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Abstract 

Semiparametric spline regression has become an increasingly popular method for modeling data due to its 

flexibility and objectivity, especially as a parameter estimation method. Spline functions are highly effective in 

semiparametric regression because they offer unique statistical interpretations by segmenting each predictor 

variable in relation to the response variable. Bivariate semiparametric regression can be applied to data where 

observations tend to have disparities between regions, making it suitable for poverty data, particularly the 

poverty depth index and the poverty severity index. The objective of this research is to analyze the models of the 

poverty depth index and poverty severity index, as well as to perform segmentation and interpretation of these 

models. This study utilized observations from 60 districts/cities in the southern part of Sumatra. Several 

predictor variables were considered, including the percentage of households with a floor area of ≤19 m², labor 

force participation rate, and life expectancy as parametric components, while the nonparametric components 

included the average length of schooling and the percentage of households with tap water sources. The 

estimation methods used were penalized least squares and penalized weighted least squares, involving a full 

search algorithm for selecting the number and location of knots. The results of the study indicated that the 

penalized weighted least squares method was the best estimator, with an MSE value of 0.3122 and two knots for 

each predictor, yielding GCV values of 4.3604 and 4.0794. 
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1. INTRODUCTION 

Regression analysis is a method used to explain how one or more response variables depend on one 
or more predictor variables. According to [1], there are three approaches used to estimate the regression 
function: parametric, nonparametric, and semiparametric. Semiparametric regression is used when 

there are parametric components with known relationship patterns and nonparametric components with 
unknown patterns, allowing the estimation curve to adjust to the data. Semiparametric regression 
analysis has been developed not only for univariate response analysis but also for bivariate and 
multivariate responses. Bivariate response analysis involves two correlated response variables, where 
significant correlation between response variables is a key requirement [2]. Spline has a unique statistical 

interpretation in explaining how segments of each predictor variable relate to the response variable. 
Additionally, spline can handle fluctuating data behavior in certain sub-intervals [3]. Therefore, spline is 
a suitable function for addressing varying data behavior, making the spline function complex. According 
to [4], a penalized function is required to control the complexity of the spline function and prevent 
overfitting. 
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Research on splines has been widely applied. [5] conducted a study on outlier identification using 

penalized spline regression to model the poverty depth index as the response variable. The results of this 
study obtained an R-square value of 69.10%, with the optimal number of knots for each predictor variable 
being 1, 2, 4, 1, 5, 3, and 1, respectively. Subsequent research by [6] focused on modeling the factors 
affecting the poverty severity index in 2015 using truncated spline nonparametric regression. Based on 
the conducted research, it was found that the optimal number of knots for each predictor variable was 3, 
3, 2, 3, and 3. Therefore, based on previous research, this study will focus on involving the poverty depth 
index and the poverty severity index, which are macro poverty indicators, as response variables with 
significant correlations. The predictor variables suspected to have an influence will be a combination of 
parametric and nonparametric components. 

Poverty is a common social issue faced by developing countries, including Indonesia. Poverty in 
Indonesia has been a fundamental issue since independence. In the early decades of independence, 

Indonesia's poverty rate was estimated to be over 50% of the total population, lasting for approximately 
20 years. The issue of poverty not only focuses on the percentage of poor people but also on defining 
poor people differently, such as the poverty depth index and poverty severity index. 

2. METHODS 

2.1. Regression Analysis 

Regression analysis is a method for investigating and modeling the relationships between response 
and predictor variables [7]. It examines the dependence of one or more response variables on one or 
more predictor variables [8]. As science progresses, regression modeling has advanced. According to [1], 
there are three approaches to estimating regression curves: parametric, nonparametric, and 

semiparametric. Parametric regression assumes a specific form for the relationship, nonparametric 
regression does not assume any particular form and adapts to the data, while semiparametric regression 
combines both parametric and nonparametric elements, allowing for more flexibility in modeling 
complex relationships. 

