

International Journal of Pedagogy and Teacher Education

Journal Homepage: jurnal.uns.ac.id/ijpte

The Effect of Repeated Reading Method on Reading Fluence in Slow Learning **Students in State Primary Schools**

Amaliyah Nur Azizah*, Dewi Rosiana, Stephani Raihana Hamdan

Masters and Profession of Psychology, Faculty of Psychology, Universitas Islam Bandung, Bandung, Indonesia

ARTICLE INFO

Article History

Received: May 21, 2025 1st Revision : September 07, 2025 Accepted: October 30, 2025 Available Online: November 01, 2025

Keywords:

Reading method; repeated reading method; reading fluency; slow learning students; state primary

*Corresponding Author

Email address:

amaliyahnurazizah12@gmail.com

ABSTRACT

Students who receive education at elementary schools consist of regular students and students with special needs, including slow learners. With limited cognitive capacity, students who are slow learners will lack the process of developing general concepts or ideas that underlie many school assignments, especially in language aspects, including reading skills. This research was conducted to determine the effect of the repeated reading method on the reading fluency of slow learners in grade 3 in state elementary schools. Reading fluency will be measured by the subject's speed when reading the entire pretest-posttest text and calculating correct words per minute (WCPM) when the subject reads the pretest-posttest text in the first minute. The research method used in this research is quantitative with a single-case research design, namely the ABA design. The sample in this research was taken based on a non-probability sampling method with purposive sampling. The repeated reading method given to 3 slow learning students in class III at the Griba State Elementary School for 12 days and 5 repetitions of reading the text and 5 times the pronunciation of words that were misread, was able to increase reading speed and accuracy significantly (0.023 and 0.038) based on tests paired sample t-test statistics. So H1 is accepted and H0 is rejected. In line with this, it can be concluded that there is an influence of the repeated reading method on reading fluency in slow learners in state elementary schools.

How to cite: Azizah, A. N., Rosiana, D., & Hamdan, S. R. (2025). The effect of repeated reading method on reading fluence in slow learning students in state primary schools. International Journal of Pedagogy and Teacher Education, 9(2), 270–282. https://doi.org/10.20961/ijpte.v9i2.102667

1. INTRODUCTION

Education plays a crucial role in the development of a nation. A well-established education system improves the quality of human resources, enabling faster progress and national advancement. According to the Indonesian National Education System Law No. 20 of 2003, the national education system aims to develop the potential, character, and civilization of a dignified nation in order to educate its citizens. In Indonesia, every citizen is required to complete at least nine years of basic education, which aims to equip students with essential skills such as critical thinking, reading, writing, numeracy, science, and communication.

Elementary school education serves as the foundation for higher learning. Students in this stage include not only regular learners but also those with special educational needs (SEN). In accordance with the 1945 Constitution and the National Education System Law No. 20 of 2003, the state guarantees equal access to quality education for all children, including children with special needs. These students are defined as those who have physical, emotional, mental, or social disabilities, or possess exceptional talents and intelligence (Kementerian Pendidikan Nasional Republik Indonesia, 2009). Globally, an estimated 1.3 billion people, about 16% of the world's population, live with disabilities, and prevalence is higher in developing countries (WHO, 2023; World Bank, 2025). In Indonesia, approximately 3.3% of children aged 5 to 19 years, or about 2.2 million individuals, are classified as having special needs (Kemenko PMK, 2022). One of the groups that often faces learning difficulties in schools is slow learners, or students with below-average intellectual abilities (IQ between 76-89) (Reddy et al., 2006). Although they do not qualify for special education programs, slow learners require specific support to reach optimal learning outcomes (Ridha, 2021; Ernawati et al., 2023).

Slow learners typically need more time, repetition, and individualized attention to complete academic tasks (Reddy et al., 2006). If given appropriate intervention, these students can successfully complete formal education and achieve independence in adulthood (Vasudevan, 2017). One key academic area requiring intervention is reading fluency, a critical skill that supports comprehension and overall academic success (Rasinski, 2012). Reading is one of the most fundamental literacy skills and is central to learning in elementary

school. However, Indonesia continues to face challenges in this area. According to the 2019 PISA results, Indonesia ranked 62nd out of 70 countries in literacy performance (Organization for Economic Co-operation and Development, 2019). Additionally, national reports indicate that in 2022 fewer than half of students met the minimum literacy benchmark, and in 2023 the elementary literacy indicator stood at 61.53% (Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi, 2024).

Several factors influence reading ability, including physiological, intellectual, environmental, and psychological aspects (Lamb & Arnold, 1976). Among these, cognitive capacity plays a key role in the reading difficulties experienced by slow learners (Reddy et al., 2006). Limited working memory and weak verbal processing hinder their ability to decode and comprehend text effectively (Ernawati et al., 2023). As a result, many slow learners struggle with reading fluency, which is defined as the ability to read accurately, quickly, and with appropriate expression (Rasinski, 2003; Samuels, 2006). Reading fluency depends on automatic word recognition, which allows readers to focus on comprehension rather than decoding (Rasinski et al., 2006). Insufficient fluency makes it difficult for students to retain and understand textual information (Lyon, 1998a, 1998b). According to Chall's (1983) stages of reading development, students in grades 2 and 3 (ages 7-8) should already be able to read fluently and quickly, having mastered basic decoding skills. However, preliminary interviews with several elementary school teachers in Bandung revealed that many third-grade students, particularly those identified as slow learners still struggle with reading fluency and perform below grade-level expectations.

