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Abstract. The West Sumatra Province, serving as the trading center on the island of Sumatra, and boasting 

various attractive tourist destinations, is not immune to incidents of high precipitation leading to hydro-

meteorological disasters such as floods and landslides. Therefore, the accurate prediction of monthly 

rainfall is crucial to minimize the impacts of high precipitation. This research aims to determine the best 

method for predicting monthly rainfall using data from 1992 to 2022, which can adequately represent its 

climatological conditions. The results indicate that the Extreme Gradient Boosting method outperforms the 

Seasonal Autoregressive Integrated Moving Average (SARIMA), Exponential Smoothing (ETS), and Long 

Short-Term Memory (LSTM) methods in West Sumatra Province, represented by three weather observation 

points from the BMKG (Climatology Station of West Sumatra, Maritime Meteorology Station of Teluk 

Bayur, and Minangkabau Meteorology Station). This method exhibits the lowest error values and the 

strongest correlation between predicted and actual data. This is evident from the Nash-Sutcliffe Efficiency 

(NSE) values, which are 0.188214535, 0.613823746, and 0.545734162 (unsatisfactory-satisfactory), as 

well as the obtained correlation values of 0.472103386, 0.795586268, and 0.743002591 (moderate-

strong). However, this method is unable to perfectly capture outlier values. These outliers arise as a result 

of unusual conditions, such as natural disasters or climate changes, and atmospheric phenomena like El 

Niño-Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD), leading to exceptionally high or low 

precipitation. 
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1. INTRODUCTION 

The West Sumatra Province, serving as the trading center on the island of Sumatra, and 

boasting various attractive tourist destinations, is not immune to incidents of high precipitation 

leading to hydro-meteorological disasters such as floods and landslides [1], [2]. Geographically 

situated along the western coast of the island of Sumatra and adjacent to the Bukit Barisan 

Mountains, West Sumatra Province experiences its peak rainfall during the months of September, 

October, and November [3]. The equatorial rainfall pattern also contributes to the average areas 

in West Sumatra Province experiencing two peaks in the rainy season, occurring in March and 

November [4]. On the other hand, the high variability in rainfall contributes to precipitation in 

Kota Padang, particularly being dominated by local rainfall influenced by the land-sea breeze [5]. 

High rainfall, as a fundamental aspect, is a leading cause of a series of hydrometeorological 

disasters in West Sumatra Province, rendering the region highly susceptible to natural disasters 

and the impacts of climate change. This is evident in the period from 2015 to 2022, where there 
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have been a total of 326 flood events, 383 instances of extreme weather, and 165 landslides in 

West Sumatra Province [6]. This underscores the urgency for more effective handling and 

adaptation measures in this region to reduce the risks and impacts of such disasters. Rainfall 

prediction becomes a critical element in the planning and management of natural resources as 

well as disaster mitigation. Given the dynamic and current conditions, West Sumatra requires an 

accurate and effective understanding and prediction of rainfall patterns. 

Weather prediction is a complex process that combines various scientific methods to 

forecast future atmospheric conditions. These methods range from traditional statistical models 

like ARIMA and SARIMA, which analyze data emphasizing historical patterns, to time series 

data analysis techniques and additive approaches like exponential smoothing to accommodate 

seasonal fluctuations. Advances in artificial intelligence have also led to the application of 

sophisticated methods such as artificial neural networks, LSTM, and machine learning algorithms 

like XGBoost, capable of efficiently processing large datasets. Accuracy in weather prediction 

has significant implications in various aspects, making it a crucial element in supporting human 

activities in daily life. 

The SARIMA method is an extension of the ARIMA model that takes into account the 

seasonal component in time series data. This method is effective for the analysis and prediction 

of data with clear seasonal patterns and is frequently employed in meteorology for rainfall 

forecasting [7]. Meanwhile, the Holt-Winters exponential smoothing method, with its additive 

approach, adjusts for both trend and seasonality in time series. This provides a flexible model for 

data with significant seasonal fluctuations [8], [9]. 

Long short-term memory (LSTM) is a type of artificial neural network designed to 

remember information over long periods, making it ideal for time series-based predictions. The 

advantage of this method lies in its ability to overcome the vanishing gradient problem that occurs 

in regular neural networks, making it highly effective in modeling long time sequences [10]. On 

the other hand, XGBoost is an implementation of the gradient boosting algorithm designed for 

speed and performance. This algorithm is highly renowned among data scientists for its high 

accuracy in various prediction and classification tasks [11]. 

