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Abstract 

Multinomial logistic regression is a method used to find relationships between nominal or multinomial response 

variables (Y) with one or more predictor variables. Logistics regression is a classic method that is often used to 

solve classification problems. Assumptions on logistics regression are models containing multicollinearity. Ridge 

logistic estimator (RLE) is methods to solve multicollinearity cases in Logistic Regression. Wu & Asar proposed 

a new ridge value that can also reduce bias in parameter estimation.  Therefore, this research will discuss about 

multinomial ridge logistic and selection the best of ridge constant values. The performance test of the ridge value 

will be applied to the Iris Dataset in R software. The best criteria for improvement ridge constant value by looking 

at the smallest standard error. The calculation results show that the Wu-Asar approach is the best ridge constant 

and Wald individual test shows significant results. Based on the result, show that the Wu-Asar ridge constant 

value on multinomial ridge logistic regression are very good performance in estimated smaller standar error. 

The classification for dataset shows high results with 98% global accuracy. 

Keywords: multinomial; ridge logistic regression; Wu-Asar; standard error; classification. 

 
This is an open access article under                                                                                                                                                                            

the Creative Commons Attrribution-ShareAlike 4.0 International License  

How to Cite:  
G. D. Ahadi, I. Zain, and S. P. Rahayu, “Modeling and classification multicollinear variables using multinomial ridge logistic regression aprroach,” 

Indonesian Journal of Applied Statistics, vol. 8, no. 1, pp. 53-62, 2025, doi: 10.13057/ijas.v8i1.85795. 
 

1. INTRODUCTION 

The multiclass classification assumes that each sample is assigned to one and only one 
label.  Classification is the problem of identifying which of a set of categories (sub-populations) an 
observation variable belongs to [1]. Logistics regression is a statistical method that is often used to solve 
classification problems. Logistics regression method is a method that can be used to find the relationship 
between dichotomous (scaled with two categories) or polychotomous (having a nominal or ordinal scale 

with more than two categories) response variables with one or more predictor variables [2]. Logistic 
Regression based on the type of data scale can be divided into three, binary logistic regression, 

multinomial, and ordinal logistic regression. Nominal scale is a measurement that is categorized into 
more than two categories. Parameter estimation in Logistic Regression uses maximum likelihood 
estimation (MLE) and iterative reweighted least squares (IRLS) approaches. The MLE approach is used 
because the distribution of data on the response variable is known.  

Assumptions on logistics regression, apart from the characteristics of the response variables, are 
models containing multicollinearity. The case of multicollinearity is a condition when the predictor 
variable is not independent, or there is a high correlation between the predictor variables [3]. If 
multicollinearity is not resolved, it can cause the standard error in parameter estimate to be wide, which 
would the results of the estimation irrelevant/biased. Even though the coefficient of determination (R2) 
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value is high, multicollinearity may cause the parameter significance test to be insignificant. In the 

presence of multicollinearity, parameter estimations using MLE are known to have high variance. The 
problem can be solved by the ridge regression approach. The purpose of the ridge regression method is 
to add a positive constant called the ridge parameter to the parameter estimation process by modifying 
the OLS method. 

Ridge regression method is used to solve multicollinearity problems by providing a biased estimator 
with a smaller variance than the least squares method. Determining the ridge value can use a Ridge Trace, 
by selecting a ridge parameter with a small value based on the plot between the regression coefficients 
and the constant ridge. Khalaf & Iguernane [4] stated that the selection of ridge value can be done 
iteratively based on the HKB estimator (Hoerl, Kennard and Baldwin). This approach can be done by 
calculating the estimated regression parameters obtained through the least squares method.  The 
selection of the bias constant (ridge) with this iteration is a method that is solved analytically. 

Schaefer, Roi & Wolfe [5] apply ridge parameters to resolve multicollinear problems in logistic 
regression. Ridge logistic estimator (RLE) is an approach that can solve multicollinearity cases. The SRW 
(Schaefer, Roi, and Wolfe) constant formula from RLE is used to calculate the ridge value. The theory is 
an analytical calculation based on least squares and eigen value. Even though the RLE approach can 

resolve multicollinearity, this parameter estimator produces a greater bias. Therefore, Wu & Asar [6] 
proposed a new method, namely the almost unbiased ridge logistic estimator (AURLE). The AURLE 
method not only resolved multicollinearity, but also reduced bias in parameter estimation. The ridge 
value is chosen by calculating the bias constant value using a new approach, the Wu-Asar estimator.  