To address these challenges, teachers and researchers must apply effective, evidence-based reading interventions tailored to the characteristics of slow learners. One promising strategy is repeated reading, a method in which students read the same meaningful text multiple times aloud until fluency is achieved (Samuels, 1979; Rasinski, 2003). This approach strengthens connections between short-term and long-term memory, enabling automatic word recognition and improved comprehension. The National Reading Panel (2000) found that repeated reading effectively enhances reading fluency for both typically developing and struggling readers. Previous studies have consistently shown the positive effects of repeated reading on fluency and comprehension among elementary students (Kuswardani et al., 2023; Sari, 2023). International evidence shows that repeated reading improves fluency and vocabulary in second-language learners, yet studies tailored to Indonesian slow learners remain limited and call for localized adaptations (Serrano & Huang, 2018; Wijaya, 2024).

Therefore, this study aims to examine the effect of the repeated reading method on reading fluency among third-grade slow learners in a public elementary school in Bandung, Indonesia. The results are expected to contribute to the development of practical, research-based reading interventions that can be applied by school psychologists, teachers, and educators to support slow learners in achieving better academic outcomes.

2. MATERIAL AND METHOD Research Design

The research method used in this study is quantitative with a single-case research design, namely the ABA design. A single-case research design is a design that uses only one participant or one group of individuals to investigate the effect of a treatment (Christensen et al., 2015). The single-case study design used in this study is the ABA design, the most basic single-case study design. An ABA design has three separate conditions. Condition A is the baseline condition, in which the target behavior (i.e., the dependent variable) is recorded under conditions that occur independently. In other words, the baseline refers to a specific behavior observed before any treatment is administered. Thus, the baseline measure provides the researcher with a frame of reference or counterfactual for assessing the effect of the treatment condition on the target behavior. Condition B is the experimental condition, in which the treatment is intentionally administered to attempt to change the target behavior. Baseline data in single-case studies is crucial. A primary concern is obtaining stable baseline data because it serves as a standard for assessing changes caused by the treatment. A stable baseline is characterized by the absence of a trend (or skew) in the data and only a small degree of variability. In this study, baseline data were collected five times.

Participants

The participants in this study were 3rd grade students at Griba State Elementary School who were diagnosed as slow learners by a psychologist and had difficulty reading based on a reading test conducted by the

homeroom teacher. The assessment conducted by researchers under the supervision of psychologists to identify slow-learning students involved interviews and administering a slow-learner behavior checklist compiled by Reddy, Ramar, and Kusuma (2006) to homeroom teachers. The Colored Progressive Matrices (CPM) test was also used. The CPM test was chosen based on the research's need to identify subjects with below-normal IQ scores, which are classified as below average (Grade IV) in the CPM. Students suspected of being slow learners were given a reading test administered by the homeroom teacher. Indicators of students having reading difficulties were based on the standard criteria for reading speed and accuracy according to Samuels (1979), which states that a person is considered a fast and accurate reader if they can correctly read 85 words per minute.

Instruments

This study evaluated gains in reading fluency using a researcher-developed 105-word passage. The length was selected to align with Samuels' 50–200-word guideline for fluency texts, balancing sufficient sampling for rate and accuracy with manageable cognitive demand Samuels (1979). Vocabulary, syntax, and discourse structure were calibrated to third-grade developmental expectations, consistent with component-based models of reading fluency and established guidance for teaching and assessing oral reading fluency (Kim, 2015; Aldhanhani & Abu-Ayyash, 2021).

Reading performances were documented with a structured observation sheet that captured both qualitative behaviors and quantitative fluency indicators. The shraseet included fields for total reading duration (in seconds) for the full passage, words correct per minute (WCPM) computed strictly from the first 60 seconds, and errors per minute, defined as mispronunciations, substitutions, and omissions. Prosodic adequacy (intonation) was operationalized as the number of pauses made immediately before commas, periods, question marks, and exclamation points. Consistent with the literature, an oral reading rate around 85 WCPM was treated as a strong benchmark for elementary readers and used as a reference for interpreting gains Samuels (1979).

Prior to the main study, the passage and observation sheet were piloted with three Grade-3 students who met the inclusion criteria. Pilot data were analyzed in JASP to examine psychometric qualities. Convergent evidence for validity was indicated by coherent Pearson correlations among the fluency indicators, and internal consistency was acceptable with Cronbach's alpha = 0.75, exceeding the conventional ≥ 0.70 threshold. An expert review by a practicing school psychologist at Cendikia Muda School further supported content validity, confirming developmental fit and clarity of scoring procedures. During treatment sessions, observers recorded all fields in real time; WCPM was computed from the first minute only, while total duration, error counts, and intonation measures were taken over the entire reading to enable a triangulated assessment of changes in fluency.

Procedures

Data collection was conducted in baseline conditions (A-1) to establish each participant's pre-treatment reading fluency. Each student was instructed to read one 105-word narrative aloud once per day for five consecutive school days. No instructional feedback or correction was provided during these baseline readings. Observers recorded total reading duration in seconds for the full passage, calculated words correct per minute (WCPM) from the first 60 seconds, tallied errors per minute, and counted intonation pauses made immediately before commas, periods, question marks, and exclamation points.

