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Abstract

Multinomial logistic regression is a method used to find relationships between nominal or multinomial response
variables (Y) with one or more predictor variables. Logistics regression is a classic method that is often used to
solve classification problems. Assumptions on logistics regression are models containing multicollinearity. Ridge
logistic estimator (RLE) is methods to solve multicollinearity cases in Logistic Regression. Wu & Asar proposed
a new ridge value that can also reduce bias in parameter estimation. Therefore, this research will discuss about
multinomial ridge logistic and selection the best of ridge constant values. The performance test of the ridge value
will be applied to the Iris Dataset in R software. The best criteria for improvement ridge constant value by looking
at the smallest standard error. The calculation results show that the Wu-Asar approach is the best ridge constant
and Wald individual test shows significant results. Based on the result, show that the Wu-Asar ridge constant
value on multinomial ridge logistic regression are very good performance in estimated smaller standar error.
The classification for dataset shows high results with 98% global accuracy.
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1. INTRODUCTION

The multiclass classification assumes that each sample is assigned to one and only one
label. Classification is the problem of identifying which of a set of categories (sub-populations) an
observation variable belongs to [1]. Logistics regression is a statistical method that is often used to solve
classification problems. Logistics regression method is a method that can be used to find the relationship
between dichotomous (scaled with two categories) or polychotomous (having a nominal or ordinal scale
with more than two categories) response variables with one or more predictor variables [2]. Logistic
Regression based on the type of data scale can be divided into three, binary logistic regression,
multinomial, and ordinal logistic regression. Nominal scale is a measurement that is categorized into
more than two categories. Parameter estimation in Logistic Regression uses maximum likelihood
estimation (MLE) and iterative reweighted least squares (IRLS) approaches. The MLE approach is used
because the distribution of data on the response variable is known.

Assumptions on logistics regression, apart from the characteristics of the response variables, are
models containing multicollinearity. The case of multicollinearity is a condition when the predictor
variable is not independent, or there is a high correlation between the predictor variables [3]. If
multicollinearity is not resolved, it can cause the standard error in parameter estimate to be wide, which
would the results of the estimation irrelevant/biased. Even though the coefficient of determination (R?)
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value is high, multicollinearity may cause the parameter significance test to be insignificant. In the
presence of multicollinearity, parameter estimations using MLE are known to have high variance. The
problem can be solved by the ridge regression approach. The purpose of the ridge regression method is
to add a positive constant called the ridge parameter to the parameter estimation process by modifying
the OLS method.

Ridge regression method is used to solve multicollinearity problems by providing a biased estimator
with a smaller variance than the least squares method. Determining the ridge value can use a Ridge Trace,
by selecting a ridge parameter with a small value based on the plot between the regression coefficients
and the constant ridge. Khalaf & Iguernane [4] stated that the selection of ridge value can be done
iteratively based on the HKB estimator (Hoerl, Kennard and Baldwin). This approach can be done by
calculating the estimated regression parameters obtained through the least squares method. The
selection of the bias constant (ridge) with this iteration is a method that is solved analytically.

Schaefer, Roi & Wolfe [5] apply ridge parameters to resolve multicollinear problems in logistic
regression. Ridge logistic estimator (RLE) is an approach that can solve multicollinearity cases. The SRW
(Schaefer, Roi, and Wolfe) constant formula from RLE is used to calculate the ridge value. The theory is
an analytical calculation based on least squares and eigen value. Even though the RLE approach can
resolve multicollinearity, this parameter estimator produces a greater bias. Therefore, Wu & Asar [6]
proposed a new method, namely the almost unbiased ridge logistic estimator (AURLE). The AURLE
method not only resolved multicollinearity, but also reduced bias in parameter estimation. The ridge
value is chosen by calculating the bias constant value using a new approach, the Wu-Asar estimator.