Nisa & Hastuti (2023) [7] simulated multicollinearity variables in multiple regression using ridge 

regression and adjusted ridge regression methods. The result shows that the adjusted ridge regression 
method and the ridge regression method produce a smaller MSE value when the sample size used is 
larger. Sari (2018) [8] doing a research study about parameter estimation in logistic regression with 
multicollinearity features. The method of parameter estimation was using maximum likelihood 
estimation and ridge logistic estimator. The results show that the ridge logistic estimator is better than 
the maximum likelihood estimator for parameter estimation. Putra [9] conducted research on HDI 
modeling in East Java using ridge logistic regression method. The response variable is binary and the 
selection of ridge parameters uses the principal component approach. Classification accuracy obtained 
by ridge logistic regression was 97.37%. In this paper, we examine the performance of Wu-Asar constant 
and its application to ridge logistic regression for modeling and classification. 

2. METHODS 

2.1. Multinomial Logistic Regression 

The multinomial distribution known that a variable criterias has more than two categories with 
nominal scale. There is a random variable known Y with q categories, the the probability relationship can 
be written as 𝑃(𝑌 = 𝑟) = 𝑃(𝑦𝑟 = 1) = 𝜋𝑟 and 𝑟 = 1,2, … , 𝐽. Multinomial distribution function can be 

written as follows (1). 

 
  (1) 

with 𝐸(𝑌𝑟) = 𝜋𝑟 and 𝑉𝑎𝑟(𝑌𝑟) = 𝜋𝑟(1 − 𝜋𝑟) and then 𝐶𝑜𝑣(𝑌𝑟, 𝑌𝑡) = −𝜋𝑟𝜋𝑡. 
Multinomial logistic regression is a method used to find relationships between nominal or 

multinomial response variables (Y) with one or more predictor variables [2]. The response variable (Y) 
consists of more than 2 categories are usually code by 0, 1, or 2. The general equation form of logistic 
regression model with p predictors is expressed in equation below [10]. 

𝜋(𝒙) =
𝑒𝑥𝑝(𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + ⋯ + 𝛽𝑝𝑥𝑝)

1 + 𝑒𝑥𝑝(𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + ⋯ + 𝛽𝑝𝑥𝑝)
   (2) 

Equation (2) can be transformed using logit transformation.  

𝑃(𝑦1, 𝑦2, …  𝑦𝐽 ) = 𝜋1
𝑦1 𝜋2

𝑦2 …  𝜋𝐽

𝑦𝐽 (1 − 𝜋1 − 𝜋2 − ⋯ − 𝜋𝐽 )
1−𝑦1−𝑦2−,…− 𝑦𝐽
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𝑔1(𝒙) = 𝑙𝑛 (
𝜋1(𝒙)

𝜋0(𝒙)
) = 𝛽10 + 𝛽11𝑥1+. . . +𝛽1𝑝𝑥𝑝 = 𝐱𝐓𝜷𝟏  

𝑔2(𝒙) = 𝑙𝑛 (
𝜋2(𝒙)

𝜋0(𝒙)
) = 𝛽20 + 𝛽21𝑥1+. . . +𝛽2𝑝𝑥𝑝 = 𝐱𝐓𝜷2 (3) 

Based on (3), the logistic regression model is obtained as follows (4). 

𝜋0(𝒙) =
1

1 + 𝑒𝑥𝑝 𝑔1 (𝒙) + 𝑒𝑥𝑝 𝑔2 (𝒙)
 

𝜋1(𝒙) =
𝑒𝑥𝑝 𝑔1 (𝒙)

1 + 𝑒𝑥𝑝 𝑔1 (𝒙) + 𝑒𝑥𝑝 𝑔2 (𝒙)
 

𝜋2(𝒙) =
𝑒𝑥𝑝 𝑔2 (𝒙)

1 + 𝑒𝑥𝑝 𝑔1 (𝒙) + 𝑒𝑥𝑝 𝑔2 (𝒙)
 

(4) 

Parameters estimation for multinomial logistic regression was performed using the maximum 
likelihood estimation (MLE) method. Based on (1), we can form a likelihood function for the categorical 
response J = 3. 