The treatment phase implemented the repeated reading method across twelve school days, scheduled Monday through Saturday for two consecutive weeks. Four grade-appropriate texts were used during this phase. Sessions were organized so that students engaged with the target text on each treatment day through five timed oral readings. Whenever a word was misread, the student immediately practiced that word correctly five times before proceeding. The same observation sheet and timing procedures used at baseline were applied during treatment, with WCPM computed from the first minute of each day's reading and the remaining indicators captured for the entire passage. Sessions were conducted in a consistent school setting to minimize distractions and to standardize administration conditions.

Baseline A-2 was conducted one week after the final treatment day to assess maintenance of fluency gains after withdrawal of the intervention. Procedures mirrored A-1: students read one 105-word story once per day for five consecutive school days, and observers documented WCPM from the first minute, total reading duration, error counts, and intonation pauses using the same scoring rules and forms.

	Table 1.	Timeline of the Frocedure			
Phase	Activity	Duration & Frequency	Data Collected		
A-1 (Initial Baseline)	Subjects read one 105- word story text once per day	5 consecutive days (e.g., Monday–Friday, Week 1)	-WCPM (words correctly read per minute) -Intonation (number of pauses at commas, periods, question marks, exclamation marks)		
B (Treatment / Repeated Reading)	Repeated reading method with four different texts	4 sessions over 12 days: Monday–Saturday for two consecutive weeks (total 12 days)	- Intonation		
A-2 (Post-	One week after the last	5 consecutive days (e.g.,	- WCPM		

intervention day, subjects Monday-Friday, Week 4) - Intonation

read one 105-word story

Table 1. Timeline of The Procedure

Data Analysis

Treatment Baseline)

This study used parametric statistical analysis. Parametric procedures were selected because the outcomes, namely reading duration in seconds, WCPM, and intonation counts, were treated as interval scale measures and expected to approximate normal distributions (Sugiyono, 2013). Assumptions were examined before hypothesis testing. Normality was evaluated on the difference scores with the Shapiro and Wilk test. For transparency, Table 2 also reports pretest and posttest aggregates, and every p value exceeds .05, specifically duration pre .354 and post .268, WCPM pre .278 and post .456, and intonation pre .263 and post .806. Visual checks using boxplots and quantile quantile plots supported these results. Dispersion was documented with Levene statistics in Table 3, with p values of .249 for duration, .444 for WCPM, and .373 for intonation. Independence within pairs was preserved by a within subject protocol and consistent timing and scoring, and screening with the boxplot rule at one point five times the interquartile range flagged no observations that required removal.

Primary inference used paired samples t tests in JASP with a two tailed alpha of .05 for each outcome. Effect sizes were reported as Cohen's d for dependent samples with 95 percent confidence intervals and interpreted with familiar thresholds, about .20 for small, about .50 for medium, and .80 or greater for large effects. For practical meaning, percentage change from pretest to posttest was also examined and raw means and standard deviations are presented in the Results section, see Table 6. A Wilcoxon signed rank test was planned as a robustness check. Diagnostics in Tables 2 and Table 3 met the assumptions, so paired t tests served as the primary analysis and effect sizes guided interpretation given the small sample of three.

	Average reading duration in seconds (pretest)	Average reading duration in seconds (post test)	Average WCPM (pretest)	Average WCPM (post test)	Average Intonation (pretest)	Average Intonation (posttest)
P-value	0.354	0.268	0.278	0.456	0.263	0.806

Table 3. Results of Data Homogeneity Test with Levene Statistic

	Average reading duration in seconds (pretest and posttest)	Average WCPM (pretest and posttest)	Average Intonation (pretest and posttest)
P-value	0.249	0.444	0.373

PAPER | 138 p-ISSN: 2597-7792 / e-ISSN: 2549-8525

3. RESULTS

Demographic Analysis

Participant characteristics frame how fluency develops under repeated reading. Age, gender, family income, and living arrangement may influence exposure to print, homework routines, and adult scaffolding. Table 4 reports three third grade students from Griba State Elementary School. Two students were nine years old and one was eight years old. Two were male and one was female. Two families reported monthly income below Rp 500,000. Two students lived with both parents and one student lived with a single parent. This context supports interpretation of individual response patterns in the figures that follow.

	•
Age	N = 3
8 years old	1 (33.33 %)
9 years old	2 (66.67 %)
Gender	
Male	2 (66.67 %)
Female	1 (33.33 %)
Parents' Income	
Less than Rp. 500.000	2 (66.67 %)
Rp. 1,000,000 - Rp. 1,999,999	1 (33.33 %)
Residence Situation	
With both parents	2 (66.67 %)
With one parent	1 (33.33 %)

Table 4. Characteristics of Research Participants

Comparison of Reading Duration in Pre and Post Test

Reading rate serves as a first signal of improved automaticity in repeated reading. Total time to complete a fixed passage reflects how efficiently decoding and articulation unfold across the entire text. Figure 1 and Table 5 show shorter completion times for every student after intervention. The group mean fell from 122.6 seconds at pretest to 85.6 seconds at posttest, an improvement of 37.0 seconds. FD showed the largest reduction, 51.4 seconds which corresponds to 35.7 percent faster reading. MJ decreased by 36.6 seconds which corresponds to 27.4 percent, and AM decreased by 23.0 seconds which corresponds to 25.4 percent. Faster passage completion is consistent with fewer hesitations and smoother word recognition.

