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Abstract. This study employs dynamic time warping (DTW) to analyze the farmer’s terms of trade (FTT) 

across 34 provinces in Indonesia, aiming to identify patterns and cluster similarities in time series data. 

DTW is recognized for its effectiveness in measuring flexible similarities under time distortions, making it 

particularly suitable for time series classification across various fields. The FTT is utilized to assess 

farmers' purchasing power by comparing the prices they receive for their products to the prices they pay 

for goods and services. K-Medoid clustering techniques were applied to group provinces based on their 

DTW distances, revealing three distinct clusters. The silhouette score indicates that three clusters as the 

optimum cluster for the FTT data. The findings show that the first and third clusters have low mean of FTT 

and the second cluster has the highest mean FTT. These indicates disparities in farmers’ income and 

purchasing power across regions where the government needs to enhance agricultural strategies and 

improve economic conditions for farmers in the first and third clusters.  
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1. INTRODUCTION 

Dynamic time warping (DTW) is probably the most popular distance measure for time 

series data, because it captures flexible similarities under time distortions [1]. Time series 

classification is a part of machine learning with many applications. It is characterized by the he 

temporal structure of the data, where standard machine learning algorithms cannot be used as data 

are correlated [2].  

Research topic in time series classification is increasing research topic due to its wide range 

of applications. Many algorithms have been proposed, including the algorithm that extract the 

feature from timeseries. Fulcher and Jones [3] explain that feature-based methods allow for a 

better understanding of the time series properties that are important for classification. This can 

help in gaining insights into the underlying patterns and trends in the data. This method allow for 

a comparison of different feature sets and their performance on the same dataset, which can help 

in selecting the most suitable feature set for a given problem. 

Dynamic time warping (DTW) is known to be a robust, outlier-insensitive alternative to 

other distance measures such as Euclidean distance or Manhattan distance [4,5]. DTW is 

particularly useful for aligning time series data that have different lengths or that exhibit temporal 

distortions, such as phase shifts or time warping [6]. This is a powerful tool for time series analysis 

that can help in accurately comparing and classifying time series data. 
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In the context of DTW, clustering can be used to group regions or provinces in Indonesia 

based on their time series data. The DTW method has been widely adopted by researchers in 

Indonesia across various fields, including agriculture [7], economic [8,9], poverty studies [10], 

computer science [11], healthcare [12], and the linkage between these areas [13]. By clustering 

regions or provinces based on their time series data, decision-makers can gain valuable insights 

into the similarities and differences between different regions, allowing them to make informed 

decisions and develop appropriate policies. 

The Indonesian government's goal is to improve the well-being of all its people by 

developing different sectors, especially agriculture. Many people in rural areas depend on farming 

to make a living, then it's important for this sector to boost economic growth, increase farmers' 

incomes, and reduce poverty. To track how well farmers are doing, we need a way to measure 

their purchasing power. One common way to do this is by using the farmer’s terms of trade (FTT). 

FTT compares two things: the prices farmers get when they sell their products (It) and the prices 

they pay for goods and services (Ib). The ‘It’ tells us how much farmers are earning, while the 

‘Ib’ shows what farmers need to spend on both their daily needs and production costs. The FFT 

helps to understand how well farmers can trade what they produce for the things they need to live 

and continue farming [1]. 

Central Bureau of Statistics [1] define farmer is a person who manage an agricultural 

business including food crops, horticulture crops, smallholding estate crops, animal husbandry 

and fishery at his own risk for sale, either as farm owner or farm worker. Price received by farmers 

(It) is the farm gate price which is the average of producer prices of agricultural products not 

including the transportation and packaging costs into the selling prices. The multiplication of 

average price and volume of sale will show the total income received by farmers. Price paid by 

farmers is the average of retail prices of goods and services needed by farmers, either for 

household consumption or production process [1]. The equation to get the farmers’ term of tradev 

(FTT or NTP in Bahasa Indonesia) can be expressed in equation 1. 