2.2. Bivariate Response Regression 

Bivariate response regression involves two response variables that have a significant correlation 
when estimating data [2]. The estimation process considers the relationship between the response 
variables and a set of predictor variables, assuming that each response variable follows its own regression 

model. Generally, the bivariate response regression model with the OLS estimator can be described as 
follows [9]: 

𝑦𝑖
(𝑑)

= 𝛽0
(𝑑)

+ 𝛽1
(𝑑)

𝑥1𝑖 + ⋯ + 𝛽𝑝
(𝑑)

𝑥𝑝𝑖 + 𝜀𝑖
(𝑑)

, 𝑑 = 1,2        (1) 

Based on the initial concept of bivariate response regression, the response variables must have a 
significant relationship, which can be measured using correlation analysis. Pearson correlation analysis 

is commonly used for this purpose. The Pearson correlation coefficient, denoted by 𝑟, ranges between 

−1 and 1 and can be calculated using the following equation [10]: 

𝑟 =  
𝑠

𝑦(1)𝑦(2)

𝑠
𝑦(1) 𝑠

𝑦(2)
     (2) 

2.3. Bivariate Semiparametric Penalized Spline Regression 

Bivariate semiparametric penalized spline regression examines the dependence of one or more 
response variables on one or more predictor variables using the penalized spline estimator. Given paired 

data (𝑥1, 𝑥2, … , 𝑥𝑝, 𝑡1, 𝑡2, … , 𝑡𝑆), the relationship between the variables 𝑥𝑏 and 𝑦 
(𝑑)is known, while the 

relationship between the variables 𝑡𝑔 and 𝑦 
(𝑑)is unknown. The relationship among the variables 

𝑥𝑏 , 𝑡𝑔, 𝑦 
(𝑑)is assumed to follow a semiparametric regression model. 
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One of the estimators that can be used to estimate parameters in the bivariate semiparametric 

penalized spline method is the penalized least square. Penalized least square essentially assumes constant 
variance in the error, commonly referred to as homoskedasticity. Detection of homoskedasticity can be 
performed using several tests, one of which is the Glejser test [8]. The Glejser test is a popular method 
for detecting heteroskedasticity by regressing the predictor variables against the absolute values of the 
model's errors. 

The next step is to add weights based on the results of the Glejser test. The weights will control the 
correlation between the responses of the resulting error model, providing more accurate and optimal 
estimates. The penalized weighted least square (PWLS) method is a technique used to minimize the 
weighted sum of squared errors, especially when there is a violation of the assumption of constant 
variance in the error model or the presence of heteroskedasticity. The weighting matrix in PWLS is 
formulated as follows [11]: 

𝑾 = [
𝑠

𝑦(1)
2 𝑰 𝑠

𝑦(1)𝑦(2)
 𝑰

𝑠
𝑦(2)𝑦(1)
 𝑰 𝑠

𝑦(2)
2 𝑰

]

−1

 (3) 

The regression function 𝑓(𝑡𝑖) can be estimated using both PLS and PWLS. The PWLS estimator uses 
a smoothing parameter to control the roughness of the regression function and involves weights in 
estimating the parameters. PWLS includes weights in the form of the inverse of the variance-covariance 
matrix of the error model, denoted by 𝑾, as shown in equation (3). The bivariate semiparametric 
regression model using the PWLS estimator can be written as follows: 

𝑦𝑖
(𝑑)

= 𝛽0
(𝑑)

+ ∑ 𝛽𝑏
(𝑑)

𝑥𝑏𝑖
𝑝
𝑏=1 + 𝛿0

(𝑑)
+ ∑ (𝛿𝑔𝑡𝑔𝑖

(𝑑)
+ ∑ 𝜙𝑔𝑗

(𝑑)
(𝑡𝑔𝑖 − 𝜉𝑔𝑗)

+

 𝑘𝑔

𝑗=1
)𝑆

𝑔=1 + 𝜀𝑖
(𝑑)

      (4) 

𝒚 = 𝑿𝜷 + 𝑻𝜹 + 𝜺     (5) 

The estimation of parameters in a bivariate semiparametric regression model cannot be performed 
simultaneously for all parameters. Therefore, it is assumed that the parameter 𝜷 is known, allowing the 
focus to be on estimating the nonparametric component parameters. According to [12], this can be 

expressed by assuming: 
𝒚∗ = 𝒚 − 𝑿𝜷 

𝒚∗ = 𝑻𝜹 + 𝜺 

The parameter 𝜹̂  in the spline function is obtained by minimizing the 𝑃 function expressed as follow 
[13]: 

𝑃 =
1

2𝑛
∑ 𝑊𝑖(𝑦 − 𝑓(𝑡𝑖))2 + 𝜆𝑊𝑖

𝑛
𝑖=1 ∫ (𝑓′′(𝑡𝑖) )2𝑑𝑥

1

0
              (6) 