Nisa & Hastuti (2023) [7] simulated multicollinearity variables in multiple regression using ridge
regression and adjusted ridge regression methods. The result shows that the adjusted ridge regression
method and the ridge regression method produce a smaller MSE value when the sample size used is
larger. Sari (2018) [8] doing a research study about parameter estimation in logistic regression with
multicollinearity features. The method of parameter estimation was using maximum likelihood
estimation and ridge logistic estimator. The results show that the ridge logistic estimator is better than
the maximum likelihood estimator for parameter estimation. Putra [9] conducted research on HDI
modeling in East Java using ridge logistic regression method. The response variable is binary and the
selection of ridge parameters uses the principal component approach. Classification accuracy obtained
by ridge logistic regression was 97.37%. In this paper, we examine the performance of Wu-Asar constant
and its application to ridge logistic regression for modeling and classification.

2. METHODS

2.1. Multinomial Logistic Regression

The multinomial distribution known that a variable criterias has more than two categories with
nominal scale. There is a random variable known Y with g categories, the the probability relationship can
be written as P(Y =r) = P(y, = 1) = m, and r = 1,2, ..., J. Multinomial distribution function can be

written as follows (1).

Y 1-y1=y2—.—¥
Plyvye ) =m'm)? ) (1= —mp ==y 0 "

with E(Y,.) = m,. and Var(Y,.) = n,.(1 — ) and then Cov(Y,., Y;) = —m,m;.

Multinomial logistic regression is a method used to find relationships between nominal or
multinomial response variables (Y) with one or more predictor variables [2]. The response variable (Y)
consists of more than 2 categories are usually code by o, 1, or 2. The general equation form of logistic
regression model with p predictors is expressed in equation below [10].

(%) = exp([ﬁ’ﬁ + Byx; + f3xz + -+ Bpxp)
1+ exp(Byxy + Paxy + Paxs + -+ + Bpxp)
Equation (2) can be transformed using logit transformation.

()
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Based on (3), the logistic regression model is obtained as follows (4).
@ -
mo(x) =
° 1+ exp g, (x) + exp g, (x)
_ exp g (x)
my(x) =
1+ exp g1 (x) + exp g, (x)
exp g, (x)
T (x) =
1+ exp g, (x) + exp g, (x) (4)

Parameters estimation for multinomial logistic regression was performed using the maximum
likelihood estimation (MLE) method. Based on (1), we can form a likelihood function for the categorical

response J = 3.
n

LB) = H”uy””ztyz"(l — My — Tp) YTV (5)
i=1
Equation (5) will be differentially respect to § to determine the first and second derivatives. The
calculation of the estimation process will produce a non-closed form, therefore it will be approached by
numerical iterations with iterative reweighted least squares (IRLS).

2.2. Multicollinearity

Multicollinearity is a condition where there is a high correlation between predictor variables or the
predictor variables are not independent. One of the criteria that may be used to detect multicollinearity

is the variance inflation factor (VIF). The VIF value is formulated as follows [3].
1
VIF = — (6)
k
R2 is the coefficient of determination between predictor variables in the regression model, where
k =1,2,...,p. For VIF values greater than 10, the predictors are multicollinear. The estimations of the

parameters fall short of the actual value.

2.3. Ridge Regression

The ridge regression is the method used to resolve multicollinearity cases. The X"X matrix is almost
singular, and the regression parameter estimation results are unstable due to high correlation between
several predictor variables. Ridge regression method is designed to address these problems [11]. The
parameters are estimated using the least squares method by adding the ridge parameter (6) to the
diagonal elements of the X"X matrix. The ridge parameter is a small positive number between o and 1. If
the value is zero, the ridge regression estimation is equivalent to the least-squares linear regression [11].
Parameter estimate for regression ridge is shown in (7).

B = (X"X+6D7X"y @)

With £* is an estimator for ridge regression. The ridge regression method will increase the eigenvalue,
so it can reduce MSE.

2.4. Ridge Logistic Regression

Schaefer, Roi & Wolfe [5] introduced the ridge logistic estimator (RLE), by adding the ridge
parameter to the logistic regression estimation covariance variance matrix. The general form of
parameter estimation with RLE is as follows:

Bre =(X"WX+AT)" X"Wz (®)
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where k is a constant called the ridge parameter. The RLE method is used to deal with multicollinearity
problems by providing a biased estimator but has a smaller variance. Wu & Asar [6] introduced a new
method almost unbiased ridge logistic estimator (AURLE) to minimize bias variance. Ridge value is
determined by calculating the Wu-Asar estimator constant (kyy»).

p

kwa =

p [ at ©)
=1+ (1 + 4ah)t/?)

