The Influence of Project Work Approach on College Students’ Interest in Programming at the Private Universities in Ghana

Isaac Atta Senior Ampofo
Department of Computer Science
Kwame Nkrumah University of Science and Technology
Kumasi, Ghana
ampfoisaac10@yahoo.com

Isaac Atta Junior Ampofo
Department of Human Resource and Organizational Development, KNUST School of Business, Kwame Nkrumah University of Science and Technology Kumasi, Ghana
ampfoisaac159@yahoo.com

Abstract:

Failure rates have become a global problem as university students studying computer programming grow worldwide. Students’ interest has been linked to learning skills that require metacognition and critical thinking, which are essential for studying computer programming efficiently. As a result, the project work approach in studying computer programming combines knowledge of technology with soft skills. Project work is best suited for complicated problem-solving tactics and teamwork creatively. The study used quantitative methodology and a descriptive design survey to evaluate the project work approach's influence on college students' interest in programming. The study's participants were Christian Service University computer science students. A total of 420 students were enrolled in the study, with a sample size of 368. Inferential and descriptive statistics were applied to analyze the data received from the respondents. The study found that standalone systems were the highest factor in the project work given to students. The study revealed that project work could make students interested in programming. The study concluded that project work has a favorable and considerable impact on college students' programming interests.

Keywords: Computer Programming, College Students, Programming Course, Project Work Approach, Students’ Interest.

DOI: http://dx.doi.org/10.20961/ijie.v6i1.59461
Introduction

Failure rates have become a global problem as the number of university students studying computer programming grows worldwide (Bennedsen & Caspersen, 2019; Topalli & Cagiltay, 2018). As said by O'Kelly and Gibson (2006), this is also true in the case of first-year computer science students. According to Robins et al. (2003), programming courses, particularly, are widely regarded as challenging and frequently have the top rates of dropout/failure. The School Informatics of Costa Rica's Universidad Nacional is no exception. Between 2008 and 2012, the average failure rate (including dropouts) of basic course programming was 47.2 percent. This rise in failure rates has sparked curiosity about the factors influencing achievement in an introductory computer programming course. Wilson and Shrock (2001) investigated whether gender, math background, encouragement, previous experience in programming, work preference style, and course level comfort impact success. The findings revealed that the most significant impacting element was math background following comfort level. The researcher stressed the necessity of giving students a welcoming, non-threatening setting that encourages learning, emphasizing emotions' importance in education.

Keeping students motivated has never been easy (Ampofo, 2021). Jenkins (2001) looked at four motivation categories in undergraduate computer science students: intrinsic, extrinsic, accomplishment, and social motivation. The findings revealed that extrinsic motivation is substantial, implying that an enormous proportion of students are driven to learn computer programming since they consider it would provide them with benefits such as increased job possibilities. This research also revealed that a nearly equal number of students are intrinsically motivated, which means they are genuinely invested in learning to improve their skills. Furthermore, the author noted that, in general, students driven naturally appeared to be extra involved in studying instead of computer programming. This research revealed that understanding and motivating kids to learn computer programming is complicated. Adopting a project work approach in learning programming is a current trend to make computer science courses extra sensational and intriguing for students (Blank, 2006; Cliburn, 2006; Klassner & Anderson, 2003; Rouhani & Jørgensen, 2022).

Despite some contradictory findings (McNally et al., 2006; Fagin & Merkle, 2002), it is widely assumed that using a project-based learning method in programming offers students an engaging learning environment (McWhorter & O'Connor, 2009; Lukkarinen et al., 2021). Students' motivation has been linked to learning skills, for example, metacognition and critical thinking, which are essential for studying computer programming efficiently (Bergin et al., 2005; Benton et al., 2018; Younis et al., 2021). Furthermore, because project work approaches combine knowledge of technology with soft skills, for example, complicated problem-solving tactics and teamwork, they are best suited for stimulating the solving of problems creatively (Hees et al., 2011; Morais et al., 2021). Instead, some researchers have emphasized the importance of a project work approach (PWA) in motivating students and lowering rates of dropout and failure (Nuutila et al., 2005; Hamalainen, 2004; Lane, 2021). Through hands-on practice skills, collaborative skills, planning and project management skills, and problem-solving skills, PWA helps develop student learning (Pereira et al., 2021; Kolmos et al., 2004). PWA is thought to have a large influence on intrinsic motivation for studying since students can comprehend what they are studying for and why (Prince & Felder, 2006; Chen et al., 2021).