𝑃 = 2𝑛−1( 𝒚∗ − 𝑻𝜹)′𝑾( 𝒚∗ − 𝑻𝜹) + 𝜆𝜹′𝑫𝜹               (7) 

Based on equation (7), 𝜹̂𝑷𝑾𝑳𝑺 is obtained by decreasing the 𝑃 function against 𝜹. The first step is to 

decrease the goodness of fit against 𝜹, so that the following results are obtained: 
𝜕( 𝒚∗ − 𝑻𝜹)′ 𝑾( 𝒚∗ − 𝑻𝜹)

𝜕𝜹
=

𝜕( 𝒚∗′ − 𝜹′𝑻′)𝑾( 𝒚∗ − 𝑻𝜹)

𝜕𝜹
 

=
𝜕( 𝒚∗′𝑾 − 𝜹′𝑻′𝑾)( 𝒚∗ − 𝑻𝜹)

𝜕𝜹
 

=
𝜕( 𝒚∗′𝑾 𝒚∗ −  𝒚∗′𝑾𝑻𝜹 − 𝜹′𝑻′𝑾 𝒚∗ + 𝜹′𝑻′𝑾𝑻𝜹)

𝜕𝜹
 

=
𝜕( 𝒚∗′𝑾 𝒚∗ − 2𝜹′𝑻′𝑾 𝒚∗ + 𝜹′𝑻′𝑾𝑻𝜹)

𝜕𝜹
 

= (
𝜕

𝜕𝜹
 𝒚∗′𝑾 𝒚∗ −

𝜕

𝜕𝜹
2𝜹′𝑻′𝑾 𝒚∗ +

𝜕

𝜕𝜹
𝜹′𝑻′𝑾𝑻𝜹) 

= (0 − 2𝑻′𝑾 𝒚∗ + 𝟐𝑻′𝑾𝑻𝜹) 

= 2𝑻′𝑾( 𝑻𝜹 − 𝒚∗) (8) 
𝜕𝜆𝜹′𝑫𝜹

𝜕𝜹
 = 𝜆

𝜕𝜹′𝑫𝜹

𝜕𝜹
 

= 2𝜆𝑫𝜹 (9) 
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Based on equation (8) and equation (9) which will be substituted into equation (10), 𝜹̂𝑷𝑾𝑳𝑺
 
is obtained 

as follows: 

2𝑛−12𝑻′𝑾( 𝑻𝜹̂ − 𝒚∗) + 2𝜆𝑫𝜹̂ = 0 

𝑛−1𝑻′𝑾( 𝑻𝜹̂ − 𝒚∗) + 𝜆𝑫𝜹̂   = 0 

𝑛−1(𝑻′𝑾𝑻𝜹̂ − 𝑻′𝑾𝒚∗) + 𝜆𝑫𝜹̂   = 0 

𝜆𝑫𝜹̂   = −𝑛−1(𝑻′𝑾𝑻𝜹̂ − 𝑻′𝑾𝒚∗) 

𝑛𝜆𝑫𝜹̂ = (𝑻′𝑾𝒚∗ − 𝑻′𝑾𝑻𝜹̂) 

(𝑻′𝑾𝑻𝜹̂ + 𝑛𝜆𝑫𝜹̂) = (𝑻′𝑾𝒚∗) 

(𝑻′𝑾𝑻 + 𝑛𝜆𝑫)𝜹̂ = (𝑻′𝑾𝒚∗) 

     𝜹̂𝑷𝑾𝑳𝑺   = (𝑻′𝑾𝑻 + 𝑛𝜆𝑫)−𝟏𝑻′𝑾𝒚∗ (10) 

Based on the 𝜹̂𝑷𝑾𝑳𝑺
 
 estimator, the 𝒚 function estimation is then obtained as follows: 

𝒚̂∗ = 𝑻𝜹̂𝑷𝑾𝑳𝑺
 
  

= 𝑻(𝑻′𝑾𝑻 + 𝑛𝜆𝑫)−𝟏𝑻′𝑾𝒚∗  

= 𝑨𝒚∗ (11) 

Based on equation (5) according to [12] 𝜷̂ is obtained through decreasing the 𝐾 function against 𝜷. 