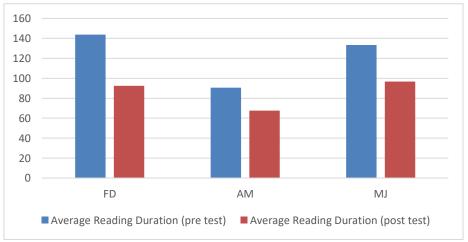


Figure 1. Comparison of Average Reading Duration in Pre-Test and Post-Test in Seconds

Comparison of WCPM in Pre and Post test

In the repeated reading technique, one important aspect that needs to be considered is the number of words read correctly in one minute. Accuracy at pace is central to fluent reading in instructional settings. WCPM

combines correct decoding with speed during a standard window and captures growth that is meaningful for classroom practice. Figure 2 and Table 5 indicate that WCPM increased for all students. The group mean rose from 50.4 to 75.8, a gain of 25.4 WCPM. FD improved by 35.4 WCPM which equals 99.4 percent, MJ by 22.4 WCPM which equals 53.8 percent, and AM by 18.4 WCPM which equals 24.9 percent. These gains point to strengthened word recognition and more efficient decoding during continuous reading.

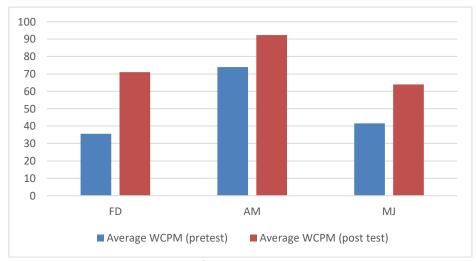


Figure 2. Comparison of Average WCPM on Pre and Post Test

Comparison of Reading Intonation in Pre and Post Tests

In the repeated reading technique, one important aspect that needs to be considered is the subject's reading intonation in reading the reading text. In line with this, intonation in reading is one aspect of reading fluency. Reading intonation is measured through the number of stops made by the subject in the word before the comma, period, question mark, and exclamation mark. Figure 3 shows that FD had the shortest average pretest reading time, while AM had the lowest average intonation. After the intervention, FD's reading intonation improved the most, followed by MJ and AM.

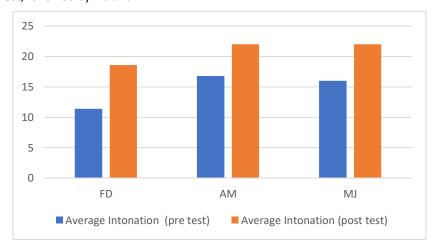


Figure 3. Comparison of Average Intonation on Pre and Post Test

Comparison of the Number of Word Errors in 1 Minute in the Pre and Post Tests

Error reduction reflects cleaner decoding and more stable grapheme to phoneme mappings. Lower error rates also preserve cognitive resources for phrasing and comprehension. Figure 4 shows declines from pretest to posttest across students, with the most visible drop for AM in the figure. Table 5 reports small numerical changes given relatively low baselines. AM moved from 6.2 to 6.0 which equals 3.2 percent lower, MJ from 5.4

to 5.0 which equals 7.4 percent lower, and FD remained 5.6. A possible floor effect on errors is consistent with larger shifts observed on duration and WCPM.

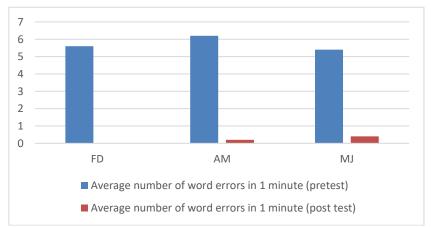


Figure 4. Comparison of Number of Word Errors in 1 Minute in Pre and Post Test

Comparison in The Average Duration, WCPM, Intonation, and Number of Word Errors in 1 Minute between Pre and Post Tests

Table 5. Comparison in The Average Duration, WCPM, Intonation, and Number of Word Errors in 1 Minute between Pre and Post Tests

Subject	Average Duration			erage CPM	Average intonation		Average number of word errors 1 minute	
	Pretest	Posttest	Pretest	Posttest	Pretest	Posttest	Pretest	Posttest
Fd	143.8	92.4	35.6	71	11.4	18.6	5.6	5.6
Am	90.6	67.6	74	92.4	16.8	22	6.2	6
Mj	133.4	96.8	41.6	64	16	22	5.4	5

Table 5 shows consistent improvement across three fluency dimensions with a small decline in errors. Individual patterns in Table 5 align with these group trends. FD contributed the largest drop in duration and the largest rise in WCPM. All students increased intonation counts, indicating more appropriate pausing at punctuation. Error rates were low at baseline and showed slight decreases overall, which is consistent with a possible floor effect. These table level findings match the figure level patterns in Figures 1 to 4.

Paired Sample T-Test

Table 6. Paired Sample T-Test

Measure 1	Measure 2	р	Cohen's d
Average reading duration in seconds	Average reading duration in seconds	0.023	2.605
(pretest)	(post test)		
Average WCPM (pretest)	Average WCPM (post test)	0.019	-2.858
Average reading intonation (pretest)	Average reading intonation (posttest)	0.014	-3.382

Table 6 shows that all paired-sample t-tests yielded p < 0.05, indicating significant differences between pretest and posttest. Reading duration was significantly longer in the pretest than posttest, WCPM was significantly lower, and reading intonation was significantly higher before the intervention than after. Then, the researcher conducted a Cohen's d test to measure the magnitude of the intervention's effect on changes in the subjects' reading duration, WCPM, and intonation in the pretest and posttest conditions. Based on Table 6, it is known that all Cohen's d values obtained were > 0.8. This indicates that there is a large effect size of the repeated

PAPER | 138 p-ISSN: 2597-7792 / e-ISSN: 2549-8525

reading intervention given on changes between reading duration, WCPM, and intonation during the pretest and after the intervention (posttest). The negative sign indicates that the first condition (pretest) has a lower average than the second group (posttest).