Furthermore, according to Prince and Felder (2007), the strategy encourages active and collaborative learning as well as increased student accountability for her or his own studying. In an introductory course of programming at the Christian Service University in Ghana, experimental research was conducted to further evaluate the effectiveness of employing PWA to minimize rates of dropout and failure and impact student motivation. Several studies have been done on using a project work approach to enhance teaching and learning (Nashirova, 2021; Shuhailo & Derkach, 2021; Tran et al., 2021; Sobral, 2021). Currently, no studies have been done on using the project work approach in teaching and learning computer programming to enhance students' interest. Also, the style of project work approach used in this study is new compared to previous literature (Sobral, 2021; Wei et al., 2021; Glazunova et al., 2021; López et al., 2021). The study contributes to the literature by looking at the use of the project work approach in teaching and learning at the university to enhance students' interest in computer programming. The project work approach in this study refers to teaching computer programming students through mini projects such that the lecturer will develop a program with the students as part of lecture periods. For example, in developing a game application, the lecturer will start the project as a form of teaching and complete the application by making sure that students have gotten the concepts before assigning them a similar game application. It is believed in this study that when this method of project work approach in teaching computer programming is enhanced at the university, it will arouse the intrinsic, extrinsic, accomplishment, and social motivation.
factors of college students to influence their interest positively. Given this, the study addresses the following research questions;

1. What type of software is used for project work at the university?
2. Can project work make college students interested in programming?
3. What is the effect of project work on college students’ programming?

Related Work

The Project Work Strategy (PWA) is a pupil-based learning method in which students study by addressing an open-ended challenge (Ampofo, 2021). PWA is based on constructivist concepts, encourages active learning, and encourages collaboration (Hissey, 2000; ACM, 2013; Prince & Felder, 2006; Kanygin & Koretckaia, 2022). The approach attempts to mimic a scenario of work-centered, either in terms of problem discovery and definition or as a real-life project simulation with multiple ways to implement the answer or solve the problem. Instead of being a teacher, students work in minor groups with the teacher acting as a facilitator or supervisor. As students study to be extra autonomous in their method rather than depend solely on professors, the method has the ability to increase responsibility and motivation in the process of learning (Dirckinck-Holmfeld, 2002; Loyens et al., 2008; Bråting & Kilhamn, 2022). According to Prieto (2006), PWA encourages students to use real-world challenges as a springboard for learning and integrating new information. The strategy encourages the development of decision-making, problem-solving, communication abilities, and teamwork.

These traits are very beneficial in the field of engineering computers. In computer engineering, the capacity to resolve issues is crucial, and many of the actions of professionals are defined in projects’ development. As a result, ACM (2011) specifies many abilities that prospective alums need to possess, including effective communication, problem-solving, professional responsibility, practical cooperation, and the ability to learn for the rest of their lives. Several studies in higher education have looked at the effectiveness of PWA versus lecture-based teaching. The outcomes are incongruent. According to Kinnunen and Malmi (2005), contingent on whether learning emphasis is on factual knowledge acquisition or on social skills, learning self-directed skills, and motivation, the findings favor the other or one. PWA may improve skill levels, but it may also cause students to do worse on standard test subjects and be stressful. As a result, lectures, exercises, and other pedagogical activities are included in some PWA learning designs. In a study involving the use of PWA in introductory programming courses, Nuutila et al. (2005) discovered an important reduction in the rates of dropout.