𝐿(𝜷) = ∏ 𝜋1𝑖
𝑦1𝑖𝜋2𝑖

𝑦2𝑖(1 − 𝜋1𝑖 − 𝜋2𝑖)
1−𝑦1𝑖−𝑦2𝑖

𝑛

𝑖=1

 (5) 

Equation (5) will be differentially respect to 𝛽 to determine the first and second derivatives. The 
calculation of the estimation process will produce a non-closed form, therefore it will be approached by 
numerical iterations with iterative reweighted least squares (IRLS). 

2.2. Multicollinearity 

Multicollinearity is a condition where there is a high correlation between predictor variables or the 

predictor variables are not independent. One of the criteria that may be used to detect multicollinearity 
is the variance inflation factor (VIF). The VIF value is formulated as follows [3].  

2

1

1 k

VIF
R

=
−  

(6) 

𝑅𝑘
2 is the coefficient of determination between predictor variables in the regression model, where 

𝑘 = 1,2, … , 𝑝. For VIF values greater than 10, the predictors are multicollinear. The estimations of the 
parameters fall short of the actual value. 

2.3. Ridge Regression 
The ridge regression is the method used to resolve multicollinearity cases. The XTX matrix is almost 

singular, and the regression parameter estimation results are unstable due to high correlation between 
several predictor variables. Ridge regression method is designed to address these problems [11]. The 
parameters are estimated using the least squares method by adding the ridge parameter (𝜃) to the 

diagonal elements of the XTX matrix. The ridge parameter is a small positive number between 0 and 1. If 

the value is zero, the ridge regression estimation is equivalent to the least-squares linear regression [11]. 
Parameter estimate for regression ridge is shown in (7). 

𝜷̂∗ = (𝐗𝐓𝐗 + 𝜃𝐈)−1𝐗𝐓𝒚 (7) 

With 𝛽̂∗ is an estimator for ridge regression. The ridge regression method will increase the eigenvalue, 
so it can reduce MSE. 

2.4. Ridge Logistic Regression 

Schaefer, Roi & Wolfe [5] introduced the ridge logistic estimator (RLE), by adding the ridge 
parameter to the logistic regression estimation covariance variance matrix. The general form of 
parameter estimation with RLE is as follows: 

( )ˆ
RRLLEE k= +

-1
T T

β X WX I X Wz
 

(8) 
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where k is a constant called the ridge parameter. The RLE method is used to deal with multicollinearity 

problems by providing a biased estimator but has a smaller variance. Wu & Asar [6] introduced a new 
method almost unbiased ridge logistic estimator (AURLE) to minimize bias variance. Ridge value is 
determined by calculating the Wu-Asar estimator constant  (𝑘𝑊𝐴).   

𝑘𝑊𝐴 =
𝑝

∑ [
𝑎𝑙

2

(1 + (1 + 𝜆𝑙𝑎𝑙
2)1/2)

]
𝑝
𝑙=1

 
(9) 

Where 𝜶 = 𝜸𝜷̂  and 𝛼𝑖 is an element of 𝜶. It is known that 𝜸 and 𝜆 are eigen vectors and eigen values 
of the covariance matrix. 

