
 

53 

 

Journal of Electrical, Electronic, Information, and Communication Technology (JEEICT)                                           

Vol. 07 No. 2, October-2025, Pages 53-58 DOI: https://dx.doi.org/10.20961/jeeict.7.2.108430 

 Copyright © 2025 Universitas Sebelas Maret 

Scalable Microservices Architecture for Face 

Recognition-Based Employee Attendance Systems

1st Ridwan Setiawan* 

Department of Computer Science 

Institut Teknologi Garut 

Garut, Indonesia 

ridwan.setiawan@itg.ac.id 

2nd Wawan Hermawan 

Department of Computer Science 

Institut Teknologi Garut 

Garut, Indonesia 

2106144@itg.ac.id 

 3rd Asep Trisna Setiawan 

Department of Computer Science 

Universitas Bandar Lampung 

Bandar Lampung, Indonesia 

Asep.iot@ubl.ac.id

 

*Corresponding author: ridwan.setiawan@itg.ac.id  

Received: 2025-08-26; Accepted: 2025-10-21

Abstract—We present a face-recognition-based employee 

attendance system built on a microservices architecture and 

integrated with the external Worker AI (LSKK) inference 

API. The design separates camera I/O, verification, 

persistence, and presentation into independently deployable 

services, enabling targeted scaling and resilient operation 

through asynchronous queues. The system was developed 

using Rapid Application Development (RAD) and evaluated 

via black-box testing that covered authentication, camera and 

AI data views, filtering and pagination, reporting, and 

employee CRUD. The results show conformance to 

specifications: the interface renders the expected outputs, and 

the cooldown policy effectively prevents duplicate entries, 

while the separation of history (raw) and history_ai (verified) 

supports traceability and clean reporting. These findings 

indicate that combining microservices with API-based face 

recognition offers a practical and maintainable alternative to 

RFID-based workflows with fewer operational frictions. 

Limitations include the use of an external inference API 

(model configuration and thresholds are outside our control) 

and testing within a single organizational setting. Future work 

will focus on operational measurements of the deployed 

pipeline, particularly end-to-end latency under load spikes 

and queue formation, as well as monitoring misread/error 

rates to inform model improvements. 

Keywords— Black-Box Testing; Employee Attendance System; 

Face Recognition; Microservices Architecture; Rapid 

Application Development 

I. INTRODUCTION 

  Information and communication technology has made 
significant advancements, particularly in managing 
employee attendance. People are increasingly using web-
based system innovations, artificial intelligence, and 
biometric technologies like facial recognition to accurately 
and efficiently record attendance [1], [2]. Microservices 
architecture is a modern approach in software development. 
In contrast to monolithic systems that combine all features 
in a single application, microservices divide the system into 
separate services that can run independently but are 
connected to each other via an Application Programming 
Interface (API) [3]. 

  Microservices architecture has advantages in 
scalability, modularity, and ease of system maintenance 
[4], [5]. Meanwhile, face recognition technology is widely 
used in security and attendance systems because it is able 
to identify individuals automatically without requiring 
physical contact based on facial characteristics. This 

technology can reduce the potential for fraud and increase 
the efficiency of attendance recording [6], [7]. 

 Based on observations at PT LSKK, the attendance 
system used still uses Radio Frequency Identification 
(RFID) cards. Although it is considered modern, this 
system has several shortcomings, such as the possibility of 
employees forgetting to bring their cards, the potential for 
absenteeism, and development constraints because every 
feature change can affect the entire system. This study 
shows the limitations of the system in handling the ever-
growing needs of the company [8], [9]. 

 Previous research shows that microservices architecture 
can make the system flexible and keep it running even if 
parts of the service are updated or repaired [10], [11], [12]. 
Face recognition technology, utilizing various algorithms 
like Eigenfaces, Fisherfaces, and LBPH, has demonstrated 
accuracy in face detection [1]. 

  This research uses Rapid Application Development 
(RAD), which is considered effective because it allows 
rapid iteration, prototyping, and direct user involvement 
during the development process [13], [14]. The attendance 
system developed utilizes the advantages of microservices 
architecture and face recognition technology as employee 
identification methods. With this approach, the attendance 
system that is built is expected to be able to provide a more 
flexible solution that is easy to develop for the needs of 
modern industry. 