Research on rainfall prediction models in West Sumatra Province has been extensively 

conducted, one of which is the SARIMA method for forecasting monthly rainfall in Tanah Datar 

Regency. The results showed consistency during the period from December 2018 to April 2019 

[12]. On the other hand, there is a study on monthly rainfall prediction in Padang City during the 

period 2001-2012 using artificial neural networks with backpropagation training function. The 

study found that with an increasing number of hidden layers and training data, the prediction 

results improved, achieving a pattern recognition success rate of 99% [13]. 

The technology supporting the development of machine learning applies more effective 

methods in predicting rainfall. This research delves deeper into the latest innovations in weather 

prediction, particularly the use of long short-term memory (LSTM) and extreme gradient boosting 

(XGBoost). These methods are expected to provide insights and better results compared to 

traditional approaches such as seasonal autoregressive integrated moving average (SARIMA) and 

Holt-Winters exponential smoothing of additive models. By comparing these four methods, this 

research aims to determine the best approach for predicting rainfall in West Sumatra Province. 

The outcomes of this study are anticipated to assist policymakers and practitioners in meteorology 

and disaster management to develop better adaptation and mitigation strategies in West Sumatra 

Province and other areas with similar. 
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2. MATERIALS AND METHODS 

The researched location is situated in West Sumatra Province, with its astronomical 

coordinates ranging from 00°54' North Latitude to 30°30' South Latitude, and from 980°36' to 

1010°53' East Longitude, as shown in Figure 1: 

 

Figure 1. Research location 

The research is conducted quantitatively using monthly rainfall data obtained from 

measurements at BMKG monitoring stations from 1992 to 2022. The data is sourced from the 

official BMKGSoft website (https://bmkgsoft.database.bmkg.go.id). The data format is CSV with 

rainfall variable units in the form of millimeters (mm). Missing values in the monthly rainfall data 

are addressed through the multiple linear regression method, with the equation as follows [14]: 

𝑦 = 𝑎 + 𝑏1𝑥1 + 𝑏2𝑥2 + ⋯ + 𝑏𝑛𝑥𝑛 (1) 

with a, b, and y representing the constant, regression coefficient, and dependent variable 

respectively. Additionally, 𝑏1, 𝑏2, … , 𝑏𝑛  and 𝑥, 𝑥2, … , 𝑥𝑛  denote the regression coefficients and 

independent variables. 

The research study focuses on determining the monthly rainfall prediction method between 

statistical and machine learning approaches. Data train is 80% of the data length, while data test 

is 20%. The prediction methods used in this research are as follows: 

1. Seasonal Autoregressive Integrated Moving Average (SARIMA) 

SARIMA is a forecasting method that is an extension of the ARIMA model, taking into 

account seasonal patterns in time series data. This method is easily applied to predict data 

with seasonal patterns [15]. The mathematical equation for the SARIMA method [16]: 

Ф𝑝𝐵𝑠Ф𝑝(𝐵)(1 − 𝐵)𝑑(1 − 𝐵𝑠)𝐷𝑍𝑡 = 𝛳𝑞(𝐵)𝛳𝑞(𝐵𝑠)𝑎𝑡 (2) 

Where: 

𝑝𝐵 : AR non seasonal 

Ф𝑝𝐵𝑠 : AR seasonal 

(1 − 𝐵)𝑑 : differencing non seasonal (used to make the time series stationary by removing 

non-seasonal trends) 

(1 − 𝐵𝑠)𝐷  : differencing seasonal (used to make the time series stationary by removing 

seasonal trends) 

https://bmkgsoft.database.bmkg.go.id/
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𝛳𝑞(𝐵)  : MA non seasonal 

𝛳𝑞(𝐵𝑠)  : MA seasonal 

Before entering the SARIMA equation, the data needs to be tested for stationary time series 

using the Augmented Dickey-Fuller (ADF) test. When the p-value results show a value 

<0.05, then the data can be said to be stationary [17]. Then determine the SARIMA model 

based on the maximum likelihood estimation (MLE) method with output in the form of 

autoregressive order 1 (AR1), moving average order 1 (MA1), moving average order 2 

(MA2), and seasonal autoregressive order 1 (SAR1) [18], [19]. The results of the MLE will 

be the basis for forming a SARIMA model to suit the characteristics of the data. 

