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ABSTRACT  

The 𝑓(𝑅) gravity theory is a modification of general relativity that yields a Yukawa gravitational 

potential in the weak-field limit. This potential modifies the Newtonian potential by adding an 

exponential term that depends on the parameters 𝛿 and Λ. In this study, we test the consistency of 

the Yukawa potential with observational data on the perihelion precession of planets in the solar 

system. Using observational data from the planets, we estimate the parameters 𝛿 and Λ that are 

consistent with observations. Additionally, we analyze the constraints imposed by the Parametrized 

Post-Newtonian (PPN) formalism on these parameters. The results indicate that the parameter Λ can 

be taken within the range [20; 30]AU, with a relatively small value of 𝛿. Observational constraints 

from the Cassini and MESSENGER missions also provide tight bounds on the PPN parameters 𝛾 

and 𝛽. These findings suggest that the Yukawa potential in 𝑓(𝑅) gravity can explain gravitational 

phenomena on the scale of the solar system without violating existing observational constraints. 

Keywords: Yukawa potential; 𝑓(𝑅) gravity; Solar system constraints.  

 

INTRODUCTION 

The dynamics of celestial bodies within our planetary system offer a unique testing ground for 

probing gravitational interactions. While Einstein's theory of general relativity (GR) remains 

the cornerstone of modern gravitational physics [1], its predictions have been scrutinized 

through phenomena such as the anomalous perihelion advance of Mercury and light deflection 

measurements. Recent advances in astronomical instrumentation have enabled precision tests 

of GR in extreme environments, including observations of stellar orbits around the Milky 

Way's central supermassive black hole. Notably, the pericenter drift and spectral shifts of the 

S2 star, monitored via the Very Large Telescope [2,3], align with GR's predictions within 

observational uncertainties.  

Despite GR's empirical successes, theoretical challenges persist. The unresolved nature of 

spacetime singularities [4]  and the empirical necessity of dark sector components (dark matter, 

DM; dark energy, DE) in cosmological frameworks [5–7] motivate explorations of alternative 

gravity theories. While DM is invoked to explain galactic rotation curves and large-scale 

structure formation [8–10], and DE accounts for cosmic acceleration [11,12], experimental searches 

have yet to confirm the existence of DM particles [13,14]. Similarly, the cosmological constant 

paradigm faces a fundamental theoretical challenge: the predicted vacuum energy density from 

quantum field theory exceeds observational measurements by 120 orders of magnitude [7,15,16]. 

These tensions suggest that gravitational physics might require revision at cosmological scales 
[17,18].  

https://jurnal.uns.ac.id/ijap/article/view/9947
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One of the most studied extensions of GR is 𝑓(𝑅) gravity, which replaces the Ricci scalar 𝑅 in 

the gravitational Lagrangian with a general function 𝑓(𝑅). In cosmology, 𝑓(𝑅) gravity 

modifies the Friedmann-Lemaitre equations, enabling self-accelerated expansion without the 

need for DE [8,19,20] and providing an explanation for inflation without introducing additional 

scalar fields [4]. It also reproduces flat rotation curves in galaxies without invoking DM [9]. 𝑓(𝑅) 

gravity introduces a scalar degree of freedom, the scalaron 𝜓 = 𝑑𝑓(𝑅)/𝑑𝑅, which modifies 

the Schwarzschild metric [21]. The gravitational potential in 𝑓(𝑅) gravity includes a Yukawa 

correction term representing a fifth force [21,22].  

The precession of the perihelion, which refers to the gradual shift of the closest point of a planet 

in its orbit around the Sun, is one of the key predictions of general relativity. However, in the 

context of 𝑓(𝑅) gravity, this precession can be modified due to the presence of a Yukawa 

potential. By comparing theoretical predictions with observational data on the perihelion 

precession of planets in the solar system, we can estimate the Yukawa potential parameters 𝛿 

and Λ that are consistent with observations. On the other hand, the formalism known as the 

Parametrized Post-Newtonian (PPN) formalism provides a framework for testing deviations of 

alternative gravity theories from Newtonian gravity in the weak-field limit. PPN parameters 

such as 𝛾 and 𝛽 can be calculated in the context of 𝑓(𝑅) gravity and compared with high-

precision observational results, such as radio signal time delay measurements from the Cassini 

mission and observations of Mercury's perihelion precession from the MESSENGER mission. 

In this study, we investigate the Yukawa potential generated by 𝑓(𝑅) gravity and determine 

the Yukawa potential parameters by considering two constraints: perihelion precession and the 

PPN formalism. It is expected that a simpler mechanism can be obtained for determining the 

Yukawa potential parameters of 𝑓(𝑅) gravity, which will ultimately be useful as a local-scale 

viability test for a given 𝑓(𝑅) gravity model. 

 

METHOD 

A. Yukawa-like Nonlinear Correction to Gravitational Potential 

Yukawa-like potentials represent a class of modified gravitational frameworks that extend 

beyond the classical Newtonian paradigm by introducing an exponential decay term. These 

potentials are characterized by deviations from the inverse-square law, which is a cornerstone 

of Newtonian gravity. Such modifications are particularly relevant in scenarios where 

traditional gravitational theories fail to account for observed phenomena, such as in the vicinity 

of compact objects or on cosmological scales. The inclusion of Yukawa-like terms provides a 

mechanism to address these discrepancies, offering a more nuanced description of gravitational 

interactions. 