2.5. Parameter Significance Test 

Parameter significance tests consist of overral fit tests/joint test and individual/partial tests. Overral 
fits test was carried out using the likelihood ratio test or also called statistical G test, with the following 

hypothesis is: 
𝐻0 ∶  𝛽𝑗1 = 𝛽𝑗2 = ⋯ = 𝛽𝑗𝑝 = 0 , 𝑗 = 1,2, … , 𝐽 − 1 

𝐻1 ∶  𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛 𝑜𝑓 𝛽𝑗𝑙 ≠ 0   ;  𝑙 = 1,2, … , 𝑝 

Statistics test 

G = −2 (𝑙𝑛𝐿(𝜔̂) − 𝑙𝑛𝐿(Ω̂)) (10) 

with 𝐿(𝜔) : the value of the likelihood function for a model where all parameters are equal to zero. 
Meanwhile, 𝐿(Ω) : the value of the likelihood function for the complete model. The G test follows a chi-
square distribution with degrees of freedom (v). 𝐻0 is rejected if 𝐺 ≥ 𝜒2

(𝛼,𝑣), which means the overral 

fits test has significant effect [2]. 
Individual testing was carried out to determine whether the predictor variables individually affect 

the model independently. This individual test is performed using the Wald test with the following 

hypotheses: 
𝐻0 ∶  𝛽𝑗𝑙 = 0 

𝐻1 ∶  𝛽𝑗𝑙 ≠ 0   ; 𝑙 = 1,2, … , 𝑝  𝑗 = 1,2, … , 𝐽 − 1 

p is number of amount predictor variable. Statistics Wald test as follows: 

𝑊𝑗𝑙 =
𝛽𝑗𝑙̂

𝑆𝐸(𝛽𝑗𝑙̂)
 (11) 

with 𝛽̂𝑗𝑙 is a parameter estimator and 𝑆𝐸(𝛽̂𝑗𝑙) = √𝑉𝑎𝑟̂(𝛽̂𝑗𝑙) . 𝐻0 rejected if |𝑊𝑗𝑙| ≥ 𝑍𝛼

2
  or can uses 

𝑊𝑗𝑙
2 ≥ 𝜒2

(𝛼,1) that follows a chi-square distribution with degrees of freedom 1. 

2.6. Classification Evaluation  

Evaluation of classification accuracy aims to determine the percentage of error classification or the 

accuracy percentage of the classification result performed by the classification method [12]. Classification 
measurements are performed using a confusion matrix approach. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑛11 + 𝑛22+. . . +𝑛𝑘𝑙

𝑁
× 100% 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
 (12) 

𝑛𝑘𝑙  : variables classified in categories-k,l. TP: true positive, TN: true negative, FP: false positive and FN: 
false negative [1]. 
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2.6. Data   

Iris data is a dataset in Software R package that is commonly used for classification. This dataset 
consists of 3 types of Iris species, and each species consists of 50 samples. The response variable is Species 
with three category (0: Setosa, 1: Versicolor, 2: Virginica) and four features that are measured as 
predictor. The structure of the observation variables is explained in Table 1. 

Table 1. Research variables 

 Variable 

Y Species (0: Setosa, 1: Versicolor, 2: Virginica) 

X1 Sepal length 

X2 Sepal width 

X3 Petal length 

X4 Petal width 

2.6. Research procedure 

The research procedure consists of several stages to ensure that the results of this search run 
smoothly. The steps in this research are as follows: 

1) Parameter estimation for multinomial logistic regression uses MLE (5). 

2) Find the first and second derivatives of the likelihood function. Numerical iteration based on IRLS 

and Taylor series expansion. 

3) Obtain the estimated parameter equation of multinomial logistic regression. 

4) Obtain the estimated parameter form of the multinomial ridge logistic regression parameters with 

the RLE according to (8). 

5) Multicollinearity check on Iris data using VIF. 

6) Modeling the Iris data with multinomial ridge logistic regression. 

7) Selecting the ridge parameter value: calculating the eigen vector and eigen values from 𝐗𝐓𝐖𝐣𝐗. 

Determine the best ridge value from the ridge trace (𝑘𝑟𝑡), Schaefer, Roi & Wolfe formula (𝑘𝑆𝑅𝑊) 

and new approach constants Wu-Asar (𝑘𝑊𝐴). 

8) Parameter significance test, overall and individual test for Iris data. 

9) Test the accuracy of classification with the confusion matrix (12). 

3. RESULTS AND DISCUSSION 

3.1. Parameter Estimation of Multinomial Logistic Regression  

Parameter Estimation for multinomial logistic regression uses the MLE approach and IRLS. The 

following distribution for response is multinomial distribution. First step, construct the likelihood 
function of parameter 𝜷 with category J=3. 