II. METHODS 

This research adopts the Rapid Application 

Development (RAD) method, an incremental (multi-level) 

software development technique. The RAD model is a life-

cycle strategy intended to deliver software faster and with 

better quality than conventional methods [15], [16]. 

According to [14], the RAD model has three main stages: 

requirement planning, design workshop, and 

implementation. The first version of the system is 

developed iteratively by dividing the overall project into 

several incremental releases. Fig. 1 provides an overview 

of the proposed system architecture. 

A. Requirement Planning 

  This stage identifies problems where the author 
analyzes the attendance system currently used at PT LSKK, 
which is based on Radio Frequency Identification (RFID) 
cards, through direct observation of the attendance process 
and interviews with related parties. Based on the results of 

https://creativecommons.org/licenses/by-nc/4.0/


 

54 

 

Journal of Electrical, Electronic, Information, and Communication Technology (JEEICT)                                           

Vol. 07 No. 2, October-2025, Pages 53-58 DOI: https://dx.doi.org/10.20961/jeeict.7.2.108430

 Copyright © 2025 Universitas Sebelas Maret 

observations and discussions with PT LSKK, the author 
then identified system requirements, which were grouped 
into functional and non-functional requirements. 

 

Fig. 1. Rapid Application Development Cycle 

B. Workshop Design 

  This stage aims to identify solutions and choose the best 
one. Next, develop a business process design and a 
programming design for the collected data, utilizing the 
Unified Modeling Language (UML). 

C. Implementation 

  This stage builds a microservices-based employee 
attendance system using NestJS for backend services and 
ReactJS for the frontend interface and integrates face 
recognition services into the system. After the system was 
completed, the author conducted functional testing using 
the black box testing method to ensure that each function 
ran according to the established specifications, without 
checking the internal structure of the program code [17]. 

III. RESULTS AND DISCUSSION 

  The employee attendance system was developed using 
the Rapid Application Development (RAD) approach and 
a microservices architecture to ensure components could be 
scaled and maintained independently. Initial analysis with 
PT LSKK showed limitations of the existing RFID-based 
system—reliance on physical cards (lost/exchanged), 
potential for buddy punching (use of cards by others), 
vulnerability to UID duplication/cloning, which reduces 
data trust, and administrative burden for card issuance and 
blocking [18], [19]. The system workflow is shown in Fig. 
2: employees swipe their RFID cards, the system verifies 
against the database, and attendance records are written if 
the data is valid. 

 

Fig. 2. Previous system flow 

To overcome these limitations, we propose a face 

recognition-based system. Fig. 3 shows the use case 

diagram with two external actors, Employee and Admin. 

The core use case, Perform Attendance, requires two 

internal processes—Detect Employee by Camera and Face 

Classification—before attendance recording is authorized, 

thus reducing the likelihood of incorrect or duplicate entries 

within a short interval. On the governance side, the admin 

runs the Login, View Dashboard, View Camera Data, 

Manage Employee Data, View AI Data, and View Report 

use cases for monitoring and reporting. The face 

classification component is provided as an external Worker 

AI (LSKK) API accessed through an inference endpoint; 

the payload contains an encoded image and device 

metadata, while the response returns candidate identities 

and verification scores. The cooldown policy per 

employee-device pair is implemented to prevent duplicate 

entries, and message queue configuration is used to limit 

stale frames. Functional requirements include facial image 

capture, metadata transmission via RabbitMQ, raw data 

logging in history, identity verification via Worker AI, and 

history presentation through a web interface; non-

functional requirements encompass device specifications 

(CPU/RAM/camera) and the software stack 

(TypeScript/NestJS, ReactJS, MongoDB, RabbitMQ). 

 

Fig. 3. Use Case Diagram 

 

Fig. 4. Microservices System Architecture 

Fig. 4 illustrates the microservices architecture 

connecting the client side, application services, message 

broker, AI Worker (LSKK), and two separate databases. 

https://creativecommons.org/licenses/by-nc/4.0/


 

55 

 

Journal of Electrical, Electronic, Information, and Communication Technology (JEEICT)                                           

Vol. 07 No. 2, October-2025, Pages 53-58 DOI: https://dx.doi.org/10.20961/jeeict.7.2.108430

 Copyright © 2025 Universitas Sebelas Maret 

From the client laptop (browser with camera access), the 

face image and metadata are sent to the web server. The 

request is then forwarded to the backend server (API) for 

validation and payload formatting. For asynchronous 

processing, the API publishes events to RabbitMQ. The 

Worker Service subscribes to the queue, stores the raw data 

in MongoDB (Raw Data DB), and then calls the AI Worker 

(LSKK) via the inference endpoint for identity verification. 