According to Dolmans et al. (2005), another factor that impedes the PWA learning process is an overbearing or lenient supervisor, leading to group tension and conflict, student absenteeism, and lack of dedication. Regarding group work, some groups are dysfunctional, exhibiting motivation and absence of cohesion, obstructing learning and collaborative nature (Dolmans et al., 2005; Kinnunen & Malmi, 2005; Chorfi et al., 2022). From the inference of literature, there is no study assessing the influence of project work approach on college students’ interest in programming (Sobral, 2021; Wei et al., 2021; Glazunova et al., 2021; López et al., 2021). To bridge the literature gap, the study sought to examine the influence of the project work approach on college students’ interest in programming at a private university. The study hypothesized that;

H1: Project work significantly directly affects college students’ programming interests.
Research Method

The study used an experimental study for the project work approach and a descriptive design survey to evaluate the project work approach’s influence on college students’ interest in programming. A quantitative research study was applied (Walton et al., 2008). The study covered computer science students at the university. The study was done at various private universities in Ghana. Computer science students were given hands-on experience in all areas of software during the experimental research, including standalone systems, interactive transaction-based software, embedded systems, batch processing systems, systems for modeling and simulation, information systems, data collection systems, and entertainment systems. Over the last five years, computer science students have programmed various software. Following the experimental investigation, the researcher used a descriptive design to pick a sample of respondents from various working environments to represent the greater community. The descriptive research allowed the creation of uniform questionnaires that collected data from all respondents in a similar format.

Population and Sample Size

There are 73 universities owned by private individuals and organizations as of 2019. There are 64,870 private university students representing 20.5% of the total university students in Ghana. Computer science students at the private universities represent 5% of 20.5%. As a result, the total population of computer science students at the private universities are 3,243. However, a total of 420 people were enrolled in the study where three hundred and twenty-four (324) represent males and ninety-six (96) represent females. Private universities in Ghana was chosen using the purposive selection technique because they are one of Ghana’s best universities. The sample size for the study was 368, which was after the data collection. The study was done to cover the population as the sample size, but after the data collection, only 368 computer science students answered the questionnaire completely.

Data Collection

The data for the study's analysis was gathered via a questionnaire. Respondents were given a closed-ended questionnaire (Kataria et al., 2019). The instructions were written in simple words so that respondents could grasp them (Gajjar, 2013). From "strongly disagree to strongly agree, a five-point Likert-type scale ranging from 1 to 5” was used (Yukselturk & Altiok, 2017). Four items were adopted from Chen et. al. (1997) to assess students' programming interests. The rest of the questionnaire's items were created by the researcher. The questionnaire data collection took two weeks. Because of the worldwide Covid-19 pandemic, the researcher used Google forms to develop the questionnaire and gave the link to the participants through their WhatsApp group with instructions on how to complete it. They were given advance notice of when the researcher required their response. If they needed more information, the researcher provided them a phone number to call. The research questionnaire was designed so that respondents could complete it in 15 minutes (Liao et al., 2015).

Ten colleagues were given the information in the questionnaire to explain how they understood and would respond to the questions. Their replies were analyzed with Statistical Package for Social Sciences (SPSS) to see how well the information in the questionnaire measured the objectives and how closely it corresponded to the study's outcome (students' interest in programming). This was done to see if the information in the questionnaire corresponded to the study's aims. It was also important to know if the data in the questionnaire is representative. The reliability test result for Project Work Approach was .79, while the interest in programming among college students was .723. The researcher conducted the main survey with computer science students since the questionnaire was legitimate and dependable. The data was examined with the SPSS version 26. (Baran et al., 2019; Jacques et al., 2019). Inferential and descriptive statistics were applied to analyze the data received from the respondents (Adams, 2018; Guerin et al., 2019).