𝐿(𝜷) = ∏ 𝜋1𝑖
𝑦1𝑖𝜋2𝑖

𝑦2𝑖(1 − 𝜋1𝑖 − 𝜋2𝑖)
1−𝑦1𝑖−𝑦2𝑖

𝑛

𝑖=1

 
 

𝑙𝑛 𝐿 (𝜷) = ∑[𝑦1𝑖 𝑙𝑛 𝜋1𝑖 + 𝑦2𝑖 𝑙𝑛 𝜋2𝑖 + (1 − 𝑦1𝑖 − 𝑦2𝑖) 𝑙𝑛(1 − 𝜋1𝑖 − 𝜋2𝑖)]

𝑛

𝑖=1

 
 

𝑙𝑛 𝐿 (𝜷) = ∑[𝑦1𝑖𝑔1(𝒙𝑖) + 𝑦2𝑖𝑔2(𝒙𝑖)

𝑛

𝑖=1

− 𝑙𝑛(𝑒𝑥𝑝 𝑔1 (𝒙𝑖) + 𝑒𝑥𝑝 𝑔2 (𝒙𝑖))] 
(13) 
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With 𝜷 = [𝜷1
𝑇 𝜷2

𝑇]
𝑻

 and 𝐱 = [1 𝑥1𝑖 𝑥2𝑖
⋯ 𝑥𝑝𝑖]𝑇. Second step, find the first and second 

derivatives of equation (13) to 𝜷. The first derivative as follows. 

𝜕 𝑙𝑛 𝐿 (𝜷)

𝜕𝜷𝑗

= ∑ 𝐱𝑖(𝑦𝑖𝑗 − 𝜋𝑖𝑗)

𝑛

𝑖=1

= 𝐗T(𝐘 − 𝝅) (14) 

Then the second derivative is performed to estimate the variance covariance. 
𝜕2 𝑙𝑛 𝐿 (𝜷)

𝜕𝜷𝜕𝜷′
= 𝐗T𝐕𝐗 (15) 

Third step, get the estimate form 𝜷̂ multinomial logistic regression based on numerical iteration. Taylor 
series expansion is carried out. 

𝜕 𝑙𝑛 𝐿 (𝜷𝒋)

𝜕𝜷𝒋

|
𝛽̂=𝛽̂0

=
𝜕2 𝑙𝑛 𝐿 (𝜷)

𝜕𝜷𝜕𝜷′
|

𝛽̂=𝛽̂0

𝜷̂ − 𝜷̂0 (16) 

Substitution equation (14) and (15) to (16)  
𝐗T(𝒀 − 𝝅) = 𝐗T𝐕𝐗(𝜷̂ − 𝜷̂0)  

𝜷̂ = (𝐗T𝐕𝐗)−1𝐗T𝐕𝐳 (17) 

The form parameter estimation for multinomial logistic regression can be written as. 

𝜷̂𝑗 = (𝐗𝐓𝐕j𝐗)
−𝟏

𝐗𝐓𝐕j𝐳j (18) 

j=1,2, zj is a vector with length n × 1.  

𝑧𝑗 = 𝐿𝑜𝑔𝑖𝑡[𝜋𝑖𝑗̂] +
𝑦𝑖𝑗 − 𝜋̂𝑖𝑗

𝜋̂𝑖𝑗(1 − 𝜋̂𝑖𝑗)
 

3.2. Parameter Estimation of Multinomial Ridge Logistic Regression  

After obtaining the estimation form of the multinomial logistic regression, an estimation model for 

multinomial ridge logistic regression will be formed. The first step is to obtain estimation parameters 

using the ridge logistic estimator (RLE). The general form of the RLE for 𝜷̂ estimation by [5] is equation 
(8). 

( )ˆ
RRLLEE k= +

-1
T T

β X WX I X Wz
 

(19) 

As we know, k is a constant called ridge parameter. The second step is to obtain the parameter estimation 

equation of the multinomial ridge logistic regression. From (18) can be defined  𝑾𝒋 = 𝑽𝒋 =

𝜋𝑖𝑗(1 − 𝜋𝑖𝑗). The form of parameter estimation for multinomial ridge regression is as follows (20). 