     𝐾 = (𝒚 − 𝑿𝜷 − 𝑻𝜹̂𝑷𝑾𝑳𝑺
 
)

′
(𝒚 − 𝑿𝜷 − 𝑻𝜹̂𝑷𝑾𝑳𝑺

 
) 

= (𝒚 − 𝑿𝜷 − 𝑨𝒚∗)′(𝒚 − 𝑿𝜷 − 𝑨𝒚∗) 

  = (𝒚 − 𝑿𝜷 − 𝑨(𝒚 − 𝑿𝜷))
′
(𝒚 − 𝑿𝜷 − 𝑨(𝒚 − 𝑿𝜷))

 
 

 = (𝒚 − 𝑿𝜷 − 𝑨𝒚 − 𝑨𝑿𝜷)′(𝒚 − 𝑿𝜷 − 𝑨𝒚 − 𝑨𝑿𝜷)  

 = (𝒚 − 𝑨𝒚 − 𝑿𝜷 − 𝑨𝑿𝜷)′(𝒚 − 𝑨𝒚 − 𝑿𝜷 − 𝑨𝑿𝜷) 

 = ((𝑰 − 𝑨)𝒚 − (𝑰 − 𝑨)𝑿𝜷)′ ((𝑰 − 𝑨)𝒚 − (𝑰 − 𝑨)𝑿𝜷) 

 = (𝒚(𝑰 − 𝑨)′ − 𝜷′𝑿′(𝑰 − 𝑨)′)((𝑰 − 𝑨)𝒚 − (𝑰 − 𝑨)𝑿𝜷) 

 = 𝒚′(𝑰 − 𝑨)′(𝑰 − 𝑨)𝒚 − 𝒚′(𝑰 − 𝑨)′(𝑰 − 𝑨)𝑿𝜷 − 𝜷′𝑿′(𝑰 − 𝑨)′(𝑰 − 𝑨) 𝒚 +
𝜷′𝑿′(𝑰 − 𝑨)′(𝑰 − 𝑨)𝑿𝜷) 

 = 𝒚′(𝑰 − 𝑨)′(𝑰 − 𝑨)𝒚 − 2(𝒚′(𝑰 − 𝑨)′(𝑰 − 𝑨)𝑿𝜷) + 𝜷′𝑿′(𝑰 − 𝑨)′(𝑰 − 𝑨) 𝑿𝜷) 

The minimum value of 𝐾 is reached when 
𝜕𝐾

𝜕𝜷
= 0, thus obtained: 

 0 − 2(𝑿′(𝑰 − 𝑨)′(𝑰 − 𝑨)𝒚) + 𝟐𝑿′(𝑰 − 𝑨)′(𝑰 − 𝑨)𝑿𝜷̂ = 0 

 2(−(𝑿′(𝑰 − 𝑨)′(𝑰 − 𝑨)𝒚) + 𝟐𝑿′(𝑰 − 𝑨)′(𝑰 − 𝑨)𝑿𝜷̂ = 0 

 2(−(𝑿′(𝑰 − 𝑨)′(𝑰 − 𝑨)𝒚) + 𝑿′(𝑰 − 𝑨)′(𝑰 − 𝑨)𝑿𝜷̂) = 0 

 −(𝑿′(𝑰 − 𝑨)′(𝑰 − 𝑨)𝒚) + 𝑿′(𝑰 − 𝑨)′(𝑰 − 𝑨)𝑿𝜷̂ = 0 

 𝑿′(𝑰 − 𝑨)′(𝑰 − 𝑨)𝑿𝜷̂ = (𝑿′(𝑰 − 𝑨)′(𝑰 − 𝑨)𝒚) 

𝜷̂ = (𝑿′(𝑰 − 𝑨)′(𝑰 − 𝑨)𝑿)−1𝑿′(𝑰 − 𝑨)′(𝑰 − 𝑨)𝒚 (12) 

The parameter estimates 𝜷̂ and 𝜹̂𝑷𝑾𝑳𝑺
 
that have been obtained in equation (10) and equation (11), so 

according to [12] can be substituted in equation (5), as follows: 
𝒚 ̂ = 𝑪𝒑𝒂𝒓𝒚 + 𝑪𝒏𝒐𝒏𝒑𝒂𝒓𝒚 

= (𝑪𝒑𝒂𝒓 + 𝑪𝒏𝒐𝒏𝒑𝒂𝒓)𝒚 

= 𝑪𝒔𝒆𝒎𝒊𝒑𝒂𝒓𝒚 (13) 

𝑪 = 𝑿(𝑿′(𝑰 − 𝑨)′(𝑰 − 𝑨)𝑿)−1𝑿′(𝑰 − 𝑨)′(𝑰 − 𝑨) 

2.4. Optimal number and location of knots 

A knot (𝜉𝑗) is a point where there is a change in the behavior of a function at different intervals. 

