricted to Records correctly
name filter records matching the filtered by name.
(Al Data) entered name.
8 Apply adate Results are restricted to Records correctly
filter (Al the selected date. filtered by date.
Data)
9 Use Page-2 Al records are Page-2 Al entries
paginationto displayed in sequence. appear in order.
page 2 (AL
Data)
10 Open the The attendance The summary table
Reports page summary table and and charts render as

11 Click the

statistical charts are
displayed.
A PDF/Excel file is

expected.

File downloaded;

Download generated and contents match the
PDF/Excel downloaded; its web view.
button contents match the on-
screen report.
12 Open the Employee records are The Employee list

message queues, and database output), not the
implementation method. Black-box testing also aligns with
the goals of acceptance and specification compliance: test
oracles are derived directly from use cases and written
specifications, while test cases are designed using
equivalence partitioning, boundary value analysis, and both
normal and exception flow scenarios (including cooldown
and unknown cases). Compliance with specifications is
assessed by providing input and evaluating output—
including status codes, JSON payloads, and stored notes—
while monitoring non-functional aspects such as end-to-
end latency. Table 1 presents the system testing results.

All 16 test scenarios produced outputs consistent with
the oracle in the Expected Result column. For
authentication scenarios, the system rejected invalid
credentials and redirected valid users to the dashboard. In
the camera data and Al module, filtering (name/date) and
pagination display the correct and sequential results;
specifically for Al Data, the recognized/unknown tagging
corresponds to the output of the recognize frame endpoint.
In the report module, the period summary can be exported
to PDF/Excel with content identical to the web view.
CRUD operations on employee data are working normally
(add, edit, delete), with changes reflected immediately in
search results. No deviations were found that required
failure handling.

Implementation findings show that separating functions
into small services allows for lightweight work units on the
critical path (camera — Worker Al — logging), as each
service only loads relevant dependencies and can be scaled
independently according to the load pattern. As a result, the
capture-verification process remains responsive even when
the reporting/interface load increases, and non-critical
work can be offloaded to asynchronous processing via
queues. Architecturally, the characteristics of modularity,
loose coupling, and independent deployment/scaling in
microservices underpin this efficiency and have been
consistently reported in multi-case studies and recent
reviews of microservices [3], [11], [20], [22].

IV. CONCLUSION

This research indicates that the face recognition-based
attendance system built on a microservices architecture and
integrated with the Worker AI API (LSKK) functions as
specified. Service separation—from camera 1/O,
verification, and storage to presentation—supports self-
scaling and maintains responsiveness; effective cooldown
policies suppress duplicate entries, while separating history
(raw data) and history _ai (verified records) improves
traceability and reporting quality. The limitations of this

Employees displayed. loads successfully. study lie in the consumption of the classification service as
page o _ o an external API, meaning the internal configuration of the
13 Open an Detailed information Detail view renders . P)
. . model and its decision thresholds are beyond the authors
employee's for the selected with complete . . - .
details page employee is displayed. felds. control; testing was also conducted within a single
14 Addanew The record was created Record created and organizational environment with limited device and
employee and visible in appears in the list. condition variations, and did not yet include large-scale
record subsequent queries. robustness testing. Going forward, the focus of further
15 Edit an The record is updated, Record updated; work is to comprehensively measure system performance,
existing and the changes are changes reflected in includi d-t d lat iallv durine load spik
employee visible. the list. including end-to-end latency, especially during load spikes
record or queue formation; additionally, the misreading error rate
16 Delete an The record is removed ~ Record deleted; no needs to be re-monitored to provide input for improving the
employee and no longer returned longer present in face recognition model.
record in queries. results.
Journal of Electrical, Electronic, Information, and Communication Technology (JEEICT) 57