Result and Analysis

The descriptive results for the current study emphasized on the influence of project work on students’ programming perception at the private universities in Ghana. It shows the mean, standard deviation, minimum and maximum Likert choice chosen by respondents, and the total number of respondents (Al-adwan, Box, & Arabia, 2016). The results also show the hypothesis that tests the effect and relationship between the variables.
The Type of Software Project Work Given to Students

Table 1 shows the descriptive statistics of responses to project work. Table 1 demonstrated that standalone systems had the highest mean of 2.4266, which means that standalone systems were the highest factor in the project work given to students. The average distance a score was from the mean was 0.84495, which is a measure of dispersion (standard deviation) that indicates how broadly the distribution was distributed. The entertainment system had the second-highest mean of 2.3234, which means that the entertainment system was the second highest factor in the project work given to students. The average distance a score was from the mean was 0.98285, which is a measure of dispersion (standard deviation) that indicates how broadly the distribution was distributed. The batch processing system had the third-highest mean of 2.2853, which means that the batch processing system was the third-highest factor of the project work given to students. The average distance a score was from the mean was 0.72900, which is a measure of dispersion (standard deviation) that indicates how broadly the distribution was distributed. The system for modelling and simulation had the fourth highest mean of 2.1223, which means that a system for modelling and simulation was the fourth-highest factor of project work given to students. The average distance a score was from the mean was 0.95040, which is a measure of dispersion (standard deviation) that indicates how broadly the distribution was distributed. The embedded system had the fifth-highest mean of 2.0734, which means that the embedded system was the fifth-highest factor of the project work given to students. The average distance a score was from the mean was 0.84657, which is a measure of dispersion (standard deviation) that indicates how broadly the distribution was distributed. Interactive transaction-based software had the sixth-highest mean of 2.0707, which means that interactive transaction-based software was the sixth-highest factor of project work given to students. The average distance a score was from the mean was 0.61799, which is a measure of dispersion (standard deviation) that indicates how broadly the distribution was distributed. The data collection system had the seventh-highest mean of 1.7989, which means that the data collection system was the seventh-highest factor of project work given to students. The average distance a score was from the mean was 0.71405, which is a measure of dispersion (standard deviation) that indicates how broadly the distribution was distributed. The information system had the last mean of 1.7255, which means that the information system was the last factor of the project work given to students. The average distance a score was from the mean was 0.59352, which is a measure of dispersion (standard deviation) that indicates how broadly the distribution was distributed.

Table 1. Descriptive Statistics for Project Work

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Statistic</td>
<td>Statistic</td>
<td>Statistic</td>
<td>Statistic</td>
<td>Statistic</td>
</tr>
<tr>
<td>Standalone systems</td>
<td>368</td>
<td>1.00</td>
<td>4.00</td>
<td>2.4266</td>
<td>.84495</td>
</tr>
<tr>
<td>Interactive transaction-based software</td>
<td>368</td>
<td>1.00</td>
<td>4.00</td>
<td>2.0707</td>
<td>.61799</td>
</tr>
<tr>
<td>Embedded system</td>
<td>368</td>
<td>1.00</td>
<td>5.00</td>
<td>2.0734</td>
<td>.84657</td>
</tr>
<tr>
<td>Batch processing system</td>
<td>368</td>
<td>1.00</td>
<td>5.00</td>
<td>2.2853</td>
<td>.72900</td>
</tr>
<tr>
<td>System for modelling and simulation</td>
<td>368</td>
<td>1.00</td>
<td>5.00</td>
<td>2.1223</td>
<td>.95040</td>
</tr>
<tr>
<td>Information system</td>
<td>368</td>
<td>1.00</td>
<td>3.00</td>
<td>1.7255</td>
<td>.59352</td>
</tr>
<tr>
<td>Data collection system</td>
<td>368</td>
<td>1.00</td>
<td>4.00</td>
<td>1.7989</td>
<td>.71405</td>
</tr>
<tr>
<td>Entertainment system</td>
<td>368</td>
<td>1.00</td>
<td>5.00</td>
<td>2.3234</td>
<td>.98285</td>
</tr>
</tbody>
</table>
College Students’ Programming Interest and Project Work Approach