𝑁𝑇𝑃 𝑜𝑟 𝐹𝑇𝑇 =
𝐼𝑡

𝐼𝑏
× 100  (1) 

In general, the value of FTT more than 100 show that farmers experience a rise in term of 

trade. The value of FTT equal with 100 give information that farmers experience a stable of term 

of trade and when the value of FTT less than 100 show that farmers experience a fall in their 

terms of trade when the price that farmers paid increase at a faster rate than the price received by 

farmers. According to the Central Bureau of Statistics, the index of prices received by farmers (It) 

reflects the price changes of agricultural products that farmers produce. This index also serves as 

supplementary data for calculating the gross domestic product (GDP) or gross regional domestic 

product (GRDP) for the agricultural sector. On the other hand, the index of prices paid by farmers 

(Ib) tracks price changes for goods and services consumed by rural households. The production 

cost index provides insight into the price fluctuations of inputs necessary for farming activities. 

By analyzing the FTT, it is possible to assess whether farmers' income growth can keep pace with 

rising expenses. Essentially, FTT measures the balance between the cost of production and 

farmers' purchasing power for goods and services.  

In  the  context  of economic development, it is necessary to classify farmer exchange rate 

indexes from each sector of farmer exchange rates so that farmer exchange rate groups are 

grouped using cluster  analysis [14]. Previous studies have applied clustering techniques, such as 

self-organizing maps (SOM) and K-affinity propagation (K-AP) [15], as well as K-means [16], 

to group provinces in Indonesia based on FTT. In this paper, the FTT for 34 provinces in Indonesia 
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will be analyzed using DTW, similar to [17] and the grouping technique is K-medoids instead of 

K-means. 

 

2. MATERIALS 

2.1. Dynamic Time Warping 

The distance measure utilized in this research is DTW, which is employed to calculate and 

identify the optimal path between two time series data [6]. The DTW algorithm efficiently gauges 

the similarity between two time series data, minimizing the impact of time lags and distortions, 

enabling detection even in different phases. 

Mizutani and Dreyfus [18] explained that given an observed pattern with synthesized 

template patterns, the task is to calculate the optimum alignment among them, for which the 

similarity is quantified as a flexible distance measure realized by DTW. The task is considered as 

finding the constrained minimum-cost path problem, which is a problem that can be solved by 

dynamic programming (DP). 

Given two time series data 𝑄 = 𝑞1, 𝑞2, 𝑞3, ⋯ , 𝑞𝑚 of size and 𝐶 = 𝑐1, 𝑐2, 𝑐3, ⋯ , 𝑐𝑚 of the 

size 𝑛, a matrix of size 𝑚 × 𝑛 is formed. The value 𝑑𝑖𝑗  represents the distance between 𝑞𝑖 and 𝑐𝑗 

[9]. The calculation of the 𝑑𝑖𝑗 value can be expressed in equation 2. 

𝑑𝑖𝑗 = (𝑞𝑖 − 𝑐𝑗)
2
 (2) 

The value of each cell is calculated using DP by taking the minimum cost path from adjacent 

cells. This results in the recurrence relation can be expressed in equation 2. 

𝐷(𝑖, 𝑗) = 𝑑𝑖𝑗 + min(𝐷(𝑖 − 1, 𝑗), (𝐷(𝑖, 𝑗 − 1), 𝐷(𝑖 − 1, 𝑗 − 1) (3) 

or equation 3. 

𝑑𝐷𝑇𝑊 = (𝑄, 𝐶) = 𝑚𝑖𝑛√∑ 𝑑𝑖𝑗  (4) 

By calculating values from the base cases (i.e., the edges of the matrix) and using these in the 

computation of neighboring cells, DTW finds the lowest cost path between the two sequences.  