Valid classification results are published back to the service 

path and recorded in MongoDB (Attendance Data DB). 

The web server takes the summary and presents it to the 

user through the web interface. This system is designed 

using a microservices architecture, which allows each 

service to be developed independently using different 

technologies, programming languages, and databases 

according to the needs of each component [20]. 

This design separates the camera I/O path from the 

inference process so that peak loads can be handled without 

degrading the user experience. HTTP request/response 

communication is used for synchronous interaction 

between the browser, web server, backend server, and AI 

worker (LSKK). The publish/subscribe pattern in 

RabbitMQ handles presence flows that require buffering 

and retries. Separating the two databases—Raw Data for 

the audit trail and Attendance Data for verified records—

makes it easier to track verification failures while 

maintaining operational query performance. 

Fig. 5 illustrates the system class diagram, which 

includes utility classes `DB_data_mentah` and 

`DB_absensi` for database connection, along with business 

classes like `Data_kamera`, ̀ Data_AI`, and `Employees` to 

store their respective data. Additionally, there's an interface 

that displays a list and details of camera data, AI data, 

attendance reports, and employee information. All of these 

components work together to manage and display data 

within the system. 

 

Fig. 5. System Class Diagram 

  Code 1 is the implementation of the API endpoint 
recognize_frame on the Worker AI (LSKK) service for face 
detection and verification. This endpoint receives a POST 
request containing a base64-encoded image, decodes it into 
an image format, and then analyzes it to generate candidate 
identities along with their scores. Each result is verified 
with a cooldown policy to prevent duplicate entries within 
a short time interval; only results that pass the cooldown 
are processed as attendance and sent back to the application 
in JSON format so that the backend module can record 
them in verified storage. 

Code 1. Facial Recognition Process 

226. def recognize_frame(): 
227.     data = request.get_json() 
228.     image_data_b64 = data['image'].split(',')[1] 
229.     img_bytes = base64.b64decode 
        (image_data_b64) 
230.   img = cv2.imdecode(np.frombuffer 
       (img_bytes, np.uint8), cv2.IMREAD_COLOR) 
231.     
232.     results = face_analyzer.analyze_image 
        (img,user_details_map)  
233.     for person in results: 
234.         guid = person.get('guid') 
235.         cooldown_ok = _check_cooldown(guid) 
236.         if cooldown_ok: 
237.             person['presence_sent'] =  
        _process_detection(person, img, lat, lon) 
238.     return jsonify({"results": results}) 

  The integration of this flow is shown in Fig. 6, which 
displays the face recognition results when the attendance 
system is operated. The camera captures the employee's 
face, the application calls the recognize_frame API, and the 
response containing the GUID is mapped to the employee's 
name in the attendance module. The name was then 
displayed directly on the face area outlined in a green box, 
indicating successful detection. When verification is valid, 
an attendance record is created; if it doesn't meet the 
verification threshold or is blocked by a cooldown, the 
system doesn't add a new entry, keeping the history clean 
of duplicates. 

 

Fig. 6. Face recognition integration 

The implementation results interface shows the 

integration of all components after integration with Worker 

AI (LSKK). Fig. 7 shows a dashboard that summarizes 

daily operational conditions concisely but informatively: 

the number of entries received from the cameras, the 

number of verification results, and the check-in and check-

out history for the current day. The presence of this 

summary is important not merely as a display but as proof 

that the processing pipeline from image capture to 

inference calling to attendance record writing runs 

consistently within the system. At the same time, 

https://creativecommons.org/licenses/by-nc/4.0/


 

56 

 

Journal of Electrical, Electronic, Information, and Communication Technology (JEEICT)                                           

Vol. 07 No. 2, October-2025, Pages 53-58 DOI: https://dx.doi.org/10.20961/jeeict.7.2.108430

 Copyright © 2025 Universitas Sebelas Maret 

operational indicators (e.g., total successful and rejected 

verifications) provide early warning signals about the 

health of the service and the quality of the data being 

processed. 