4. DISCUSSION

Key Findings

Baseline evidence documented persistent reading difficulties from grade 1 through grade 3 for all three slow-learning students. The homeroom teacher reported an absence of individualized support outside regular class hours, which limited opportunities for targeted practice and timely feedback. Home guidance had been suggested, yet fluency did not improve meaningfully, and students continued to substitute, omit, and add letters, read unclearly, and stutter. Such diffuse and low-dosage support profiles are often associated with stalled growth in foundational skills among struggling readers. This pattern aligns with reports that unmet instructional needs can suppress progress even when adults attempt to help at home (Zavala & Cuevas, 2019).

Developmental benchmarks position most second and third graders at a stage where decoding is consolidated and fluent word recognition is expected. Typical readers at this level shift from laborious soundingout to rapid recognition of familiar words during connected-text reading, which reduces cognitive load and supports prosody. The three students in the present sample remained below these milestones, which signals a need for concentrated fluency work that accelerates rate and stabilizes accuracy. Stage models of reading development describe fluent reading as the norm after basic decoding mastery, providing a clear reference for judging lagging performance. Alphabetic phase theory likewise anticipates automatic recognition of common words in these grades, which strengthens the rationale for interventions that build automaticity with meaningful text (Ehri, 1995; Ehri, 2005).

The intervention targeted this profile with a repeated-reading routine that paired multiple oral readings of connected text with immediate practice of misread words. This configuration increases accurate responses, reinforces grapheme-to-phoneme mappings, and reduces the attentional cost of decoding across successive exposures. Practice occurred under conditions that mirrored classroom demands, supporting transfer from the intervention setting to broader literacy activities. Rapid, trial-by-trial feedback allowed errors to be corrected while memory traces were still active, which is a key mechanism for consolidation. These design features reflect long-standing recommendations that position repeated reading as a core fluency method in the early grades (Therrien & Kubina, 2006; Therrien, 2004).

Outcomes showed coherent gains across all indicators that were both statistically reliable and instructionally meaningful. Reading duration declined substantially, words correct per minute increased, and counts of appropriate pauses at punctuation rose after twelve days of practice. Paired-samples t-tests confirmed significant pre- to post-test differences with large effect sizes for each outcome, indicating robust change over a brief implementation window. The pattern replicates classroom demonstrations in which repeated exposure to the same passage, combined with quick corrective feedback, produced strong gains in oral reading fluency . Comparable magnitudes have been reported when practice density is high and correction is immediate, which is consistent with the present effect sizes (Vadasy & Sanders, 2008).

Prosodic growth emerged alongside speed and accuracy, suggesting broader gains in coordinated, expressive reading. Increased pausing at commas, periods, question marks, and exclamation points indicates better alignment of phrasing with text structure, a hallmark of fluent oral performance. Improvements in prosody often track with reduced decoding load, because attentional resources can shift from word recognition to phrasing and expression once accuracy stabilizes. Repeated exposure to connected text facilitates this shift, especially when feedback cues readers to notice punctuation and segment phrases accordingly (Gellert, 2014). The joint movement of duration, WCPM, and prosody therefore points to strengthening of both automaticity and oral expression during the intervention period.

Individual differences highlighted engagement as a key moderator of response. The student who expressed eagerness to read and initiated practice displayed the largest acceleration and accuracy gains, which is consistent with evidence that motivation sustains attention and increases practice density during fluency work (Enyew et al., 2016). A second student frequently self-corrected upon noticing errors, a productive monitoring behavior linked to stronger learning during oral reading tasks. The least engaged student read softly, avoided clear articulation, and required frequent prompts, and this response profile corresponded with smaller gains.

p-ISSN: 2597-7792 / e-ISSN: 2549-8525 **PAPER | 138 DOI:** https://doi.org/10.20961/ijpte.v9i2.102667

These contrasts underscore that repeated reading functions most effectively when participation is active and feedback is used immediately during practice.

Triangulation across indicators supports a construct-level interpretation of improvement rather than isolated gains on a single metric. Duration and WCPM moved in expected directions, prosody increased in tandem, and error rates showed small declines from relatively low baselines, which suggests a possible floor effect. Convergence of these signals reduces the likelihood that the results reflect measurement artifact or task familiarity alone. The pattern is consistent with strengthening of decoding automaticity that frees attentional resources for phrasing and expression, which aligns with theoretical accounts of how repeated exposure reshapes oral reading performance (Therrien, 2004). Overall, the key findings indicate that a brief, wellstructured repeated-reading routine can produce rapid, multicomponent fluency gains in slow-learning third graders when implemented with high practice density and immediate corrective opportunities (Vadasy & Sanders, 2008).