Many researchers have praised the use of DTW in various fields, such as speech 

recognition [19,20], sport (posture recognition) in [21], health [2,22,23,24], road surveillance 

[25], object movement, marketing [26], food and quality assurance [2]. But there are some 

drawback that users needs to be aware.  Research of [27,28,29] have discussed some limitation 

of DTW. The findings of [27] encouraged people to apply it in many areas after their empirical 

research results dispel the three myths of DTW, namely length of time series, the constraints, and 

the speed. The limitation of DTW for two dimensional characteristic movements has been 

addressed by [28]. Their modification shows an improved performance compared to other 

methods. Another research, [29], has proposed the modification of traditional DTW, adaptively 

constraints DTW, and showed that it can be implemented in both of clustering and classification. 

2.2 K-medoid Cluster analysis  

Cluster analysis is a technique aimed at grouping objects or individuals into clusters based 

on the similarity of the object characteristics. The primary objective of this analysis is to enhance 

similarity within each cluster while reducing similarity between different clusters. Cluster 

analysis is descriptive in nature, does not involve inferential statistics, and lacks a statistical 

foundation that permits generalizations from samples to populations [30]. Cluster analysis, 

categorizing it into several clustering methods, including: partitional clustering or distance-based 
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clustering, hierarchical clustering, density-based clustering, and categorical data clustering [31]. 

K-means and k-medoids are popular methods used in customer segmentation analysis based on 

purchasing patterns. However, K-medoids is specifically designed to address the weaknesses of 

k-means, which is susceptible to the influence of outlier data [32].  

The K-medoids algorithms, which is used in here, are described in [33] as following 

a. Select randomly 𝑘 from 𝑛 data as medoid 

b. Calculate the distance of each data to the existing medoid, by using a valid distance 

measure (Euclidean, Manhattan atau Minkowski) and assign it to the closest medoid 

c. Calculate the total cost (sum of all distance from all data points to the medoids) 

d. Select a random point as the new medoid and swap it with the previous medoi. Repeat 

steps b and c. 

e. If the total cost of the new medoid is smaller than that of the previous medoid, make 

the new medoid permanent and repeat step d. 

f. If the total cost of the new medoid is greater than the cost of the previous medoid, 

undo the swap and repeat step d. 

g. The Repetitions are continued until no change is encountered with new medoids to 

cluster data points. 

2.3. Silhouette Coefficient 

The silhouette coefficient is one measure of accuracy that can be used in determining the 

accuracy of time series grouping. In addition, the silhouette coefficient is used to determine the 

grouping quality. The silhouette score consider as bad classification if the value is 0.00-0.25. The 

silhouette score consider as weak classification if the value is 0.26-0.50. The silhouette score 

consider as good classification if the value greater than 0.51-0.70. It is consider as strong 

classification when the value is 0.71-1.00 [17]. With the following equation 4. 

𝑠(𝑖) =
𝑏(𝑖) − 𝑎(𝑖)

𝑚𝑎𝑥[𝑎(𝑖), 𝑏(𝑖)]
  (4) 

3. RESEARCH METHODS 

The dataset utilized in this study originates from the official website of the Indonesian 

Central Bureau of Statistics (BPS). Specifically, it pertains to the FTT across provinces and years 

in Indonesia. There are 34 provinces and based on data from January 2020 to September 2024. 

The variables in this study are: 

1. The FTT values for each province and across time. 

2. The time (monthly) since January 2020 to September 2024. 

 

4. RESULTS AND DISCUSSION 

Before clustering the dataset, we described the data visually as in Figure 1. Figure 1 shows 

that some provinces have FTT increased highly, moderately and lowly.  Then clustering process 

is begun by computing the Silhouette score. From Table 1, the data set optimally can be clustered 

into two or three clusters. For some analysis purpose we choose to have 3 clusters. 
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Figure 1. Visualization of FTT timeseries data 

Table 1. Silhouette score 

Clusters Silhouette 

2 0.657398 

3 0.60221 

4 0.348138 

5 0.348992 

Based on Table 1, then we have the first cluster includes 14 provinces, the second cluster 

comprises 8 provinces, and the third cluster consists of 14 provinces as shown in Table 2. Figure 

2 summarizes the clusters, with the main line illustrating the fluctuations of FTT over time since 

2020, which suggest occurred post-COVID-19. The figure demonstrates that the second cluster 

exhibits the highest mean, as highlighted in Table 3. Besides, the third cluster was the lowest. 