Penalized spline regression applies knots located at quantile points which are unique values of the 
predictor variables after the data is sorted. In determining the location of knots using penalized spline 
regression, it can be written as follows [14]: 

𝜉𝑗 =
𝑗

𝑘+1,
, 𝑗 = 1,2,3, . . , 𝑘 (14) 

In determining the optimal location and number of knots, a frequently used method is the full search 
method. This method allows to systematically search for the knot configuration that best fits the data. 

https://doi.org/10.13057/ijas.v8i1.94370
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Meanwhile, in determining the smoothing parameter 𝜆 as well as the optimal number and location of 

knots, a commonly used method is to examine the generalized cross validation (GCV) value that reaches 
the minimum [15] .The advantage of the GCV method is that it is asymptotically optimal [16]. The 
smoothing parameter 𝜆 plays a role in controlling the roughness penalty. As the value of 𝜆 increases, the 
function estimate becomes smoother, while decreasing the value of 𝜆 will result in a coarser estimate. 
The GCV method can be defined as follows [17]: 

𝐺𝐶𝑉(𝜉, 𝜆) =
𝑀𝑆𝐸(𝜉,𝜆)

(1−2𝑛−1𝑡𝑟(𝑨))
2 (15) 

The full-search method is an algorithm that relies on the minimum GCV value to determine the most 
optimal number of knots by comparing the GCV values for 𝜉 = 1 and 𝜉 = 2. When the GCV value of 𝜉 =
1 < 𝜉 = 2 then the iteration process will stop and have the optimal number of knots which is 1. 
Meanwhile, if the GCV value of 𝜉 = 1 > 𝜉 = 2 then the iteration process will continue by comparing the 
GCV values of 𝜉 = 2 and 𝜉 = 3. Comparing GCV values is done in the same way until the minimum GCV 

value is obtained [17]. 

2.5. Types and Sources of Data 

This study utilizes data from BPS publications covering five provinces in southern Sumatra in 2022, 
known as "Provinsi dalam Angka". Observations include 60 regencies/cities in these provinces. The study 
used R programming language for analysis. The response variables are the poverty depth index (𝑌1) and 

the poverty severity index (𝑌2). The predictor variables include the percentage of households with floor 
area ≤19 m² (𝑋1), labor force participation rate (𝑋2), life expectancy (𝑋3), average years of schooling 
(𝑋4), and the percentage of households with piped drinking water (𝑋5). 

2.6. Data Analysis 

The steps in this study are as follows: 

1. Collect and describe data on the poverty depth index, poverty severity index, and influencing factors 

based on theoretical reviews and previous research. 
2. Measure the correlation between the two response variables using Pearson correlation (equation (2)). 
3. Visualize data with scatterplots to determine relationship patterns between response and predictor 

variables. 

4. Validate parametric and nonparametric components using the Terasvirta linearity test. 
5. Estimate the model with the PLS estimator: 

a) Determine knot locations and count using the full search method and optimize lambda based on 

minimum GCV (equation (15)). 
b) Estimate the PLS model using the optimal knots and lambda. 

c) Obtain the estimated functions 𝑦(1) and 𝑦(2) 
d) Test for heteroscedasticity in the PLS error covariance matrix using the Glejser test. 
e) Define the weighting matrix 𝑾 based on heteroscedasticity test results. 

6. Estimate the model with the PWLS estimator: 
a) Determine optimal knot locations, count, and lambda using the full search method and minimum 

GCV. 
b) Estimate the PWLS model using the optimal parameters and weighting matrix 𝑾 (equation (7)). 

c) Obtain the estimated functions 𝑦(1) and 𝑦(2). 
7. Select the best model based on minimum MSE  
8. Assess model fit using eta square 
9. Segment and interpret the best model, create a semiparametric biresponse model, and plot 

observation data and estimated response variables. 
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3. RESULTS AND DISCUSSION 

3.1. Correlation on Response Variables 

Based on Table 1, the calculated tvalue is 37.7987, which is greater than the critical ttable of 2.0000. 
Thus, 𝐻0 is rejected, indicating a strong and significant correlation of 0.9803 between the response 
variables, poverty depth index, and poverty severity index, in southern Sumatra in 2022 at a 5% 
significance level. This confirms the assumption of correlation, indicating that modeling these indices 
using a bivariate response approach is appropriate. 