Comparison with Literature

The present findings converge with a broad body of work that positions structured, repeated exposure to connected text as a reliable route to fluency gains. Multicomponent programs that blend decoding practice with motivational supports have produced meaningful improvements in rate and accuracy among learners who struggle with reading, including adolescents with identified disabilities, which parallels the pattern of large, short term gains observed here (Lovett et al., 2021). Targeted text adaptations and scaffolded routines also benefit students with mild intellectual disabilities by strengthening access to print and supporting more efficient oral production, an effect that is consistent with the observed increases in words correct per minute and the reduction in hesitations at punctuation (Licardo et al., 2021). Together these strands suggest that predictable practice structure and immediate feedback can move fluency indicators in a relatively brief window when dosage is sufficient (Lovett et al., 2021; Licardo et al., 2021).

Decoding focused instruction complements repeated reading by stabilizing letter sound mappings and easing the cognitive load of real time word recognition. Recent single subject work with young students who have mild intellectual disabilities shows that systematic decoding training can improve foundational accuracy, which in turn supports faster and cleaner passage reading during practice cycles (Fälth et al., 2023). Comparative research on single versus multicomponent reading instruction for children with intellectual disability further indicates that programs which integrate several evidence based elements can lift phonological awareness and reading skills more effectively than single element approaches, a conclusion that supports pairing repeated reading with explicit code based work when designing school routines (Palmqvist et al., 2024). The pattern reported here, namely simultaneous gains in speed and prosodic marking, fits the expectation that decoding consolidation and connected text practice operate synergistically to build fluent oral performance (Fälth et al., 2023; Palmqvist et al., 2024).

Learner engagement consistently emerges as a moderator of treatment response, which helps explain individual differences in growth across the sample. Studies of adapted text learning document stronger outcomes when students are actively involved, show interest, and participate in feedback cycles that highlight success during practice, a profile that aligns with the largest gains observed for the most enthusiastic reader in this cohort (Bhat et al., 2023). Motivational elements do not replace the mechanics of effective instruction, yet they enhance the yield of each practice opportunity by sustaining attention and encouraging self correction within sessions (Bhat et al., 2023). The literature therefore supports an integrated view in which the structure of repeated reading provides the engine for fluency growth and engagement functions as the accelerator that helps that engine reach instructional speed (Lovett et al., 2021; Bhat et al., 2023).

Psychological Aspects

The analysis results indicate that the repeated reading method influences reading fluency in slowlearning students at Griba 264 State Elementary School. Average reading duration declined from pretest to posttest and average WCPM increased, indicating simultaneous gains in speed and accuracy. One participant exhibited larger improvements than the other two, a pattern consistent with individual variability in treatment response. Increases in WCPM reflect sharper decoding and faster lexical access, whereas shorter completion times index more efficient throughput across the passage, both core elements of fluency (Hudson et al., 2020;

p-ISSN: 2597-7792 / e-ISSN: 2549-8525 **PAPER | 138 DOI:** https://doi.org/10.20961/ijpte.v9i2.102667

Gellert, 2014; Grasparil & Hernandez, 2015). These changes signal movement toward automaticity rather than isolated practice effects, because accuracy at pace improves while hesitations diminish, allowing attention to shift toward phrasing and expression that align with punctuation.

Information processing theory explains how repeated reading produces these outcomes. Text first enters the sensory register and is transformed in short term memory into phonological codes that are matched against representations stored in long term memory. Repetition strengthens the orthographic, phonological, and semantic traces of frequently encountered words, which accelerates recognition and reduces cognitive load during subsequent readings (Grasparil & Hernandez, 2015). Consolidation through practice also supports chunking of familiar letter patterns, lowering the number of elemental decisions required at each fixation. As decoding becomes more automatic, executive resources can be devoted to prosodic timing at commas and sentence boundaries and to ongoing monitoring for meaning. Recent accounts emphasize this practice-driven consolidation as a central pathway by which repeated reading yields durable fluency gains in learners with reading difficulties, including those with mild intellectual disabilities (Canuto et al., 2024).

Limitations

This study has limitations related to the research method used. This study employed a single-case research design. A single-case research design uses only one participant or group of individuals to investigate the effects of a treatment. The single-subject experimental method was chosen due to the limited number of respondents studied and the impossibility of dividing the study into experimental and control groups. Therefore, further research using an experimental method with a larger number of subjects is necessary to generalize the results.

Implications

The repeated reading method can be administered to slow-learning students at Griba 264 State Elementary School who are not yet fluent readers. Parents, teachers, and psychology practitioners can provide the repeated reading method to slow-learning students at Griba 264 State Elementary School who are not yet fluent readers. In future research, experimental methods using a larger number of subjects are needed to generalize the results.

5. CONCLUSION

The repeated reading method given to 3 grade III students at Griba 264 State Elementary School for 12 days and 5 repetitions of reading the text and 5 times of pronouncing the misread words, was able to significantly increase reading speed, accuracy, and intonation based on the paired sample t-test statistical test. In this case, the repeated reading method was able to increase the average reading duration by 37 seconds, the average number of words accurate by 25.4 words, and the average number of intonation accurate by 6.1.

Based on the paired sample t-test, it is known that the p value <0.05, which indicates a significant difference between the pretest and posttest. Reading duration was significantly longer in the pretest than in the posttest, WCPM was significantly lower, and reading intonation was significantly higher before the intervention than after. Then, the Cohen's test found that all Cohen's d values obtained were >0.8. This indicates that there is a significant effect of the repeated reading intervention given on changes between reading duration, WCPM, and intonation during the pretest and after the intervention (posttest).