 

 

Fig. 7. Dashboard View 

  Fig. 8 illustrates how the separation of storage space 
supports data consistency and traceability. Here, the raw 
entries from the camera device are presented as a complete 
audit trail, including device identity and timestamps. This 
practice aligns with a database design that separates history 
(raw data before verification) from history AI (verified 
records for daily operations). With this separation, the 
cause of any discrepancies is traced; if an entry fails 
verification, the raw data is still available for incident 
analysis without contaminating the operational summary. 

 

 

Fig. 8. Camera Data Display 

The impact of integrating the classification service is 

shown in Fig. 9. The employee's name is displayed directly 

on the blue-boxed area of the face, which serves as a valid 

detection marker. This visual interpretation is not merely 

cosmetic but a direct representation of the inference 

endpoint output that has passed verification thresholds and 

cooldown policies. Thus, only truly unique and valid 

attempts are recorded as legitimate attendance; repeated 

attempts within short intervals do not add new entries, 

thereby maintaining data quality. This mechanism 

addresses the weaknesses of the physical card approach, 

particularly the potential for misuse, without adding 

administrative burden on the user side. 

 

Fig. 9. AI Data Display 

  The accumulation of verified records then forms the 
basis for reporting in Fig. 10. Attendance records can be 
filtered by period and presented in a format ready for 
administrative action. Its practical value lies in the direct 
connection between the reporting interface and the 
history_AI data source, eliminating the need for separate 
manual reconciliation. This also shows that the 
microservices design not only improves the technical 
processing path but also facilitates governance functions at 
the organizational level. 

 

 

Fig. 10. Report View 

Finally, Fig. 11 shows the employee data management 

that supports identity consistency in face recognition. The 

availability of profile searching, filtering, and updating 

ensures that the references used by Worker AI (LSKK) are 

always up-to-date. In practice, this layer acts as a quality 

controller, preventing accuracy degradation due to changes 

in user attributes, and serves as the cornerstone for 

operational sustainability—both for onboarding new 

employees and deactivating inactive accounts. 

 

 

Fig. 11. Employee View 

https://creativecommons.org/licenses/by-nc/4.0/


 

57 

 

Journal of Electrical, Electronic, Information, and Communication Technology (JEEICT)                                           

Vol. 07 No. 2, October-2025, Pages 53-58 DOI: https://dx.doi.org/10.20961/jeeict.7.2.108430

 Copyright © 2025 Universitas Sebelas Maret 

Black-box testing is used to assess the functionality of 

a system without looking at the source code or internal 

structure [21]. This approach is appropriate because face 

recognition capabilities are provided through the Worker 

AI API (LSKK), and several services are run as 

independent microservices; what is evaluated is the 

observable behavior at the interface (HTTP endpoints,  

TABLE I.  BLACK BOX TESTING 

No. Test 

Scenario 

Expected Result Observed Outcome 

1 Login with 

an invalid 

username and 

password 

An error message 

“Incorrect username or 

password” is displayed; 

access is denied. 

Error message 

shown: access 

denied. 

2 Login with a 

valid 

username and 

password 

The user is 

authenticated and 

redirected to the 

dashboard. 

Login succeeds; the 

dashboard is 

rendered. 

3 Open the 

Camera Data 

page 

Camera entries are 

listed with images and 

metadata. 

Camera data loads 

with timestamps and 

device IDs. 

4 Apply a date 

filter, then 

click “Reset” 

Records are filtered by 

the selected date; 

“Reset” restores the 

default range. 

Filtering works as 

specified; reset 

restores defaults. 

5 Use 

pagination to 

navigate to 

page 2 

(Camera 

Data) 

Page-2 camera records 

are displayed in the 

correct order without 

omissions. 

Page-2 entries 

appear in order; no 

gaps or duplicates. 

6 Open the AI 

Data page 

Recognized and 

unknown faces are 

listed with attendance 

information. 

AI Data loads; 

recognized/unknown 

labels are shown 

with attendance 

fields. 

7 Apply a 

name filter 

(AI Data) 

Results are restricted to 

records matching the 

entered name. 

Records correctly 

filtered by name. 

8 Apply a date 

filter (AI 

Data) 

Results are restricted to 

the selected date. 

Records correctly 

filtered by date. 