Table 2. Cluster member 

Clusters Province 

1 Sumatera Barat, Sumatera Selatan, Lampung, Jawa Tengah, 

Jawa Timur, Nusa Tenggara Barat, Kalimantan Tengah, 

Kalimantan Selatan, Kalimantan Utara, Sulawesi Utara, 

Sulawesi Tengah, Sulawesi Selatan, Sulawesi Tenggara 

2 Sumatera Utara, Riau, Jambi, Bengkulu, Kep. Bangka Belitung, 

Kalimantan Barat, Kalimantan Timur, Sulawesi Barat 

3 Kep. Riau, DKI Jakarta, Jawa Barat, DI Yogyakarta, Banten, 

Bali, Nusa Tenggara Timur, Gorontalo, Maluku, Maluku Utara, 

Papua Barat, Papua 
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Figure 2. Visualization of FTT time series data 

Figure 2 illustrates that the second cluster experiences a fluctuating period, as evidenced 

by a steep graph in mid-2022, but it quickly improves by 2024. Cluster 1 demonstrates a 

noticeable increase, with no drastic decline observed in mid-2022. In contrast, Cluster 3 exhibits 

the lowest average among all clusters but subjectively not as fluctuate as other cluster. The 

provinces within Cluster 3 need to implement different strategies, as the exchange rate of 

agricultural products relative to the cost of production and the consumption of goods and services 

indicates challenges in this group. 

Table 3. Cluster summary 

Cluster Mean Deviation Standard Min Max 

1 107 7.81 88.6 134 

2 129 16.5 96.1 190 

3 101 4.23 91.5 117 

Figure 3 presents a boxplot summarizing the clusters, revealing that the second cluster 

exhibits the highest mean and standard deviation. This suggests that provinces within the second 

cluster enjoy comparatively the better selling prices for their products, indicating that farmers are 

experiencing an improvement in their terms of trade. This occurs when the average prices received 

by farmers rise at a faster pace than the average prices they pay, or when the prices they receive 

decrease at a slower rate than the prices they pay. 

 

 

Figure 3. Boxplot of NTP/FTT cluster summary 
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 Figure 3 also describes that the government should pay more attention to farmers in 

clusters 1 and 3, especially cluster 3. Because during the 4 years period their FTT significantly 

lower than farmers which are in cluster 2 provinces.  

5. CONCLUSIONS 

In summary, this study employs dynamic time warping (DTW) to analyze fluctuations in 

farmer's terms of trade (FTT) across various provinces, effectively grouping them based on 

calculated distances. The results reveal three distinct clusters: the first cluster includes 14 

provinces, the second cluster consists of 8 provinces, and the third cluster encompasses 14 

provinces. The second cluster demonstrates the highest mean FTT, indicative of better selling 

prices for farmers, suggesting an improvement in their terms of trade. In contrast, the third cluster 

displays the lowest average FTT, indicating a need for strategic interventions in these provinces 

related to agricultural product pricing and production costs. The visual representations, including 

time series and boxplots, further illustrate the dynamics of FTT fluctuations and provide insights 

into the performance of each cluster, particularly in the context of post-COVID-19 economic 

conditions. 

The conclusions drawn from the research contribute to the existing body of scientific 

knowledge by highlighting the impact of economic conditions, particularly in a post-COVID-19 

context, on agricultural pricing dynamics. In future research prospects, this study opens avenues 

for further investigation into the underlying factors affecting FTT across different provinces. 

Future studies could explore the impact of specific agricultural policies, market access, and local 

economic conditions on FTT variability. Additionally, applying similar methodologies to other 

economic indicators could enhance our understanding of agricultural economics and inform more 

effective policy decisions aimed at improving farmers' livelihoods. 
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