2. Holt-Winters Exponential Smoothing of Additive Models 

Holt-Winters exponential smoothing is a combination of grey method and exponential 

smoothing to perform forecasting used in predicting future events based on past data with 

trend and seasonal patterns [20]. The equation for the Holt-Winters exponential smoothing 

additive model with trend and seasonality is as follows [21]: 

𝐹𝑡+𝑚 = 𝑆𝑡 + 𝑚𝑏𝑡 + 𝐼𝑡−𝐿+𝑚 (3) 

with 𝐹𝑡 representing the value to be predicted, 𝐹𝑡+𝑚 being the forecast result for – (𝑡 + 𝑚), 

𝑆𝑡 as exponential smoothing at time 𝑡, 𝑚 is the period to be predicted, 𝑏𝑡 is the smoothing 

element at time 𝑡, 𝐼𝑡 is the seasonal smoothing factor, and 𝐿 is the length of the season. 

3. Long Short-Term Memory (LSTM) 

LSTM is a method for modeling time series data resulting from the development of artificial 

neural networks [22]. The LSTM unit consists of several gates in the form of input, output 

and forget in each cell which function to regulate the flow of information so that the cell can 

remember values during changing time intervals [23]. This model has an architecture that 

can be visualized as follows [24], as shown in Figure 2: 

 
Figure 2.  The LSTM architecture 

 

The feedforward calculation for LSTM is as follows [10]: 

𝑓𝑡 = 𝜎𝑔(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓) 

𝑖𝑡 = 𝜎𝑔(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖) 

𝑜𝑡 = 𝜎𝑔(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜) 

𝑐𝑡 = 𝑓𝑡𝑐𝑡 + 𝑖𝑡𝜎𝑐(𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐) 

ℎ𝑡 = 𝑜𝑡 ∗ 𝜎ℎ(𝑐𝑡) 

(4) 
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where 𝑓𝑡: forget gate activation vector, 𝜎𝑔: sigmoid function, W;U: weight matrices to be 

learned, ℎ𝑡: output vector of the LSTM unit, b: bias parameter vector to be learned, 𝑖𝑡: input 

gate activation vector, 𝑜𝑡: output gate activation vector, 𝑐𝑡: cell state vector, 𝑥𝑡: input vector 

to the LSTM unit, 𝜎𝑐; 𝜎ℎ:hyperbolic tangent functions, ∗:Element-wise product (Hadamard 

product) [25]. 

4. Extreme Gradient Boosting (XGBoost) 

This model is an ensemble algorithm-based method that is effective in addressing large-scale 

machine learning cases by leveraging gradient tree boosting, which can prevent overfitting 

[26]. The objective function of this model is expressed as follows [27]: 

𝑂 =  ∑ [𝑃𝑗𝑊𝑗 +
1

2
(𝑄𝑗 + 𝜂)𝑊𝑗

2] + 𝛼𝐻

𝑇

𝑗=1

 (5) 

Where 

𝑝𝑖 : the first derivative  𝐼 : sample 

𝑞𝑖 : the second derivative 𝛼 𝛼  : leaf complexity 

𝑃𝑗 = ∑ 𝜖𝐼𝑗𝑝𝑖
⬚
𝑖    𝐻 : the number of leaves 

𝑄𝑗 = 𝜖𝐼𝑗𝑞𝑖    𝜂 : penalty parameter 

𝑗 : leaf node   𝑊𝑗
2 : output for each leaf node 

The calculation method used in validating the best prediction method is as follows  

1. Normalized Root Mean Squared Error (NRMSE) 

The calculation of NRMSE can be used to assess the accuracy of prediction data with the 

smaller value, better accuracy [28]. The mathematical equation [29]: 

𝑁𝑅𝑀𝑆𝐸 =
√1

𝑛
∑ (𝑃𝑠𝑖

− 𝑃𝑔𝑖
)𝑛

𝑖=1

1
𝑛

∑ 𝑃𝑔𝑖
𝑛
𝑖=1

 (6) 

where:  

n : number of days or months in the analysis 

𝑃𝑠 : predicted data (mm)  