9 Use 

pagination to 

page 2 (AI 

Data) 

Page-2 AI records are 

displayed in sequence. 

Page-2 AI entries 

appear in order. 

10 Open the 

Reports page 

The attendance 

summary table and 

statistical charts are 

displayed. 

The summary table 

and charts render as 

expected. 

11 Click the 

Download 

PDF/Excel 

button 

A PDF/Excel file is 

generated and 

downloaded; its 

contents match the on-

screen report. 

File downloaded; 

contents match the 

web view. 

12 Open the 

Employees 

page 

Employee records are 

displayed. 

The Employee list 

loads successfully. 

13 Open an 

employee's 

details page 

Detailed information 

for the selected 

employee is displayed. 

Detail view renders 

with complete 

fields. 

14 Add a new 

employee 

record 

The record was created 

and visible in 

subsequent queries. 

Record created and 

appears in the list. 

15 Edit an 

existing 

employee 

record 

The record is updated, 

and the changes are 

visible. 

Record updated; 

changes reflected in 

the list. 

16 Delete an 

employee 

record 

The record is removed 

and no longer returned 

in queries. 

Record deleted; no 

longer present in 

results. 

 message queues, and database output), not the 
implementation method. Black-box testing also aligns with 
the goals of acceptance and specification compliance: test 
oracles are derived directly from use cases and written 
specifications, while test cases are designed using 
equivalence partitioning, boundary value analysis, and both 
normal and exception flow scenarios (including cooldown 
and unknown cases). Compliance with specifications is 
assessed by providing input and evaluating output—
including status codes, JSON payloads, and stored notes—
while monitoring non-functional aspects such as end-to-
end latency. Table 1 presents the system testing results.
 All 16 test scenarios produced outputs consistent with 
the oracle in the Expected Result column. For 
authentication scenarios, the system rejected invalid 
credentials and redirected valid users to the dashboard. In 
the camera data and AI module, filtering (name/date) and 
pagination display the correct and sequential results; 
specifically for AI Data, the recognized/unknown tagging 
corresponds to the output of the recognize_frame endpoint. 
In the report module, the period summary can be exported 
to PDF/Excel with content identical to the web view. 
CRUD operations on employee data are working normally 
(add, edit, delete), with changes reflected immediately in 
search results. No deviations were found that required 
failure handling. 

  Implementation findings show that separating functions 
into small services allows for lightweight work units on the 
critical path (camera → Worker AI → logging), as each 
service only loads relevant dependencies and can be scaled 
independently according to the load pattern. As a result, the 
capture-verification process remains responsive even when 
the reporting/interface load increases, and non-critical 
work can be offloaded to asynchronous processing via 
queues. Architecturally, the characteristics of modularity, 
loose coupling, and independent deployment/scaling in 
microservices underpin this efficiency and have been 
consistently reported in multi-case studies and recent 
reviews of microservices [3], [11], [20], [22]. 

IV. CONCLUSION 

  This research indicates that the face recognition-based 
attendance system built on a microservices architecture and 
integrated with the Worker AI API (LSKK) functions as 
specified. Service separation—from camera I/O, 
verification, and storage to presentation—supports self-
scaling and maintains responsiveness; effective cooldown 
policies suppress duplicate entries, while separating history 
(raw data) and history_ai (verified records) improves 
traceability and reporting quality. The limitations of this 
study lie in the consumption of the classification service as 
an external API, meaning the internal configuration of the 
model and its decision thresholds are beyond the authors' 
control; testing was also conducted within a single 
organizational environment with limited device and 
condition variations, and did not yet include large-scale 
robustness testing. Going forward, the focus of further 
work is to comprehensively measure system performance, 
including end-to-end latency, especially during load spikes 
or queue formation; additionally, the misreading error rate 
needs to be re-monitored to provide input for improving the 
face recognition model. 

https://creativecommons.org/licenses/by-nc/4.0/


 

58 

 

Journal of Electrical, Electronic, Information, and Communication Technology (JEEICT)                                           

Vol. 07 No. 2, October-2025, Pages 53-58 DOI: https://dx.doi.org/10.20961/jeeict.7.2.108430

 Copyright © 2025 Universitas Sebelas Maret 

ACKNOWLEDGMENT 

  Thank you to the Institut Teknologi Garut for their 
support in funding this research. Awards were also 
presented to PT LSKK for providing Worker AI services 
for facial recognition inference, technical support during 
API integration, and facilitating system testing in an 
operational environment. 