( )ˆ
MLR j j jk= +

-1
T T

β X W X I X W z
 

(20) 

Varians 𝜷̂  

𝑣𝑎𝑟(𝜷𝒋̂) = (𝐗𝐓𝑑𝑖𝑎𝑔(𝐖𝐣)𝐗 + 𝑘𝐈)
−1

𝐖𝐣(𝐗𝐓𝑑𝑖𝑎𝑔(𝐖𝐣)𝐗 + 𝑘𝐈)
−1

 

Wu-Asar Constant 
The third step is to determine the value of the ridge constant in the multinomial ridge logistic 

regression model. In this paper, ridge values were determined using a new method, the Wu-Asar 

estimator (𝑘𝑊𝐴). The (𝑘𝑊𝐴) constant value is given by the following equation (9). Then the ridge value 
will be compared with other methods, ridge trace (𝑘𝑟𝑡) and SRW constant (𝑘𝑆𝑅𝑊).  
Ridge Trace 

The ridge trace is a plot between the ridge 𝛽̂ against k values, with 𝑘 ∈ {0,1}.  Through the ridge 
trace, the goal is to choose k with a small value, where at this k it is considered that the regression 
coefficient is starting to stabilize [4]. 
SRW Constant 

Another analytic method for selecting the ridge constant was introduced by [6], calculating the 𝑘𝑆𝑅𝑊 

value using the SRW formula. 

𝑘𝑆𝑅𝑊 =
1

𝑎2
𝑚𝑎𝑥
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3.3. Modeling with Multinomial Logistic Regression 

We use the response to have three categories, and Setosa is used as a comparison between the 
Versicolor and Virginica categories. The results of the estimation and modeling of Iris data with 
multinomial regression are explained as follows. 

Table 2. Result of logistic regression 

Respon  𝛽̂ std. error Wald 

Versicolor 

X1 -5.9063 61.1412 0.0093 

X2 -6.2887 81.0242 0.006 

X3 11.941 70.2095 0.0289 

X4 0.3984 130.524 0 

Virginica 

X1 -8.3739 61.1632 0.0187 

X2 -12.924 81.1539 0.0254 

X3 21.3062 70.4283 0.0915 

X4 18.5437 130.664 0.0201 

Table 2 shows the results of parameter estimation and Wald test statistics. It is known that the value of 

the standard error 𝛽̂ is quite large, this causes the variance to widen, and the test statistic becomes 
insignificant. 

3.4 Multicollinearity Checking 

The multicollinearity test is performed by examining the VIF values. Table 3 shows that at VIF > 5 
there is evidence of multicollinearity in the variable sepal length (𝑋1). Meanwhile, VIF values greater 

than 10 indicate high multicollinearity in the petal length and petal width variables. 

Table 3. VIF value 

X1 X2 X3 X4 

7.073 2.1 31.262 16.09 

3.5 Modeling with Multinomial Ridge Logistic Regression 

The initial step of modeling with ridge method is to estimate the parameters based on equation (20). 

The selection of the ridge value will be done with ridge trace (𝑘𝑟𝑡), SRW formula (𝑘𝑆𝑅𝑊) and new 
constants Wu-Asar (𝑘𝑊𝐴). Ridge value calculation is done in R software and produces the following 
output Table 4. 

Table 4. Selection ridge value 

Respon Predictor 
(𝑘𝑟𝑡) (𝑘𝑆𝑅𝑊) (𝑘𝑊𝐴) 

Std. error Std. error Std. error 

Versicolor 

X1 1.22 1.11 0.59 

X2 1.51 1.37 0.73 

X3 1.19 1.09 0.58 

X4 2.06 1.87 0.97 

 
Virginica 

X1 1.35 1.23 0.66 

X2 1.74 1.59 0.87 

X3 1.47 1.34 0.73 

X4 2.16 1.96 1.01 
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Ridge values for each constant are 𝑘𝑟𝑡 = 0.056, 𝑘𝑆𝑅𝑊 =  0.0698 and 𝑘𝑊𝐴 = 0.305. The lowest 

standard error of 𝜷̂ value is the best ridge constant value. From Table 4, we can see that the new approach 
𝑘𝑊𝐴 has the best ridge constant with a ridge value of 0.305. 