𝑃𝑠 : observed rainfall data 

2. Nash-Sutcliffe Efficiency (NSE) 

NSE can indicate the level of accuracy in the relationship between observed data and the 

comparative data with the model. The comparative data is considered good when the NSE 

value approaches 1 [30], [31]. Mathematical equation [29]: 

𝑁𝑆𝐸 = 1 − [
∑ (𝑄𝑜𝑖

− 𝑄𝑠𝑖
)

2𝑛
𝑖=1

∑ (𝑄𝑜𝑖
− 𝑄𝑜)

2
𝑛
𝑖=1

] (7) 

where:  

𝑄𝑜 : Observed rainfall data  

𝑄𝑠 : Predicted rainfall data  

𝑄𝑜 : Mean observed rainfall data 

n : Number of days or months in the analysis 

The categories of Nash-Sutcliffe efficiency values, as shown in Table 1. 
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Table 1. The categories of Nash-Sutcliffe efficiency values [32] 

Value Category 

0.75<NSE≤1.00 Very Good 

0.65<NSE≤0.75 Good 

0.50<NSE≤0.65 Satisfactory 

NSE≤0.50 Unsatisfactory 

3. BIAS 

This method identifies the average response of simulation results when it is underestimated 

with a negative value and overestimated with a positive value [33]. Bias equation [29]: 

𝐵𝐼𝐴𝑆 =
∑ (𝑃𝑠𝑖

− 𝑃𝑔𝑖
)𝑛

𝑖=1

∑ 𝑃𝑔𝑖

𝑛
𝑖=1

𝑥100% (8) 

Where 

n  : the number of days or months in the analysis 

𝑃𝑠 : the predicted rainfall data (mm) 

𝑃𝑔 : the observed rainfall data 

4. Pearson Correlation 

Pearson correlation is performed when the data exhibits a normal distribution based on the 

normality test results. This correlation aims to demonstrate the relationship between observed 

rainfall variables and prediction outcomes. The calculation equation is as follows [34]: 

𝑟 =
𝑛 ∑ 𝑋𝑌 − (∑ 𝑋)(∑ 𝑌)

(√𝑛 ∑ 𝑋2 − (∑ 𝑋2)(𝑛 ∑ 𝑌2) − (∑ 𝑌2))
 (9) 

Where 𝑟 refers to the correlation coefficient with a range of values between -1 and 1. When 

the value of 𝑟  is -1, it indicates a perfect negative correlation, meaning the relationship 

between variables is inversely proportional. On the other hand, when 𝑟 is 1, it signifies a 

perfect positive correlation, indicating a directly proportional relationship between variables. 

𝑟 = 0 implies no correlation between variables, as shown in Table 2. 

 Table 2. Criteria for Pearson correlation coefficient [35] 

Value Category 

0-0.19 Very Weak 

0.20-0.39 Weak 

0.40-0.59 Moderate 

0.60-0.79 Strong 

0.81-1 Very Strong 

5. Mean Absolute Error (MAE) 

The smaller the MAE value, the more perfect the prediction data will be to the observation 

data [36]. The mathematical equation [37]: 

𝑀𝐴𝐸 =
∑ |𝑟̂𝑛 − 𝑟𝑛|𝑁

𝑛=1

𝑁
 (10) 

where 𝑟̂𝑛   denotes the ranking of predicted rainfall, 𝑟𝑛 represents the actual ranking in the 

testing dataset or observed rainfall, and N signifies the number of samples. The research 

methodology used in this study is outlined in Figure 3. 
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Figure 3. Flowchart 

 

3. RESULTS AND DISCUSSION 

3.1 West Sumatra Climatology Station 

 In predicting rainfall values at the West Sumatra Climatology Station, the XGBoost method 

stands out as the best among all the reviewed methods. Based on the analysis in Figure 4 and 

Table 3, XGBoost demonstrates a strong fit with observational data, accurately capturing rainfall 

fluctuations. In terms of performance, XGBoost has the lowest NRMSE value (0.217), indicating 

the smallest prediction error among the tested methods. Its positive NSE value (0.188) is one of 

the highest, indicating good predictive efficiency. Although there is still a tendency for 

overestimation (BIAS 5.322), it is much lower compared to other methods. The low MAE 