Where & = yf and ; is an element of . It is known that y and A are eigen vectors and eigen values
of the covariance matrix.

2.5. Parameter Significance Test

Parameter significance tests consist of overral fit tests/joint test and individual/partial tests. Overral
fits test was carried out using the likelihood ratio test or also called statistical G test, with the following
hypothesis is:

HO : ﬂ]l :ﬂJZ = e :ﬂ]p = 0,] = 1,2,...,]— 1

Hy: atleastonof B #0 ;1=1.2,..,p

Statistics test
G = —2(InL(@®) — InL(Q)) (10)
with L(w) : the value of the likelihood function for a model where all parameters are equal to zero.

Meanwhile, L(Q) : the value of the likelihood function for the complete model. The G test follows a chi-
square distribution with degrees of freedom (v). H, is rejected if G > y? (@) which means the overral

fits test has significant effect [2].
Individual testing was carried out to determine whether the predictor variables individually affect
the model independently. This individual test is performed using the Wald test with the following
hypotheses:
Hy: B =0
Hy: Bju#0 50l=12,..,pj=12.,]-1
p is number of amount predictor variable. Statistics Wald test as follows:
Vle = L,l\
SE (IBJI)

with ﬁjl is a parameter estimator and SE(B]-I) = V/(Ir(ﬁﬂ) . Hy rejected if |Wﬂ| > Za or can uses
2

(11)

Wﬁ > x? (a,1) that follows a chi-square distribution with degrees of freedom 1.

2.6. Classification Evaluation

Evaluation of classification accuracy aims to determine the percentage of error classification or the
accuracy percentage of the classification result performed by the classification method [12]. Classification

measurements are performed using a confusion matrix approach.
nqq + 7'l22+. .. +nkl

Accuracy = N X 100%
o TP
Sensitivity = TP+ FN
o TN
Specificity = FPTTN (12)

ny, : variables classified in categories-k,I. TP: true positive, TN: true negative, FP: false positive and FN:
false negative [1].
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2.6. Data

Iris data is a dataset in Software R package that is commonly used for classification. This dataset
consists of 3 types of Iris species, and each species consists of 50 samples. The response variable is Species
with three category (o: Setosa, 1: Versicolor, 2: Virginica) and four features that are measured as
predictor. The structure of the observation variables is explained in Table 1.

Table 1. Research variables

Variable

Y Species (0: Setosa, 1: Versicolor, 2: Virginica)
Xy Sepal length

X Sepal width

X Petal length

X, Petal width

2.6. Research procedure

The research procedure consists of several stages to ensure that the results of this search run
smoothly. The steps in this research are as follows:

1)  Parameter estimation for multinomial logistic regression uses MLE (5).

2) Find the first and second derivatives of the likelihood function. Numerical iteration based on IRLS
and Taylor series expansion.

3) Obtain the estimated parameter equation of multinomial logistic regression.

4) Obtain the estimated parameter form of the multinomial ridge logistic regression parameters with
the RLE according to (8).

5) Multicollinearity check on Iris data using VIF.

6) Modeling the Iris data with multinomial ridge logistic regression.

7)  Selecting the ridge parameter value: calculating the eigen vector and eigen values from XTWiX.
Determine the best ridge value from the ridge trace (k,), Schaefer, Roi & Wolfe formula (ksgy)
and new approach constants Wu-Asar (ky,4).

8) Parameter significance test, overall and individual test for Iris data.

9) Test the accuracy of classification with the confusion matrix (12).

3. RESULTS AND DISCUSSION

3.1. Parameter Estimation of Multinomial Logistic Regression

Parameter Estimation for multinomial logistic regression uses the MLE approach and IRLS. The
following distribution for response is multinomial distribution. First step, construct the likelihood
function of parameter f with category J=3.

n

LB = 1_[”1iy1i”2iy2i(1 TR 1) A

i=1

n
InL(B) = Z[)’u’ Iy +y, Inmy; + (1 =y — y20) In(1 — my; — 13,)]