Table 2 demonstrated that project work can make students interested in programming, with the highest mean of 2.8668, which means that project work can make students interested in programming. The average distance a score was from the mean was 1.56117, which is a measure of dispersion (standard deviation) that indicates how broadly the distribution was distributed. Project work helps to disclose positive information about programming had the second-highest mean of 2.4810, which means that project work helps to disclose positive information about programming. The average distance a score was from the mean was 1.16706, which is a measure of dispersion (standard deviation) that indicates how broadly the distribution was distributed.

Project work exposes students to designing algorithms and had the third-highest mean of 2.2418, which means that project work exposes students to designing an algorithm. The average distance a score was from the mean was 0.74460, which is a measure of dispersion (standard deviation) that indicates how broadly the distribution was distributed. How project work directs the students can lead to enthusiasm had the fourth highest mean of 2.0870, which means that how project work directs the students can lead to enthusiasm. The average distance a score was from the mean was 0.96987, which is a measure of dispersion (standard deviation) that indicates how broadly the distribution was distributed.

Project work makes students learn had the fifth-highest mean of 2.0000, which means that project work makes students learn. The average distance a score was from the mean was 0.93377, which is a measure of dispersion (standard deviation) that indicates how broadly the distribution was distributed. Project work that gives information to students had the sixth-highest mean of 1.8832, which means that project work gives information to students. The average distance a score was from the mean was 0.92199, which is a measure of dispersion (standard deviation) that indicates how broadly the distribution was distributed. Project work influences students’ perception had the seventh-highest mean of 1.8723 which means that project work influences students’ perception. The average distance a score was from the mean was 0.62421, which is a measure of dispersion (standard deviation) that indicates how broadly the distribution was distributed.

The average distance a score was from the mean was 0.6154, which is a measure of dispersion (standard deviation) that indicates how broadly the distribution was distributed. Project work helps in understanding the linguistic structure just as the rationale of the program does, which means that project work helps in understanding the linguistic structure just like the rationale of the program. The average distance a score was from the mean was 0.56117, which is a measure of dispersion (standard deviation) that indicates how broadly the distribution was distributed.

Table 2. Descriptive Statistics for Project Work and College Students’ Interest in Programming

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>Std. D. S.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project work exposes students in the designing algorithm</td>
<td>368</td>
<td>1.00</td>
<td>4.00</td>
<td>2.241</td>
<td>.74460</td>
</tr>
<tr>
<td>Project work helps in understanding the linguistic structure just as the rationale of the program</td>
<td>368</td>
<td>1.00</td>
<td>3.00</td>
<td>1.826</td>
<td>.61514</td>
</tr>
<tr>
<td>Project work gives information to students</td>
<td>368</td>
<td>1.00</td>
<td>5.00</td>
<td>1.883</td>
<td>.92199</td>
</tr>
<tr>
<td>Project work can make students find interest in programming</td>
<td>368</td>
<td>1.00</td>
<td>5.00</td>
<td>2.866</td>
<td>1.56117</td>
</tr>
<tr>
<td>Project work helps to disclose positive information about programming</td>
<td>368</td>
<td>1.00</td>
<td>5.00</td>
<td>2.481</td>
<td>1.16706</td>
</tr>
</tbody>
</table>
How project work directs the students can lead to enthusiasm

<table>
<thead>
<tr>
<th>How project work directs the students can lead to enthusiasm</th>
<th>368</th>
<th>1.00</th>
<th>4.00</th>
<th>2.087</th>
<th>0.96987</th>
</tr>
</thead>
</table>

Project work influences students’ perception

<table>
<thead>
<tr>
<th>Project work influences students’ perception</th>
<th>368</th>
<th>1.00</th>
<th>3.00</th>
<th>1.872</th>
<th>0.62421</th>
</tr>
</thead>
</table>

Project work makes students learn

<table>
<thead>
<tr>
<th>Project work makes students learn</th>
<th>368</th>
<th>1.00</th>
<th>5.00</th>
<th>2.000</th>
<th>0.93377</th>
</tr>
</thead>
</table>

Source: Researcher’s fieldwork, (2021)

H1: There exists a direct significant effect of project work on college students’ programming interest.

