Electrical Resistivity and Magnetoresistance Properties of Cation A-site substitution in La0.8-xAgxCa0.2MnO3 (x = 0.1 and 0.15)

Dicky Rezky Munazat, Budhy Kurniawan, Rina Kamila, Maykel Manawan, Agung Imaduddin

Abstract

The polycrystalline sample of La0.8-xAgxCa0.2MnO3 (x = 0.1 and 0.15) has been successfully synthesized using a sol-gel method in our previous work. Here, we have investigated the electrical resistivity and magnetoresistance of both samples. All samples exhibited metallic behavior, as evidenced by the resistivity data measured in the temperature range from 9 to 285 K. As silver concentration increases, the resistivity decreases throughout the whole explored temperature range. Increasing silver ion concentration improves double exchange interaction (DE) between Mn3+ and Mn4+ which is responsible for gradually decreasing resistivity. The electrical transport is quite well described by a theory based on grain boundary factor, electron-electron interaction, and Kondo-like spin-dependent scattering mechanisms. Both samples show low-field magnetoresistance (LFMR) at low temperatures. The maximum magnetoresistance values for both samples were observed at 15 K, with values of -23.16% and -25.17% for x = 0.10 and 0.15, respectively.

Keywords

Double exchange; Electrical transport; Magnetoresistance; Perovskite Manganite; Silver substitution

Full Text:

PDF

References

Dhahri, A., Jemmali, M., Dhahri, E., & Hlil, E. K. (2015). Electrical transport and giant magnetoresistance in La0.75Sr0.25Mn1-xCrxO3 (0.15, 0.20 and 0.25) manganite oxide. Dalton Transactions, 44(12), 5620–5627. https://doi.org/10.1039/c4dt03662j

Dhahri, A., Jemmali, M., Taibi, K., Dhahri, E., & Hlil, E. K. (2015). Structural, magnetic and magnetocaloric properties of La0.7Ca0.2Sr0.1Mn1-xCrxO3compounds with x = 0, 0.05 and 0.1. Journal of Alloys and Compounds, 618, 488–496. https://doi.org/10.1016/j.jallcom.2014.08.117

Dhahri, J., Dhahri, A., Oumezzine, M., & Dhahri, E. (2008). Journal of Magnetism and Magnetic Materials Effect of Sn-doping on the structural , magnetic and magnetocaloric properties of La 0 . 67 Ba 0 . 33 Mn 1 À x Sn x O 3 compounds. 320, 2613–2617. https://doi.org/10.1016/j.jmmm.2008.05.030

Gómez, A., Chavarriaga, E., Izquierdo, J. L., Prado-Gonjal, J., Mompean, F., Rojas, N., & Morán, O. (2019). Assessment of the relationship between magnetotransport and magnetocaloric properties in nano-sized La0.7Ca0.3Mn1−xNixO3 manganites. Journal of Magnetism and Magnetic Materials, 469, 558–569. https://doi.org/10.1016/j.jmmm.2018.09.036

Kamila, R., & Kurniawan, B. (2019a). Influence of silver (Ag) doping on a crystal structure of La0.7Ag0.1Ca0.2MnO3 and La0.65Ag0.15Ca0.2MnO3 manganites synthesized by sol-gel method. Journal of Physics: Conference Series, 1170(1), 1–5. https://doi.org/10.1088/1742-6596/1170/1/012065

Kamila, R., & Kurniawan, B. (2019b). The effect of Ag-doping (x = 0 and 0.05) on structural and morphological La0.8-xAgxCa0.2MnO3 material synthesized by sol-gel method. IOP Conference Series: Materials Science and Engineering, 496(1), 0–6. https://doi.org/10.1088/1757-899X/496/1/012019

Kondo, J. (1964). Resistance Minimum in Dilute Magnetic Alloys. Progress of Theoretical Physics, 32(1), 37–49. https://doi.org/10.1143/ptp.32.37

Li, H., Chu, K., Pu, X., Sun, T., Dong, G., Liu, Y., Zhang, S., & Liu, X. (2019). Electrical transport properties of La0.845Sr0.155MnO3:Kx (0 ≤ x ≤ 0.2) composites. Journal of Alloys and Compounds, 810, 151908. https://doi.org/10.1016/j.jallcom.2019.151908

Li, H., Chu, K., Pu, X., Zhang, S., Dong, G., Liu, Y., & Liu, X. (2020). A-site mixed-valence co-doping to optimize room-temperature TCR of polycrystalline La0.8K0.04Ca0.16-xSrxMnO3 ceramics. Ceramics International, 46(13), 20640–20651. https://doi.org/10.1016/j.ceramint.2020.04.109

Li, Y., Zhang, H., Liu, X., Chen, Q., & Chen, Q. (2019). Electrical and magnetic properties of La1−xSrxMnO3 (0.1 ≤ x≤ 0.25) ceramics prepared by sol–gel technique. Ceramics International, 45(13), 16323–16330. https://doi.org/10.1016/j.ceramint.2019.05.159

Liu, Y., Sun, T., Dong, G., Zhang, S., & Liu, X. (2019). Electrical conduction in La0.85Sr0.15MnO3:Agx (0 ≤ x ≤ 0.5) ceramics with large room-temperature TCR. Ceramics International, 45(18), 24070–24077. https://doi.org/10.1016/j.ceramint.2019.08.113

Munazat, D. R., Kurniawan, B., Imaddudin, A., Kamila, R., & Razaq, D. S. (2019). Effect of Silver Substitution on Electrical Transport and Magnetoresistance of La0.8Ca0.2MnO3. IOP Conference Series: Materials Science and Engineering, 546(4), 0–6. https://doi.org/10.1088/1757-899X/546/4/042025

Ulyanov, A. N., Vasiliev, A. V., Eremina, E. A., Shlyakhtin, O. A., Savilov, S. V., & Goodilin, E. A. (2018). Phenomenological description of doped manganites. Electron bandwidth, crystal local structure and Curie temperature. Ceramics International, 44(18), 22297–22300. https://doi.org/10.1016/j.ceramint.2018.08.354

Zahrin, A., Ibrahim, N., & Mohamed, Z. (2023). Materials Science & Engineering B Effects of Li substitution on structural , magnetic properties and monovalent-doped manganite. Materials Science & Engineering B, 295(June 2022), 116613. https://doi.org/10.1016/j.mseb.2023.116613

Zhang, S., Dong, G., Liu, Y., Li, H., Chu, K., Pu, X., Yu, X., & Liu, X. (2020). Effect of Na-doping on structural, electrical, and magnetoresistive properties of La0.7(Ag0.3-xNax)0.3MnO3 polycrystalline ceramics. Ceramics International, 46(1), 584–591. https://doi.org/10.1016/j.ceramint.2019.09.006

Refbacks

  • There are currently no refbacks.