=1
- (13)
L) = ) g1 () + yaig2 (60 — In(exp gy (1) + exp g, (x)]
i=1
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With g = [ﬁlT ﬁZT] andx = [1 xq; Xg; Xpi]T. Second step, find the first and second
derivatives of equation (13) to B. The first derivative as follows.
n
dinL(B)
BET T Z xi(yij — m;) = X"(Y — ) (14)
J i=1
Then the second derivative is performed to estimate the variance covariance.
0%InL(B) XTVX (5)
0BoB" b

Third step, get the estimate form 8 multinomial logistic regression based on numerical iteration. Taylor
series expansion is carried out.
dlnL(B; 0%InlL o
%AAZW[QB)AAB_BO (16)
J B=Bo B=Bo
Substitution equation (14) and (15) to (16)
XT(Y —m) =X"VX(B - B)

B = X"vX)"1XTvz (17)
The form parameter estimation for multinomial logistic regression can be written as.
B, = (X"VX) X"V, 19)
j=1,2, z; is a vector with length n x 1.
Yij — Tj

5 = Logitl ] + 2= —

3.2. Parameter Estimation of Multinomial Ridge Logistic Regression

After obtaining the estimation form of the multinomial logistic regression, an estimation model for
multinomial ridge logistic regression will be formed. The first step is to obtain estimation parameters
using the ridge logistic estimator (RLE). The general form of the RLE for f8 estimation by [5] is equation
(8).

By =(X"WX+A1)" X "Wz (19)

As we know, k is a constant called ridge parameter. The second step is to obtain the parameter estimation
equation of the multinomial ridge logistic regression. From (18) can be defined W;=V;=

T j(l — 1 j). The form of parameter estimation for multinomial ridge regression is as follows (20).
Buur =(X"W X +H) X'We, (20)
Varians f8
var(B,) = (X"diag(W;)X + k1)~ W;(X"diag(W;)X + k1)

Wu-Asar Constant

The third step is to determine the value of the ridge constant in the multinomial ridge logistic
regression model. In this paper, ridge values were determined using a new method, the Wu-Asar
estimator (kyy4). The (ky 4) constant value is given by the following equation (9). Then the ridge value
will be compared with other methods, ridge trace (k,+) and SRW constant (ksgy, ).
Ridge Trace

The ridge trace is a plot between the ridge f against k values, with k € {0,1}. Through the ridge
trace, the goal is to choose k with a small value, where at this k it is considered that the regression
coefficient is starting to stabilize [4].
SRW Constant

Another analytic method for selecting the ridge constant was introduced by [6], calculating the ksgy,
value using the SRW formula.

kspw = -
a max
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3.3. Modeling with Multinomial Logistic Regression

We use the response to have three categories, and Setosa is used as a comparison between the
Versicolor and Virginica categories. The results of the estimation and modeling of Iris data with
multinomial regression are explained as follows.

Table 2. Result of logistic regression

Respon I std. error Wald
X,  -5.9063 61.1412 0.0093

X, -6.2887  81.0242 0.006

Versicolor
X5 11.941 70.2095  0.0289
X, 0.3984 130.524 0
X, -8.3739 61.1632 0.0187
L. X, -12.924 81.1539 0.0254
Virginica

X;  21.3062 70.4283 0.0915
X, 18.5437 130.664 0.0201

Table 2 shows the results of parameter estimation and Wald test statistics. It is known that the value of
the standard error 8 is quite large, this causes the variance to widen, and the test statistic becomes
insignificant.

3.4 Multicollinearity Checking

The multicollinearity test is performed by examining the VIF values. Table 3 shows that at VIF > 5
there is evidence of multicollinearity in the variable sepal length (X;). Meanwhile, VIF values greater
than 10 indicate high multicollinearity in the petal length and petal width variables.

Table 3. VIF value

X1 Xz X3 X4
7.073 2.1 31.262 16.09

3.5 Modeling with Multinomial Ridge Logistic Regression

The initial step of modeling with ridge method is to estimate the parameters based on equation (20).
The selection of the ridge value will be done with ridge trace (k,;), SRW formula (ksgy) and new
constants Wu-Asar (ky,4). Ridge value calculation is done in R software and produces the following
output Table 4.