The direct substantial impacts of project work on college students' programming interest are shown in Tables 3, 4, and 5. The model summary’s R Square (see Table 3) image is .383, indicating that significant project work effects account for just 38.3 percent of factors’ contribution influencing college students' programming interest. This is calculated as .383 x 100%, which will give a result of 38.3%. Moreover, in Table 4, the significant value is .000 which is below .05 with a mean square of 24.314 and a residual value of .107. Table 5 depicts the association between the adoption of a project-based learning strategy in teaching computer programming and the interest of college students in programming. Table 5 demonstrates a positive connection with a t value of 15.082, a coefficient value of .019, and a standardized coefficient value of .619. This suggests that project work has a favorable and considerable impact on college students’ programming interest.

Table 3. Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.619<sup>a</sup></td>
<td>.383</td>
<td>.382</td>
<td>.32694</td>
</tr>
</tbody>
</table>

^a Predictors: (Constant), Project Work Approach

Source: Researcher’s fieldwork, (2021)

Table 4. ANOVA^a

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24.314</td>
<td>1</td>
<td>24.314</td>
<td>227.47</td>
<td>.00</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>366</td>
<td>.107</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>367</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a Dependent Variable: CollegeInterest

^b Predictors: (Constant), Project Work Approach

Source: Researcher’s fieldwork, (2021)

Table 5. Coefficients^a

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>1.845</td>
<td>.049</td>
<td>37.44</td>
</tr>
<tr>
<td></td>
<td>Project Work Approach</td>
<td>.279</td>
<td>.019</td>
<td>.619</td>
</tr>
</tbody>
</table>

^a Dependent Variable: CollegeInterest

Source: Researcher’s fieldwork, (2021)
Discussion

The findings reveal that students' emotional and physiological well-being (specifically responses of emotion) are influenced by the project work method, in addition to learning process active participation. The students found working on the project work to be enjoyable. The opportunity to work on a project was viewed by the students as an exciting, unique opportunity, and fun. They enjoyed interactively working with the programming and were inspired by the learning method of trial-and-error that was required for project work. They did, however, show irritation and demoralization once they had to make minor variations to the computer code on a regular basis. Insignificant programming details, they believed, drew attention away from additional principles of general programming. Students also felt insecure and unsure about their learning outcomes, owing to a perceived lack of theoretical knowledge to assist them via the process of trial-and-error. They also sensed a sense of urgency since they had to find a comfortable area to work whenever they were required to work on project work. All of these activities took up a lot of time and pulled them away from their programming work.

The project work is strong and there is a lot of interaction and teamwork. However, the students don't have the freedom to develop and outline the project's objective. Similarly, the nature of project work forces students to distribute tasks among themselves, limiting their experience with studying. Together, the limitations inherent in using a project work approach to develop real-world programming tasks are a difficult learning design obstacle. The activity had no clear plan or task arrangement, and most PWA students contributed continuously and dynamically, possibly engaging every pupil in the best possible way and helping them to have a broad experience in learning. In a similar spirit, the participatory learning technique in class gave the students a sense of security, and they felt ready for the project work. Furthermore, the students emphasized the learning process of trial-and-error as well as the common interplay among personal concerns, co-student experiences and ideas, and teacher guidance. The joint effort was difficult, but it was mostly perceived as engaging and enjoyable, i.e. emotionally gratifying.