(113.239) and significant correlation (0.472) confirm the effectiveness of this method. 
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Figure 4. Graph of observed and predicted rainfall at West Sumatra Climatology Station 

 

Table 3. Model performance test 

Model NRMSE NSE BIAS MAE Correlation 

LSTM 0.249 -0.034 15.385 129.308 0.003 

Holt-Winters Exponential Smoothing 0.241 -0.005 19.100 131.581 0.169 

XGBoost 0.217 0.188 5.322 113.239 0.472 

SARIMA 0.254 -0,073 24.582 137.226 0.312 

 Holt-Winters exponential smoothing, although not as accurate as XGBoost, still 

demonstrates reasonably good performance. Its predictions follow the observational data better 

than LSTM but still smooth out the highest peaks. Its NRMSE (0.241) is slightly lower than 

LSTM, with an almost zero NSE (-0.005), indicating performance not significantly different from 

average. The BIAS (19.100) and MAE (131.581), slightly higher than LSTM, along with a better 

correlation (0.169), although still low, suggest a tendency for overestimation. 

 When examined using the LSTM method, the prediction results from this method follow 

the trend of observational data but with smaller variations. This indicates a lack of variation in 

the peaks and valleys of rainfall. LSTM has an NRMSE (0.249) indicating a moderate level of 

error, a negative NSE (-0.034) indicating its inability to capture data variability as well as the 

average model, a BIAS (15.385) and MAE (129.308) that are quite high, and a very low 

correlation (0.003) depicting a weak relationship with observational data. 

 The SARIMA method, according to the analysis, is recorded as the weakest. Its graph 

shows sharper and less consistent fluctuations, indicating difficulty in capturing extreme events 

or sudden variations. SARIMA has one of the highest NRMSE values (0.254), a negative NSE (-

0.073), a very large BIAS (24.582), and a high MAE (137.226), all indicating significant 

prediction errors. The low correlation (0.312) signifies that SARIMA predictions have the 

weakest relationship with observational data among the methods. 

3.2 Maritime Meteorological Station Teluk Bayur 

 Based on the analysis presented in Figure 5 and Table 4, the XGBoost method exhibits the 

best performance in predicting rainfall, especially at extreme peaks. The graph indicates the strong 

ability of XGBoost to adjust to rainfall fluctuations, with the lowest NRMSE (0.144), signifying 

the smallest prediction errors among all methods. The high NSE (0.613) suggests highly efficient 

predictive performance, a relatively low BIAS (21.003) indicates a tendency for less 

overestimation, the lowest MAE (90.137) indicates minimal absolute errors, and a very high 

correlation (0.795) signifies a very strong relationship with observational data. The SARIMA 

method, with the SARIMA(2,1,1)(1,1,2) [12] configuration, produces sharp variations in 

predictions but is less aligned with observational data compared to XGBoost. SARIMA has a 

relatively high NRMSE (0.218) and a positive NSE (0.121), indicating better efficiency than 
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average but not as strong as XGBoost. The highest BIAS (47.248) in this method indicates a 

strong tendency for overestimation, a high MAE (137.466), and better correlation than LSTM and 

Holt-Winters (0.416) but still much lower than XGBoost. 

 
Figure 5. Graph of observed and predicted rainfall at Maritime Meteorological Stasion Teluk 

Bayur 

 

Table 4. Model performance test 

Model NRMSE NSE BIAS MAE Correlation 

LSTM 0.223 0.074 43.272 142.843 0.302 

Holt-Winters Exponential Smoothing 0.223 0.018 38.881 139.150 0.286 

XGBoost 0.144 0.613 21.003 90.137 0.795 

SARIMA 0.218 0.121 47.248 137.466 0.416 

 Meanwhile, LSTM and Holt-Winters exponential smoothing show moderate performance. 

LSTM, with an NRMSE (0.223) reflecting moderate errors, a low NSE (0.074) indicating better 

but not significant predictive efficiency, a high BIAS (43.272) for overestimation, a large MAE 

(142.843), and moderate correlation (0.302), shows its ability to follow observational trends but 

with smaller variations. Holt-Winters, with a similar performance, has an NRMSE comparable to 

LSTM (0.223), an NSE close to zero (0.018) indicating minimal improvement over the average 

observation, a slightly lower BIAS (38.881) than LSTM, a slightly lower MAE (139.150), and 

slightly better correlation (0.286) with observational data. 