Table 1. Correlation output of 𝑌(1) and 𝑌(2) 

𝐻0: 𝜌 = 0 

Statistics Value 

r 0.9803 
tvalue 37.7987 

ttable 2.0000 
p-value <0.001 

 

3.2. Determination of Parametric and Nonparametric Components 

The next step is to test the linearity between the response and predictor variables (Table 2). This 
test analyzes whether the relationship can be represented linearly. If linearity is confirmed, parametric 
components may suffice. However, if the relationship is nonlinear, nonparametric components like 
penalized splines should be considered to capture the more complex relationship between the response 
and predictor variables. 

Table 2. Results of Terasvirta linearity test 

Variable 
p-value Pattern of Relationship 

Component 
𝑌1 𝑌2 𝑌1 𝑌2 

𝑋1 0.3815 0.3169 Linear Linear Parametric 

𝑋2 0.3623 0.3860 Linear Linear Parametric 

𝑋3 0.1447 0.1699 Linear Linear Parametric 

𝑋4 0.0316 0.0401 Nonlinear Nonlinear Nonparametric 

𝑋5 0.0113 0.0223 Nonlinear Nonlinear Nonparametric 

 

3.3. Penalized Least Square Model Estimation 

The penalized least square estimator is a smooth estimator used to obtain a regression function that 

fits the data. It addresses the challenge of splines fitting every data point too closely, which can create a 
rough curve. Therefore, a smoothing parameter is needed to balance goodness of fit and roughness 

penalty. The next steps involve determining the optimal number of knots, their locations, and the 
smoothing parameter (Table 3 and Table 4): 

Table 3. The most optimal knot results 𝑡1 

Number of Knots Knot Lambda GCV Minimum 

1 8.2000 100     0.9265** 

2 
7.8000 
8.4000 

100 0.9266 
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Table 4. The most optimal knot results 𝑡2 

Number of Knots Knot Lambda GCV Minimum 

1 6.0800 6.3800 0.9149 

2 
2.81600 
8.62600 

7.5300 0.9069 

3 
1.76500 
6.0800 
10.8650 

12.6500        0.9041** 

Notes: ** number of knots, knot locations and optimal lambda 

When estimating parameters with penalized least square, the upper and lower limits of lambda and 
increment values must be determined by involving the linear order and the most optimal number and 

location of knots for each nonparametric variable. So that the parameter estimates are obtained as 
follows:  

𝑦̂𝑖
(1)

= 2.19 × 10−14 + 0.0668𝑥1𝑖 − 0.0977𝑥2𝑖 − 0.1971𝑥3𝑖 + 13.9718 + 0.1561𝑡1𝑖

− 0.0002(𝑡1𝑖 − 8.2000)+
 + 0.0008𝑡2𝑖 − 0.0001(𝑡2𝑖 − 1.7650)+

 

− 0.0017(𝑡2𝑖 − 6.0800)+
 − 0.0032(𝑡2𝑖 − 10.8650)+

  

𝑦̂𝑖
(2)

= −2.08 × 10−14 + 0.0292𝑥1𝑖 − 0.2656𝑥2𝑖 + 0.0531𝑥3𝑖 + 3.8550 + 0.0433𝑡1𝑖

− 4.31 × 10−5(𝑡1𝑖 − 8.2000)+
 − 0.00046𝑡2𝑖

+ −4.42 × 10−5(𝑡2𝑖 − 1.7650)+
 − 0.0004(𝑡2𝑖 − 6.0800)+

 

− 0.0006(t2i − 10.8650)+
  

3.4. Testing the Variance of the PLS Error Model 

The penalized least square estimator assumes that there is a constant variance in the error, which 
is called homoscedasticity. Homoscedasticity can be detected by various tests, one of which is the Glejser 
test (Table 5):  

Table 5. Testing the variance of the error model 

Source Degree Freedom Sum of Squares Mean Square Fvalue p-value 

Regression 4 15.3631 3.8408 48.6519 <0.001 
Error 114 8.9996 0.0789   
Sum 119 24.3628    