The PWA provided a productive setting for exploratory learning, as expected based on previous research. However, under the current setup, the degree of freedom to design the challenge and organize the process of problem-solving might be increased, providing students with more challenges and skills. In comparison to the two other designs, the total intensity of the motivating force appeared to be much lower. In general, students delegated studying process structure to the professor, seeming content to have a professor who supervised the process of problem-solving and introduced programming principles. It gave them confidence in the study's results. Nonetheless, they valued the one small project work, were inspired by the genuine difficulties, and enjoyed working with additional students. While students were required to organize the task individually, they felt insecure and unprepared about group work and the process; questions such as "How do we tackle the problem?" were raised. "Can you tell me how we're going to organize the work?" “How are we going to collaborate?” The learning classroom design's strength is its ability to provide control and continuity over the outcome of learning.

The results of the study on the kind of project work been given to students revealed that standalone systems were the highest kind of project work given to students, entertainment system was the second-highest kind of project work given to students, batch processing system was the third-highest kind of project work given to students, a system for modelling and simulation was the fourth-highest kind of project work given to students, the embedded system was the fifth-highest kind of project work given to students, interactive transaction-based software was the sixth-highest kind of project work given to students, data collection system was the seventh-highest kind of project work given to students, and information system was the least kind of project work given to students. The results are similar to that of Pausch and Kelleher (2007), Appiah-kubi (2018), Miqdadi and Harris (2019), Mahnic (2014), Burga et al. (2020), Habók and Nagy (2016), Adams (2018), and Mazaya (2019). The results of the study on project work influence on students' programming perception revealed that project work can make students find programming interest. The finding is like that of Appiah-kubi (2018). Project work helps to disclose positive information about programming. The finding is like that of Adams (2018).

Project work exposes students to designing an algorithm. The results are similar to those of Burga et al. (2020). How project work directs the students can lead to enthusiasm. The finding is consistent with that of Mazaya (2019). Project work makes students learn, which is similar to a study by Adams (2018) who found the project to improve student participation in class. Appiah-kubi (2018) also found that students see that they are roused to learn by either customer-based or non-customer-based projects. Project work gives information to students. Project work influences students’ perceptions, which is similar to that of Ciência et
al. (2019), who found that students in the project-based learning course expressed increasingly positive perspectives related to the project in regards to the learning procedure and polish. Project work helps in understanding the linguistic structure just as the rationale of the program. The findings are comparable to those of Miqdadi and Harris (2019). In conclusion, the study revealed that there is a positive and significant effect of project work on college students’ programming interest.

Conclusion

To summarize, each of the three learning styles has its own set of benefits and drawbacks. The PWA appears to be the most effective in terms of encouraging collaboration, interaction, and emotional well-being. Due to intrinsic restrictions in project assignments, practical challenges, and insecurity about the learning outcome, the project work approach is interesting and motivating, but sometimes frustrating. Traditional classroom lectures provide stability in terms of theoretical comprehension, but they can cause worry and anxiety owing to little or no experience with actively and cooperatively working. None of the learning designs are totally fulfilling if we desire happy, comfortable, delighted students who are also quiet and dynamic. It is also clear that working on projects motivates all students. However, in order for project work to become an effective tool for motivation, more theoretical knowledge about programming must be provided, as well as the project tasks and conditions under which the project work approach is used in the course. The concept of combining and tying theoretical lectures to actual practice was a success. The students should, however, understand how the lectures fit into the broader curriculum. Otherwise, this method of speaking might make us doubt whether we are learning what we must be learning. Students’ emotional response to conventional lectures demonstrates the need of personal touch between teachers and students. By selecting and arranging the theoretical themes, the lecturer provides security as well as interest and motivation. The PWA strategy proved to be the most motivating and engaging. According to the findings of the study, project work accounts for just 38.3 percent of factors contribution that impact college students’ programming interest. As a result, future research can focus on the 61.7 percent of factors (100 percent–38.3 percent) that impact college students’ programming interests.

Acknowledgement

I give thanks to Beatrice Ampofo for proofreading the work.

References

Communications of the ACM, 50(7), 58–64.