This study has limitations related to the research method used. This study employed a single-case research design. Therefore, further research using an experimental method with a larger number of subjects is necessary to generalize the results.

6. REFERENCES

Aldhanhani, Z., & Abu-Ayyash, E. (2021). Oral reading fluency: Teaching and assessment strategies. *Universal Journal of Educational Research*, *9*(7), 1375–1384. https://doi.org/10.13189/ujer.2021.090704

Bhat, V., Mehrotra, R., & Gambhir, V. (2023). Effective methods for adapted text learning for students with mild to severe intellectual disabilities: Differentiating character comparisons. *Multidisciplinary Science Journal*, *5*, Article 2023ss0216. https://doi.org/10.31893/multiscience.2023ss0216

- Canuto, P., Lumidao, Y., Ballagan, A., Calya-en, P., Laoyan, R., & Oplas, A. (2024). Enhancing elementary students' oral reading fluency through repeated reading and big books. *International Journal of Learning, Teaching and Educational Research*, 23(4), 376–393. https://doi.org/10.26803/ijlter.23.4.20
- Chall, J. S. (1983). Stages of reading development. McGraw-Hill.
- Christensen, L. B., Johnson, R. B., & Turner, L. A. (2015). *Research methods, design, and analysis* (12th ed.). Pearson.
- Ehri, L. C. (1995). Phases of development in learning to read words by sight. *Journal of Research in Reading, 18*(2), 116–125. https://doi.org/10.1111/j.1467-9817.1995.tb00077.x
- Ehri, L. C. (2005). Learning to read words: Theory, findings, and issues. *Scientific Studies of Reading, 9*(2), 167–188. https://doi.org/10.1207/s1532799xssr0902_4
- Enyew, C., Yigzaw, A., & Muche, M. (2016). Effects of teacher scaffolding on students' oral reading fluency. Science, Technology and Arts Research Journal, 4(4), 200. https://doi.org/10.4314/star.v4i4.28
- Ernawati, A., Sumiati, C., Hendrayana, S. P., Pertiwi, H., & Yunitasari, S. E. (2023). Optimalisasi pembelajaran untuk anak slow learner. *JIIP Jurnal Ilmiah Ilmu Pendidikan*, *6*(6), 3767–3772. https://doi.org/10.54371/jiip.v6i6.2091
- Fälth, L., Selenius, H., Sand, C., & Svensson, I. (2023). Decoding intervention for young students with mild intellectual disabilities: A single-subject design study. *Journal of Intellectual Disabilities, 28*(4), 1095–1108. https://doi.org/10.1177/17446295231208819
- Gellert, A. (2014). Does repeated reading predict reading development over time? A study of children from grade 3 to 4. *Scandinavian Journal of Psychology*, 55(4), 303–310. https://doi.org/10.1111/sjop.12132
- Grasparil, T., & Hernandez, D. (2015). Predictors of Latino English learners' reading comprehension proficiency. Journal of Educational Research and Practice, 5(1). https://doi.org/10.5590/jerap.2015.05.1.03
- Hudson, A., Koh, P. W., Moore, K. A., & Binks-Cantrell, E. (2020). Fluency interventions for elementary students with reading difficulties: A synthesis of research from 2000–2019. *Education Sciences, 10*(3), 52. https://doi.org/10.3390/educsci10030052
- Kim, Y. (2015). Developmental, component-based model of reading fluency: An investigation of predictors of word-reading fluency, text-reading fluency, and reading comprehension. *Reading Research Quarterly*, 50(4), 459–481. https://doi.org/10.1002/rrq.107
- Kementerian Koordinator Bidang Pembangunan Manusia dan Kebudayaan Republik Indonesia. (2022, Juni). Siaran Pers Nomor 128/HUMAS PMK/V/2022: Pemerintah wajib penuhi hak pendidikan inklusif bagi penyandang disabilitas: Menko PMK: RAN PD bukti keberpihakan pemerintah [Siaran pers]. https://www.kemenkopmk.go.id/sites/default/files/artikel/2022-06/Pemerintah%20Wajib%20Penuhi%20Hak%20Pendidikan%20Inklusif%20bagi%20Penyandang%20Di sabilitas.pdf
- Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi. (2024). *Memperkuat literasi Indonesia: Menuju bangsa yang maju dan bermartabat (Risalah Kebijakan No. 3).* Badan Pengembangan dan Pembinaan Bahasa. https://repositori.kemendikdasmen.go.id/32856/1/risalah_nomor_3_rev_cetak.pdf
- Kementerian Pendidikan Nasional Republik Indonesia. (2009). Peraturan Menteri Pendidikan Nasional Nomor 70 Tahun 2009 tentang Pendidikan Inklusif bagi Peserta Didik yang Memiliki Kelainan dan Memiliki Potensi Kecerdasan dan atau Bakat Istimewa [Minister of National Education Regulation Number 70 of 2009 on Inclusive Education for Students with Disabilities and or Giftedness]. https://pusmendik.kemdikbud.go.id/download/file-74
- Kuswardani, H. P., Suprapti, V., & Paramita, P. P. (2023). Efektivitas pendekatan intervensi gabungan untuk meningkatkan kelancaran membaca pada siswa sekolah dasar. *Psikostudia: Jurnal Psikologi, 12*(3), 341–348. https://doi.org/10.30872/psikostudia.v12i3.11033
- Lamb, C. W., & Arnold, R. (1976). Reading: Foundations and instructional strategies. Wadsworth.