Here are the results of a hypothesis test on the significance parameter of the multinomial ridge 
logistic regression with the Wu-Asar ridge constant. The result of overall fit test is a p-value 0.000 < 

𝛼(0.05) indicates that there is at least one predictor that has a simultaneous/significant influence on the 
model. Individual tests were performed by the Wald test described in Table 5. 

Table 5. Parameter estimation 

Respon 
Category 

variable 𝛽̂ 
Std. 

error 
Wald p-value 

Versicolor 

Intercept 0.685 1.167 0.345 0.557 

Sepal Length -0.163 0.591 0.077 0.782 

Sepal Width -1.749 0.731 5.73 0.017 

Petal Length 2.064 0.581 12.60 0.0004 

Petal Width -0.22 0.973 0.052 0.82 

Virginica 

Intercept -1.66 1.187 1.9644 0.161 

Sepal Length -1.87 0.66 8.0845 0.0045 

Sepal Width -2.85 0.866 10.8578 0.001 

Petal Length 4.226 0.732 33.31 0 

Petal Width 3.18 1.009 9.941 0.0016 

Individual test using the Wald test and p-value. In Table 5, it is known that all predictors had an effect on 
the Virginica category. Meanwhile, in the response of the Versicolor category, only sepal length had no 
significant effect. When Setosa is compared, it is known that the larger the petal length and width, the 

higher the probability of being included in Virginica. 

From the results obtained were the standard error value of the parameter with ridge method was 
smaller than that of the model before using the ridge constant. Rahmawati & Suratman [13] tested the 
performance of the ridge regression and the lasso approach on data with multicollinearity. The result of 
mean squared error (MSE) shows that the performance of ridge regression is better than lasso regression. 
Ridge regression will provide a better performance on data with a lot of predictors and relatively equal 
coefficients. Other research [14] is modelling poverty in South Sulawesi, where three of the seven 
predictor indicates multicollinearity. The results obtained were the MSE value of the parameter estimator 

smaller than the weighted logistic regression model before using the ridge value. This shows that the 
ridge method is more effective if there are multicollinearity problems. Fitri et al. [15] found the same 

thing, in their analysis of poverty levels in West Sumatra Province where the predictor variables 
contained multicollinearity, the ridge regression model was the best model. 

3.6. Classification Accuracy 

The classification results of the multinomial ridge logistic regression method based on the confusion 
matrix are shown in Table 6.  

Table 6. Confusion matrix performance 

Observed 
Predicted 

Setosa Versicolor Virginica 

Setosa 50 0 0 

Versicolor 0 48 2 

Virginica 0 1 49 
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Table 6 shows that the classification accuracy is 98%, which means that up to 147 species variable 

observations are correctly classified. Sensitivity values for Setosa (100%), Versicolor (98%), and 
Virginica (96%) were obtained. The specificity values for each category are Setosa (100%), Versicolor 
(98%), and Virginica (99%). 

4. CONCLUSION 

The estimation results for multinomial ridge logistic regression were obtained using maximum 
likelihood estimation (MLE) and iterative reweighted least squares (IRLS) approaches. The experiment 
was conducted on the Iris dataset with response variables consisting of 3 categories. The application to 
the Iris dataset was analyzed using multinomial logistic regression (MLR) and multinomial ridge logistic 
regression. (MRLR). Performance tests using R software obtained the best ridge constant, the Wu-Asar 
estimator  (𝑘𝑊𝐴) with a value of 0.305. The results of modeling and statistical tests of Iris data based on 

MRLR are better than MLR because the standard error of the estimated parameter becomes smaller. This 
causes the parameter test statistic that was previously insignificant to become significantly influential. 
The confusion matrix test shows an overall classification accuracy score of 98% for the Setosa (100%), 
Versicolor (96%), and Virginica (98%) classifications. 
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