  𝑑𝑓1 4   
  𝑑𝑓2 114   

Based on Table 5, the p-value is <0.001, which is smaller than the significance level of 0.05. Therefore, 

the null hypothesis (𝐻0) is rejected, indicating a variance difference in residuals between responses at 
the 5% significance level. This suggests the presence of heteroskedasticity in the regression model, which 

can affect the reliability of the analysis. It is important to consider steps to correct model assumptions 
for more accurate and reliable results. So that the weight matrix symbolized by 𝑾 is obtained as follows: 

𝑾 = [
49.9252𝑰 | −154.1068𝑰

− − − − − − −
−154.1068𝑰 | 520.58𝑰

]

 

 

3.5. Penalized Weigthed Least Square Model Estimation 

The penalized weighted least square (PWLS) method can be used by minimizing the weighted sum 
of squared errors when the assumption of constant variance in the error model is violated or 
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heteroscedasticity. The next step is to determine the optimal number of knots, knot locations and 

smoothing parameters as in equation (7) which will involve the weight matrix (Table 6 and Table 7). 

Table 6. The most optimal knot results 𝑡1 

Number of Knots Knot Lambda GCV Minimum 

1 8.2000 1 4.5363 

2 
7.8000 

8.4000 
1 4.4493** 

3 

7.6450 

8.2000 

8.6300 

1 4.4567 

Table 7. The most optimal knot results 𝑡2 

Number of Knots Knot Lambda GCV Minimum 

1 6.0800 1.81 4.3878 

2 
2.8167 
8.6267 

1.00      4.0794** 

3 
1.7650 
6.0800 
10.8600 

1.54 4.1263 

Notes: ** number of knots, knot locations and optimal lambda 

So that the parameter estimates are obtained as follows: 

𝑦̂𝑖
(1)

= 4.3525 × 10−13 + 0.0629𝑥1𝑖 − 0.2060𝑥2𝑖 − 0.1944𝑥3𝑖 + 13.8598 + 0.1554𝑡1𝑖

− 0.0028(𝑡1𝑖 − 7.8000)+
 − 0.0009(𝑡1𝑖 − 8.4000)+ + 0.0032𝑡2𝑖

+ 0.0035(𝑡2𝑖 − 2.8167)+
 − 0.0120(𝑡2𝑖 − 8.267)+

  

𝑦̂𝑖
(2)

= 1.2458 × 10−14 + 0.0305𝑥1𝑖 − 0.1737𝑥2𝑖 − 0.0543𝑥3𝑖 + 3.9045 + 0.0393𝑡1𝑖

+ 0.0073(𝑡1𝑖 − 7.8000)+
 + 0.0004(𝑡1𝑖 − 8.4000)+ + 0.0082𝑡2𝑖

− 0.0159(𝑡2𝑖 − 2.8167)+
 + 0.0069(𝑡2𝑖 − 8.6267)+

  

3.6. Best Model Segmentation and Interpretation 

After determining the best PWLS model for the poverty index in southern Sumatra in 2022, the 
focus shifts to segmenting and interpreting the model. Segmenting uses model variables to divide the 

population into groups with similar poverty characteristics. Interpretation analyzes regression 
coefficients to understand the predictors' relative influence on the poverty index and explore related 
patterns or trends. These steps aim to deepen understanding of factors affecting poverty in the region, 
providing a solid foundation for effective decision-making and policy planning.  

Based on the above model, the interpretation for each predictor variable on response 1 is as follows: 
an increase of one unit in variable 𝑥1 will increase the poverty depth index by 0.0629, assuming other 
predictors remain constant; an increase of one unit in variable 𝑥2 will decrease the poverty depth index 

by 0.2060, assuming other predictors remain constant; and an increase of one unit in variable 𝑥3  will 
decrease the poverty depth index by 0.1944, assuming other predictors remain constant. The 

interpretation of the nonparametric component will be based on the penalized weighted least square 
estimator for each predictor variable in the form of piecewise functions. The piecewise function for the 
average years of schooling is as follows: 

𝑓(1)(𝑡1𝑖) = 0.1554𝑡1𝑖 − 0.0028(𝑡1𝑖 − 7.8000)+
 − 0.0009(𝑡1𝑖 − 8.4000)+ 
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𝑓(1)(𝑡1𝑖) = {

0.1554𝑡1𝑖.  
0.1526𝑡1𝑖 + 0.0218.  
0.1517𝑡1𝑖 + 0.0075.