Table 4. Selection ridge value

. (kre) (ksrw) (kwa)
Respon  Predictor
Std. error Std. error Std. error
X, 1.22 1.11 0.59
. X, 1.51 1.37 0.73
Versicolor
X; 1.19 1.09 0.58
Xy 2.06 1.87 0.97
X, 1.35 1.23 0.66
X, 1.74 1.59 0.87
Virginica X, 1.47 1.34 0.73
X, 2.16 1.96 1.01
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Ridge values for each constant are k,; = 0.056, ksgy = 0.0698 and ky4 = 0.305. The lowest
standard error of 8 value is the best ridge constant value. From Table 4, we can see that the new approach
kw 4 has the best ridge constant with a ridge value of 0.305.

Here are the results of a hypothesis test on the significance parameter of the multinomial ridge
logistic regression with the Wu-Asar ridge constant. The result of overall fit test is a p-value 0.000 <
2(0.05) indicates that there is at least one predictor that has a simultaneous/significant influence on the
model. Individual tests were performed by the Wald test described in Table 5.

Table 5. Parameter estimation

Respon variable ¢ Std. Wald  p-value
Category error
Intercept 0.685 1.167 0.345 0.557
Sepal Length -0.163 0.591 0.077 0.782
Versicolor Sepal Width -1.749 0.731 5.73 0.017
Petal Length 2.064 0.581 12.60 0.0004
Petal Width -0.22 0.973 0.052 0.82
Intercept -1.66 1.187 1.9644 0.161
Sepal Length -1.87 0.66 8.0845 0.0045
Virginica Sepal Width -2.85 0.866  10.8578  0.001
Petal Length 4.226 0.732 33.31 0
Petal Width 3.18 1.009 9.941 0.0016

Individual test using the Wald test and p-value. In Table 5, it is known that all predictors had an effect on
the Virginica category. Meanwhile, in the response of the Versicolor category, only sepal length had no
significant effect. When Setosa is compared, it is known that the larger the petal length and width, the
higher the probability of being included in Virginica.

From the results obtained were the standard error value of the parameter with ridge method was
smaller than that of the model before using the ridge constant. Rahmawati & Suratman [13] tested the
performance of the ridge regression and the lasso approach on data with multicollinearity. The result of
mean squared error (MSE) shows that the performance of ridge regression is better than lasso regression.
Ridge regression will provide a better performance on data with a lot of predictors and relatively equal
coefficients. Other research [14] is modelling poverty in South Sulawesi, where three of the seven
predictor indicates multicollinearity. The results obtained were the MSE value of the parameter estimator
smaller than the weighted logistic regression model before using the ridge value. This shows that the
ridge method is more effective if there are multicollinearity problems. Fitri et al. [15] found the same
thing, in their analysis of poverty levels in West Sumatra Province where the predictor variables
contained multicollinearity, the ridge regression model was the best model.

3.6. Classification Accuracy

The classification results of the multinomial ridge logistic regression method based on the confusion
matrix are shown in Table 6.

Table 6. Confusion matrix performance

Predicted
Observed B ..
Setosa Versicolor Virginica
Setosa 50 o o
Versicolor 0 48 2
Virginica 0 1 49
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Table 6 shows that the classification accuracy is 98%, which means that up to 147 species variable
observations are correctly classified. Sensitivity values for Setosa (100%), Versicolor (98%), and
Virginica (96%) were obtained. The specificity values for each category are Setosa (100%), Versicolor
(98%), and Virginica (99%).

4. CONCLUSION

The estimation results for multinomial ridge logistic regression were obtained using maximum
likelihood estimation (MLE) and iterative reweighted least squares (IRLS) approaches. The experiment
was conducted on the Iris dataset with response variables consisting of 3 categories. The application to
the Iris dataset was analyzed using multinomial logistic regression (MLR) and multinomial ridge logistic
regression. (MRLR). Performance tests using R software obtained the best ridge constant, the Wu-Asar
estimator (ky,4) with a value of 0.305. The results of modeling and statistical tests of Iris data based on
MRLR are better than MLR because the standard error of the estimated parameter becomes smaller. This
causes the parameter test statistic that was previously insignificant to become significantly influential.
The confusion matrix test shows an overall classification accuracy score of 98% for the Setosa (100%),
Versicolor (96%), and Virginica (98%) classifications.
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