 Other research has also utilized the Markov Chain method to predict ten-day rainfall in 

eight Rainfall Observation Stations in Padang City. The results indicated that rainfall tends to be 

high at the Water Plan Semen Observation Station when in a steady state condition, while others 

experience medium rainfall when reaching a steady state condition. The probability of rainfall in 

Padang City tends to be moderate [38]. 

 

3.3 Minangkabau Meteorological Station 

From the analysis conducted in Figure 6 and Table 5, the XGBoost method demonstrates 

the most accurate performance in predicting rainfall. The graph illustrates XGBoost's strong 

ability to capture rainfall fluctuations, including extreme peaks and troughs. In the performance 

table, XGBoost has a very low NRMSE (0.152), indicating the smallest prediction errors among 

all methods. The very high NSE (0.545) indicates highly efficient predictive performance. The 

lowest BIAS (9.384) suggests the smallest tendency for overestimation, a very low MAE (87.526) 

indicates the smallest average absolute error, and a very high correlation (0.743) signifies a very 

close relationship with observational data. 
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Figure 6. Graph of observed and predicted rainfall at Minangkabau Meteorological Station 

Table 5. Method performance test 

Model NRMSE NSE BIAS MAE Correlation 

LSTM 0.229 0.011 28.203 142.310 0.165 

Holt-Winters Exponential Smoothing 0.241 -0.005 19.100 131.581 0.169 

XGBoost 0.152 0.545 9.384 87.526 0.743 

SARIMA 0.217 0.074 27.869 132.354 0.273 

SARIMA, with the configuration SARIMA(2,0,1)(1,0,1) [12], exhibits fluctuations in 

predictions that are less consistent with observational data and struggles to follow extreme peaks. 

SARIMA has an NRMSE (0.217) larger than XGBoost but smaller than LSTM and Holt-Winters. 

Its NSE (0.074) suggests that SARIMA performs better than LSTM in capturing predictive 

efficiency but not as well as XGBoost. A lower BIAS (27.869) compared to LSTM and a higher 

MAE (132.354) compared to XGBoost, along with a correlation (0.273) indicating a weaker 

relationship with observational data. 

The LSTM model, with an NRMSE of 0.229 indicating moderate errors, exhibits very 

limited predictive efficiency (NSE 0.011). It has a relatively high BIAS (28.203), large MAE 

(142.310), and a moderately weak correlation (0.165) with observational data. This indicates its 

moderate ability to capture patterns in observational data but with smaller variations. 

Meanwhile, the Holt-Winters exponential smoothing model shows slightly higher 

prediction errors compared to LSTM (NRMSE 0.241). NSE approaching zero (0.005) indicates 

minimal improvement in predictions over the observational average. It has a smaller BIAS 

(19.100) compared to LSTM, smaller MAE (131.581), and a slightly stronger correlation (0.169) 

with observational data, but still tends to smooth fluctuations. 

However, XGBoost method is unable to perfectly capture outlier values. These outliers 

arise as a result of unusual conditions, such as natural disasters or climate changes [39] and 

atmospheric phenomena like El Niño-Southern Oscillation (ENSO) [40] and Indian Ocean Dipole 

(IOD) [41] leading to exceptionally high or low precipitation. 

 

4. CONCLUSION 

Based on the conducted research on statistical and machine learning prediction models, 

including SARIMA, Holt-Winters exponential smoothing, LSTM, and extreme gradient boosting 

on monthly rainfall data in West Sumatra Province from 1992 to 2022, representing its 

climatological conditions. The results indicate that the extreme gradient boosting prediction 
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model has the lowest error values, with the strongest data fitting between actual and predicted 

values for all tested observation points. This is evident from the correlation values for the three 

observation points, which are 0.472, 0.795, and 0.743, falling into the moderate-strong category. 

On the other hand, the NSE values obtained are 0.188, 0.613, and 0.545, categorized as 

unsatisfactory-satisfactory. 

The extreme gradient boosting model's prediction data fails to capture extreme rainfall 

patterns or outliers. Outliers can occur due to various factors such as unusual conditions like 

natural disasters or climate change, as well as atmospheric phenomena like El Niño-Southern 

Oscillation (ENSO) and Indian Ocean Dipole (IOD), resulting in exceptionally high or low 

rainfall. 
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