 

                  0 < 𝑡1𝑖 ≤ 7.8000
        7.8000 < 𝑡1𝑖 ≤ 8.4000
                            𝑡1𝑖 > 8.4000

 

Based on the piecewise function above, when other predictor variables are constant, the 
interpretation of 𝑡1 on the poverty depth index is as follows: when 𝑡1 is less than or equal to 7.8000, 

every one-year increase in 𝑡1 tends to increase the poverty depth index by 0.1554. When the average 
years of schooling 𝑡1 is in the interval of 7.8000 to 8.4000, every one-year increase in 𝑡1 tends to increase 
the poverty depth index by 0.1526. If 𝑡1 is more than 8.4000, every one-year increase in 𝑡1 tends to 
increase the poverty depth index by 0.1517.  

𝑓(1)(𝑡2𝑖) = 0.0032𝑡2𝑖 + 0.0035(𝑡2𝑖 − 2.8167)+
 − 0.0120(𝑡2𝑖 − 8.6267)+

  

𝑓(1)(𝑡2𝑖) = {

0.0032𝑡2𝑖.  
0.0067𝑡2𝑖 − 0.0098.  
−0.0053𝑡2𝑖 + 0.1035.

 

                 0 < 𝑡2𝑖 ≤ 2.8167
     2.8167 < 𝑡2𝑖 ≤ 8.6267
                        𝑡2𝑖 > 8.6267

 

𝑓(2)(𝑡1𝑖) = 0.0393𝑡1𝑖 + 0.0073(𝑡1𝑖 − 7.8000)+
 + 0.0004(𝑡1𝑖 − 8.4000)+ 

𝑓(2)(𝑡1𝑖) = {

0.0393𝑡1𝑖.  
0.0466𝑡1𝑖 − 0.0547.  
0.0470𝑡1𝑖 − 0.0034.

 

                  0 < 𝑡1𝑖 ≤ 7.8000
        7.8000 < 𝑡1𝑖 ≤ 8.4000
                            𝑡1𝑖 > 8.4000

 

𝑓(2)(𝑡2𝑖) = 0.0082𝑡2𝑖 − 0.0159(𝑡2𝑖 − 2.8167)+
 + 0.0069(𝑡2𝑖 − 8.6267)+

  

𝑓(2)(𝑡2𝑖) = {

0.0082𝑡2𝑖.  
−0.0077𝑡2𝑖 + 0.0448.  
−0.0008𝑡2𝑖 − 0.0595.

 

                 0 < 𝑡2𝑖 ≤ 2.8167
     2.8167 < 𝑡2𝑖 ≤ 8.6267
                        𝑡2𝑖 > 8.6267

 

Based on the estimated function 𝑦(𝑑) obtained, 𝑦(𝑑) and 𝑦̂(𝑑)can then be plotted to find out how much 

difference between the estimated results and the original can be seen in Figure 1 as follows: 
 

  
(a) (b) 

Figure 1. Plot of the estimated function 𝑦(𝑑); (a) response variable 𝑦(1) and  

(b) response variable 𝑦(2) 

The scatter plots compare observed values (red circles) with predicted values (blue triangles) for 

two response variables, 𝑦(1) and 𝑦(2), across 60 observations. For both variables, the predicted values 

generally follow the observed values, indicating that the model captures the overall trends. However, 
there are some discrepancies between the observed and predicted values, suggesting that the model does 

not perfectly fit all data points. 

4. CONCLUSIONS 

This study applied penalized semiparametric spline regression to model the poverty depth index and 

poverty severity index, considering both parametric and nonparametric components. The penalized 
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weighted least square (PWLS) method was found to be more accurate than penalized least square (PLS), 

as indicated by a lower mean squared error (MSE) of 0.3122 and optimal generalized cross-validation 
(GCV) values of 4.3604 and 4.0794. The findings revealed that average years of schooling and the 
percentage of households with piped water exhibited a nonparametric relationship, while other variables, 
such as the percentage of households with a floor area ≤19 m², labor force participation rate, and life 
expectancy, followed a parametric pattern. The segmentation analysis further emphasized the 
importance of these variables in explaining poverty levels across different districts and cities in southern 
Sumatra. By incorporating both parametric and nonparametric elements, this study successfully captured 
the complex relationships between predictor variables and poverty indicators. The results provide 
valuable insights for policymakers in designing targeted interventions to reduce poverty, particularly by 
focusing on education, housing conditions, and access to clean water. These findings highlight the 
potential of bivariate semiparametric regression as a robust statistical approach for analyzing socio-

economic issues and guiding effective poverty alleviation strategies. 
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