REFERENCES 

[1] R. Hasan and A. B. Sallow, “Face Detection and Recognition 

Using OpenCV,” Journal of Soft Computing and Data Mining, 

vol. 2, no. 2, pp. 86–97, Oct. 2021, doi: 

10.30880/jscdm.2021.02.02.008. 

[2] J. Patel, S. Gandhi, V. Katheriya, P. Pataliya, and A. 

Majumdar, “Enhancing Classroom Attendance Systems with 

Face Recognition through CCTV using Deep Learning,” 

Procedia Comput Sci, vol. 258, pp. 3031–3041, 2025, doi: 

10.1016/j.procs.2025.04.561. 

[3] Y. Abgaz et al., “Decomposition of Monolith Applications 

Into Microservices Architectures: A Systematic Review,” 

IEEE Transactions on Software Engineering, vol. 49, no. 8, pp. 

4213–4242, Aug. 2023, doi: 10.1109/TSE.2023.3287297. 

[4] I. Oumoussa and R. Saidi, “Evolution of Microservices 

Identification in Monolith Decomposition: A Systematic 

Review,” IEEE Access, vol. 12, no. February, pp. 23389–

23405, 2024, doi: 10.1109/ACCESS.2024.3365079. 

[5] V. Abhilash, S. H. Venkat, S. Nishal, S. M. Rajagopal, and N. 

Panda, “E-commerce Evolution: Unleashing the Potential of 

Serverless Microservices,” in 2024 15th International 

Conference on Computing Communication and Networking 

Technologies (ICCCNT), IEEE, Jun. 2024, pp. 1–8. doi: 

10.1109/ICCCNT61001.2024.10726037. 

[6] S. Bussa, S. Bharuka, A. Mani, and S. Kaushik, “Smart 

Attendance System using OPENCV based on Facial 

Recognition,” 2nd International Conference on Sustainable 

Computing and Smart Systems, ICSCSS 2024 - Proceedings, 

vol. 9, no. 03, pp. 1529–1535, 2024, doi: 

10.1109/ICSCSS60660.2024.10624932. 

[7] A. S. Lateef and M. Y. Kamil, “Facial Recognition 

Technology-Based Attendance Management System 

Application in Smart Classroom,” Iraqi Journal for Computer 

Science and Mathematics, pp. 136–158, Aug. 2023, doi: 

10.52866/ijcsm.2023.02.03.012. 

[8] F. Tapia, M. Á. Mora, W. Fuertes, H. Aules, E. Flores, and T. 

Toulkeridis, “From Monolithic Systems to Microservices: A 

Comparative Study of Performance,” Applied Sciences, vol. 

10, no. 17, p. 5797, Aug. 2020, doi: 10.3390/app10175797. 

[9] A. Bakhtin, X. Li, J. Soldani, A. Brogi, T. Cerny, and D. Taibi, 

“Tools Reconstructing Microservice Architecture: A 

Systematic Mapping Study,” in Software Architecture. ECSA 

2023 Tracks, Workshops, and Doctoral Symposium, B. 

Tekinerdoğan, R. Spalazzese, H. Sözer, S. Bonfanti, and D. 

Weyns, Eds., Cham: Springer Nature Switzerland, 2024, pp. 

3–18. 

[10] Mahender Singh, “Resilient Microservices Architecture with 

Embedded AI Observability for Financial Systems,” Journal 

of Electrical Systems, vol. 20, no. 11s, pp. 4499–4510, Nov. 

2024, doi: 10.52783/jes.8596. 

[11] M. Niswar, R. Arisandy Safruddin, A. Bustamin, and I. Aswad, 

“Performance evaluation of microservices communication 

with REST, GraphQL, and gRPC,” International Journal of 

Electronics and Telecommunications, pp. 429–436, Jun. 2024, 

doi: 10.24425/ijet.2024.149562. 

[12] M. Waseem, P. Liang, M. Shahin, A. Di Salle, and G. Márquez, 

“Design, monitoring, and testing of microservices systems: 

The practitioners’ perspective,” Journal of Systems and 

Software, vol. 182, p. 111061, Dec. 2021, doi: 

10.1016/j.jss.2021.111061. 