Vol. 07 No. 2, October-2025, Pages 53-58 DOI: https://dx.doi.org/10.20961/jeeict.7.2.108430
Copyright © 2025 Universitas Sebelas Maret

https://creativecommons.org/licenses/by-nc/4.0/

ACKNOWLEDGMENT [15] F. Qudus Khan, S. Rasheed, M. Alsheshtawi, T. Mohamed
. . . Ahmed, and S. Jan, “A Comparative Analysis of RAD and
Thank you to the Institut Teknologi Garut for their Agile Technique for Management of Computing Graduation
support in funding this research. Awards were also Projects,” Computers, Materials & Continua, vol. 64, no. 2,
presented to PT LSKK for providing Worker Al services pp. 777-796, 2020, doi: 10.32604/cmc.2020.010959. '
for facial recognition inference, technical support during [16] ~ N.Singh and A. Hussain, “Rf}l?ld Application Development in
API integration, and facilitating system testing in an Cloud Computing with [oT,” in foT and AI Technologies for
. . Sustainable Living, Boca Raton: CRC Press, 2022, pp. 1-28.
operational environment. doi: 10.1201/9781003051022-1.
[17] Z. Aghababaeyan, M. Abdellatif, L. Briand, R. S, and M.
REFERENCES Bagherzadeh, “Black-Box Testing of Deep Neural Networks
[1] R. Hasan and A. B. Sallow, “Face Detection and Recognition through Test Case Diversity,” IEEE Transactions on Software
Using OpenCV,” Journal of Soft Computing and Data Mining, Engineering, vol. 49, no. 5, pp. 3182-3204, May 2023, doi:
vol. 2, mno. 2, pp. 86-97, Oct. 2021, doi: 10.1109/TSE.2023.3243522.
10.30880/jscdm.2021.02.02.008. [18] 1. El Gaabouri, M. Senhadji, M. Belkasmi, and B. El Bhiri, “A
2] J. Patel, S. Gandhi, V. Katheriya, P. Pataliya, and A. Systematic Literature Review on Authentication and Threat
Majumdar, “Enhancing Classroom Attendance Systems with Challenges on RFID Based NFC Applications,” Future
Face Recognition through CCTV using Deep Learning,” Internet, vol. 15, mo. 11, p. 354, Oct. 2023, doi:
Procedia Comput Sci, vol. 258, pp. 3031-3041, 2025, doi: 10.3390/1i15110354.
10.1016/j.procs.2025.04.561. [19] Y. Malabi, M. Hani’ah, Noprianto, V. N. Wijayaningrum, V.
[3] Y. Abgaz et al., “Decomposition of Monolith Applications Al Hadid Firdaus, and A. Himawan, “Efficient Employee
Into Microservices Architectures: A Systematic Review,” Attendance System Integrating RFID and Android-Based Face
IEEE Transactions on Software Engineering, vol. 49, no. 8, pp. Recognition with Liveness Detection,” in 2024 International
4213-4242, Aug. 2023, doi: 10.1109/TSE.2023.3287297. Conference on Electrical and Information Technology (IEIT),
[4] I. Oumoussa and R. Saidi, “Evolution of Microservices IEEE, Sep. 2024, pp. 163-168. doi:
Identification in Monolith Decomposition: A Systematic 10.1109/IEIT64341.2024.10763296.
Review,” IEEE Access, vol. 12, no. February, pp. 23389— [20] M. Soylemez, B. Tekinerdogan, and A. K. Tarhan,
23405, 2024, doi: 10.1109/ACCESS.2024.3365079. “Microservice reference architecture design: A multi-case
[5] V. Abhilash, S. H. Venkat, S. Nishal, S. M. Rajagopal, and N. study,” Softw Pract Exp, vol. 54, no. 1, pp. 58-84, Jan. 2024,
Panda, “E-commerce Evolution: Unleashing the Potential of doi: 10.1002/spe.3241.
Serverless Microservices,” in 2024 15th International [21] R.G.Kawiand Suprihadi, “Design of Website-Based Tourism
Conference on Computing Communication and Networking Travel Information System (Case Study: Tenta Tour),”
Technologies (ICCCNT), IEEE, Jun. 2024, pp. 1-8. doi: International Journal Sofiware Engineering and Computer
10.1109/ICCCNT61001.2024.10726037. Science (IJSECS), vol. 3, no. 3, pp. 317-323, Dec. 2023, doi:
[6] S. Bussa, S. Bharuka, A. Mani, and S. Kaushik, “Smart 10.35870/ijsecs.v3i3.1788.
Attendance System using OPENCV based on Facial [22] A. El Akhdar et al., “Exploring the Potential of Microservices
Recognition,” 2nd International Conference on Sustainable in Internet of Things: A Systematic Review of Security and
Computing and Smart Systems, ICSCSS 2024 - Proceedings, Prospects,” Sensors, vol. 24, no. 20, p. 6771, Oct. 2024, doi:
vol. 9, no. 03, pp. 1529-1535, 2024, doi: 10.3390/524206771.
10.1109/ICSCSS60660.2024.10624932.
[71 A. S. Lateef and M. Y. Kamil, “Facial Recognition
Technology-Based Attendance = Management System
Application in Smart Classroom,” Iraqi Journal for Computer
Science and Mathematics, pp. 136-158, Aug. 2023, doi:
10.52866/ijcsm.2023.02.03.012.
[8] F. Tapia, M. A. Mora, W. Fuertes, H. Aules, E. Flores, and T.
Toulkeridis, “From Monolithic Systems to Microservices: A
Comparative Study of Performance,” Applied Sciences, vol.
10, no. 17, p. 5797, Aug. 2020, doi: 10.3390/app10175797.
[9] A. Bakhtin, X. Li, J. Soldani, A. Brogi, T. Cerny, and D. Taibi,
“Tools Reconstructing Microservice Architecture: A
Systematic Mapping Study,” in Software Architecture. ECSA
2023 Tracks, Workshops, and Doctoral Symposium, B.
Tekinerdogan, R. Spalazzese, H. Sozer, S. Bonfanti, and D.
Weyns, Eds., Cham: Springer Nature Switzerland, 2024, pp.
3-18.
[10] Mahender Singh, “Resilient Microservices Architecture with
Embedded AI Observability for Financial Systems,” Journal
of Electrical Systems, vol. 20, no. 11s, pp. 4499-4510, Nov.
2024, doi: 10.52783/jes.8596.
[11] M. Niswar, R. Arisandy Safruddin, A. Bustamin, and I. Aswad,
“Performance evaluation of microservices communication
with REST, GraphQL, and gRPC,” International Journal of
Electronics and Telecommunications, pp. 429-436, Jun. 2024,
doi: 10.24425/ijet.2024.149562.
[12] M. Waseem, P. Liang, M. Shahin, A. Di Salle, and G. Marquez,
“Design, monitoring, and testing of microservices systems:
The practitioners’ perspective,” Journal of Systems and
Software, vol. 182, p. 111061, Dec. 2021, doi:
10.1016/j.jss.2021.111061.
[13] S. Newman, Building microservices: designing fine-grained
systems. “ O’Reilly Media, Inc.,” 2021.
[14] R. S. Pressman, Sofiware engineePressman, R. S. (n.d.).
Software engineering (2nd ed.). New York: McGraw-Hill Book
Company.ring, Tth ed. New York: Higher Education, 2010.
Journal of Electrical, Electronic, Information, and Communication Technology (JEEICT) 58