- Licardo, M., Volčanjk, N., & Haramija, D. (2021). Differences in communication skills among elementary students with mild intellectual disabilities after using easy-to-read texts. *The New Educational Review, 64*(2), 236–246. https://doi.org/10.15804/tner.21.64.2.19
- Lovett, M., Frijters, J., Steinbach, K., Sevcik, R., & Morris, R. (2021). Effective intervention for adolescents with reading disabilities: Combining reading and motivational remediation to improve outcomes. *Journal of Educational Psychology*, 113(4), 656–689. https://doi.org/10.1037/edu0000639
- Lyon, R. (1998a). *Overview of reading and literacy initiatives*. Child Development and Behavior Branch, National Institute of Child Health and Human Development.
- Lyon, R. (1998b). Reading is not a natural process. Educational Leadership, 55(5), 14-18.
- National Reading Panel. (2000). *Teaching children to read: An evidence-based assessment of the scientific research literature on reading and its implications for reading instruction* (NIH Publication No. 00-4769). National Institute of Child Health and Human Development.
- OECD. (2019). PISA 2018 results (Volume I): What students know and can do. OECD Publishing. https://doi.org/10.1787/5f07c754-en
- Palmqvist, L., Holmer, E., Samuelsson, J., Thunberg, G., Reichenberg, M., Lundälv, M., & Heimann, M. (2024). Comparison of the effects of single- and multicomponent reading instructions on phonological awareness and reading skills for children with intellectual disability in Sweden. *OSF Preprints*. https://doi.org/10.31219/osf.io/rwnfb
- Rasinski, T. V. (2003). *The fluent reader*. Scholastic.
- Rasinski, T. V., Blachowicz, C. L. Z., & Lems, K. (Eds.). (2006). *Fluency instruction: Research-based best practices*. The Guilford Press.
- Rasinski, T. V. (2012). Why reading fluency should be hot! *The Reading Teacher, 65*(8), 516–522. https://doi.org/10.1002/trtr.01077
- Reddy, G. L., Ramar, R., & Kusuma, A. (2006). *Slow learners: Their psychology and instruction*. Discovery Publishing House.
- Republik Indonesia. (2003). *Undang-Undang Nomor 20 Tahun 2003 tentang Sistem Pendidikan Nasional* [Law of the Republic of Indonesia Number 20 of 2003 on the National Education System]. Lembaran Negara Republik Indonesia Tahun 2003 Nomor 78, Tambahan Lembaran Negara Republik Indonesia Nomor 4301. https://peraturan.bpk.go.id/Home/Details/43920/uu-no-20-tahun-2003
- Ridha, A. A. (2021). Memahami perkembangan siswa slow learner. Syiah Kuala University Press.
- Samuels, S. J. (1979). The method of repeated readings. The Reading Teacher, 32(4), 403-408.
- Samuels, S. J. (2006). Toward a model of reading fluency. In S. J. Samuels & A. E. Farstrup (Eds.), What research has to say about fluency instruction (pp. 24–46). International Reading Association.
- Sari. (2023). Peningkatan kelancaran membaca nyaring: Studi kasus pada siswa dengan permasalahan kelancaran membaca. *Jurnal Riset Pendidikan Dasar, 6*(1), 84–97. https://doi.org/10.26618/jrpd.v6i1.10870
- Serrano, R., & Huang, H. (2018). Learning vocabulary through assisted repeated reading: How much time should there be between repetitions of the same text? *TESOL Quarterly*, *52*(4), 971–994. https://doi.org/10.1002/tesq.445
- Sugiyono. (2013). Metode penelitian kuantitatif, kualitatif, dan R&D. Alfabeta.
- Therrien, W. (2004). Fluency and comprehension gains as a result of repeated reading. *Remedial and Special Education*, 25(4), 252–261. https://doi.org/10.1177/07419325040250040801
- Therrien, W., & Kubina, R. (2006). Developing reading fluency with repeated reading. *Intervention in School and Clinic*, 41(3), 156–160. https://doi.org/10.1177/10534512060410030501

- Vadasy, P., & Sanders, E. (2008). Benefits of repeated reading intervention for low-achieving fourth- and fifth-grade students. *Remedial and Special Education*, 29(4), 235–249. https://doi.org/10.1177/0741932507312013
- Vasudevan, A. (2017). Slow learners: Causes, problems and educational programmes. *International Journal of Applied Research*, *3*(12), 308–313.
- World Bank. (2025, October 9). Disability inclusion (Overview). https://www.worldbank.org/en/topic/disability
- World Health Organization. (2023, March 7). *Disability* [Fact sheet]. https://www.who.int/news-room/fact-sheets/detail/disability-and-health
- Wijaya, K. (2024). Invigorating globalized EFL learners' reading proficiency growth through the continual support of multimodal strategy. *Journal of English Language and Pedagogy (JELPA)*, 2(1), 1–12. https://doi.org/10.51826/jelpa.v2i1.901
- Zavala, E., & Cuevas, J. (2019). Effects of repeated reading and rhyming poetry on reading fluency. *International Journal of Social Sciences and Educational Studies*, 6(2). https://doi.org/10.23918/ijsses.v6i2p64

PAPER | 138 p-ISSN: 2597-7792 / e-ISSN: 2549-8525