[13] S. Newman, Building microservices: designing fine-grained 

systems. “ O’Reilly Media, Inc.,” 2021. 

[14] R. S. Pressman, Software engineePressman, R. S. (n.d.). 

Software engineering (2nd ed.). New York: McGraw-Hill Book 

Company.ring, 7th ed. New York: Higher Education, 2010. 

[15] F. Qudus Khan, S. Rasheed, M. Alsheshtawi, T. Mohamed 

Ahmed, and S. Jan, “A Comparative Analysis of RAD and 

Agile Technique for Management of Computing Graduation 

Projects,” Computers, Materials & Continua, vol. 64, no. 2, 

pp. 777–796, 2020, doi: 10.32604/cmc.2020.010959. 

[16] N. Singh and A. Hussain, “Rapid Application Development in 

Cloud Computing with IoT,” in IoT and AI Technologies for 

Sustainable Living, Boca Raton: CRC Press, 2022, pp. 1–28. 

doi: 10.1201/9781003051022-1. 

[17] Z. Aghababaeyan, M. Abdellatif, L. Briand, R. S, and M. 

Bagherzadeh, “Black-Box Testing of Deep Neural Networks 

through Test Case Diversity,” IEEE Transactions on Software 

Engineering, vol. 49, no. 5, pp. 3182–3204, May 2023, doi: 

10.1109/TSE.2023.3243522. 

[18] I. El Gaabouri, M. Senhadji, M. Belkasmi, and B. El Bhiri, “A 

Systematic Literature Review on Authentication and Threat 

Challenges on RFID Based NFC Applications,” Future 

Internet, vol. 15, no. 11, p. 354, Oct. 2023, doi: 

10.3390/fi15110354. 

[19] Y. Malabi, M. Hani’ah, Noprianto, V. N. Wijayaningrum, V. 

Al Hadid Firdaus, and A. Himawan, “Efficient Employee 

Attendance System Integrating RFID and Android-Based Face 

Recognition with Liveness Detection,” in 2024 International 

Conference on Electrical and Information Technology (IEIT), 

IEEE, Sep. 2024, pp. 163–168. doi: 

10.1109/IEIT64341.2024.10763296. 

[20] M. Söylemez, B. Tekinerdogan, and A. K. Tarhan, 

“Microservice reference architecture design: A multi‐case 

study,” Softw Pract Exp, vol. 54, no. 1, pp. 58–84, Jan. 2024, 

doi: 10.1002/spe.3241. 

[21] R. G. Kawi and Suprihadi, “Design of Website-Based Tourism 

Travel Information System (Case Study : Tenta Tour),” 

International Journal Software Engineering and Computer 

Science (IJSECS), vol. 3, no. 3, pp. 317–323, Dec. 2023, doi: 

10.35870/ijsecs.v3i3.1788. 

[22] A. El Akhdar et al., “Exploring the Potential of Microservices 

in Internet of Things: A Systematic Review of Security and 

Prospects,” Sensors, vol. 24, no. 20, p. 6771, Oct. 2024, doi: 

10.3390/s24206771. 

 

https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.30880/jscdm.2021.02.02.008
https://dl.acm.org/doi/10.1016/j.procs.2025.04.561
https://doi.org/10.1109/TSE.2023.3287297
https://doi.org/10.1109/ACCESS.2024.3365079
https://doi.org/10.1109/ICCCNT61001.2024.10724582
https://doi.org/10.1109/ICCCNT61001.2024.10724582
https://doi.org/10.52866/ijcsm.2023.02.03.012
https://www.mdpi.com/2076-3417/10/17/5797
https://doi.org/10.52783/jes.5728
https://www.scribd.com/document/786042478/graphql-vs-rest-api
https://doi.org/10.1016/j.jss.2021.111061
https://doi.org/10.32604/cmc.2020.010959
https://uat.taylorfrancis.com/books/edit/10.1201/9781003051022/iot-ai-technologies-sustainable-living-abid-hussain-garima-tyagi-sheng-lung-peng
https://doi.org/10.1109/TSE.2023.3243522
https://doi.org/10.3390/fi15110354
https://doi.org/10.1109/IEIT64341.2024.10763296
https://doi.org/10.1002/spe.3241
https://doi.org/10.35870/ijsecs.v3i3.1788
https://doi.org/10.3390/s24206771