Vol. 07 No. 2, October-2025, Pages 53-58 DOI: https://dx.doi.org/10.20961/jeeict.7.2.108430
Copyright © 2025 Universitas Sebelas Maret

https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.30880/jscdm.2021.02.02.008
https://dl.acm.org/doi/10.1016/j.procs.2025.04.561
https://doi.org/10.1109/TSE.2023.3287297
https://doi.org/10.1109/ACCESS.2024.3365079
https://doi.org/10.1109/ICCCNT61001.2024.10724582
https://doi.org/10.1109/ICCCNT61001.2024.10724582
https://doi.org/10.52866/ijcsm.2023.02.03.012
https://www.mdpi.com/2076-3417/10/17/5797
https://doi.org/10.52783/jes.5728
https://www.scribd.com/document/786042478/graphql-vs-rest-api
https://doi.org/10.1016/j.jss.2021.111061
https://doi.org/10.32604/cmc.2020.010959
https://uat.taylorfrancis.com/books/edit/10.1201/9781003051022/iot-ai-technologies-sustainable-living-abid-hussain-garima-tyagi-sheng-lung-peng
https://doi.org/10.1109/TSE.2023.3243522
https://doi.org/10.3390/fi15110354
https://doi.org/10.1109/IEIT64341.2024.10763296
https://doi.org/10.1002/spe.3241
https://doi.org/10.35870/ijsecs.v3i3.1788
https://doi.org/10.3390/s24206771