Theoretical investigations into Yukawa-like potential have explored their implications across 

a wide range of scales. Shortrange modifications, typically analyzed in the context of high-

energy physics or local gravitational systems, have been discussed in works such as [23]. These 

studies often focus on sub-millimeter scales, where deviations from Newtonian gravity could 

signal new physics. On the other hand, long-range modifications have been applied to 

astrophysical systems, including galaxy clusters [24,25], the rotation curves of spiral galaxies [26], 

and binary pulsar systems [27,28]. These applications aim to explain gravitational anomalies that 

cannot be fully accounted for by general relativity alone. Additionally, constraints on long-

range Yukawa corrections have been explored in works such as [29–35], which examine both 

theoretical predictions and observational limits. 
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In the context of modified gravity theories, Yukawa-like corrections can be derived from an 

action principle in the Newtonian limit. The action is given by: 

𝒮 = ∫  𝑑4𝑥√−𝑔[𝑓(𝑅) + 𝒳ℒ𝑚], 𝒳 =
16𝜋𝐺

𝑐4
(1) 

where 𝑓(𝑅) is a function of the Ricci scalar 𝑅, enabling deviations from standard general 

relativity. The parameter 𝒳, which incorporates the gravitational constant 𝐺 and the speed of 

light 𝑐, determines the coupling strength between matter and gravity in this modified 

framework. 

The field equations derived from this action are fourth-order differential equations, which are 

more complex than the second order Einstein field equations. These modified field equations 

take the form: 

𝑓′(𝑅)𝑅𝜇𝜈 −
1

2
𝑓(𝑅)𝑔𝜇𝜈 − 𝑓′(𝑅);𝜇𝜈 + 𝑔𝜇𝜈 ◻ 𝑓′(𝑅) =

𝒳

2
𝑇𝜇𝜈 (2) 

where 𝑓′(𝑅) denotes the derivative of 𝑓(𝑅), and 𝑇𝜇𝜈 is the stress-energy tensor. These 

equations govern the dynamics of the gravitational field, incorporating non-linear contributions 

from the Ricci scalar 𝑅. 

To analyze the behavior of these equations in weak-field regimes, the trace of the field 

equations is often considered: 

3 ◻ 𝑓′(𝑅) + 𝑓′(𝑅)𝑅 − 2𝑓(𝑅) =
𝒳

2
𝑇 (3) 

This trace equation provides insights into the scalar degree of freedom introduced by the 

modification. The function 𝑓(𝑅) can be expanded around 𝑅 = 0 (corresponding to flat 

Minkowski spacetime) using a Taylor series: 

𝑓(𝑅) = ∑  

∞

𝑛=0

 
𝑓(𝑛)(0)

𝑛!
𝑅𝑛 = 𝑓0 + 𝑓1𝑅 +

𝑓2

2
𝑅2 + ⋯ (4) 

This expansion is particularly useful for studying weak-field gravitational phenomena, as it 

allows for a systematic approximation of the modified potential. 

Under the assumption of spherical symmetry, the metric can be expressed in the form: 

𝑑𝑠2 = [1 +
2Φ(𝑟)

𝑐2
] 𝑐2𝑑𝑡2 − [1 −

2Ψ(𝑟)

𝑐2
] 𝑑𝑟2 − 𝑟2𝑑Ω2 (5) 

where Φ(𝑟) and Ψ(𝑟) represent the modified gravitational potentials. These potentials are 

given by: 

Φ(𝑟) = −
𝐺𝑀

(1 + 𝛿)𝑟
(1 + 𝛿𝑒−𝑟/Λ), Ψ(𝑟) =

𝐺𝑀

(1 + 𝛿)𝑟
[(1 +

𝑟

Λ
) 𝛿𝑒−𝑟/Λ − 1] . (6) 

Here, Λ defines the characteristic length scale of the  interaction, while 𝛿 quantifies the strength 

of the modification. These parameters play a crucial role in determining how the gravitational 

potential deviates from the Newtonian form at different distances. 
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The choice of the metric ansatz in Eq. (5) is motivated by the physical conditions relevant to 

solar system tests of gravity. We assume a static, spherically symmetric spacetime, which is a 

well-justified approximation for the gravitational field of an isolated, non-rotating massive 

body like the Sun. Furthermore, we work in the weak-field and low-velocity limit, where 

gravitational potentials are small (|Ψ(𝑟)|, |Φ(𝑟)| ≪ c2 ) and time derivatives are negligible. 

This allows us to treat the metric as a linear perturbation around the Minkowski spacetime, a 

standard approach in the Parametrized Post-Newtonian (PPN) formalism. In this regime, 

Φ(𝑟) and Ψ(𝑟) represent the dominant gravitational potentials that govern planetary orbits and 

light propagation. In general relativity, spherical symmetry and the vacuum field equations 

imply Φ(𝑟) = Ψ(𝑟), leading to the Schwarzschild solution. However, in 𝑓(𝑅) gravity, the 

additional scalar degree of freedom modifies the structure of the field equations, resulting in 

Φ(𝑟) ≠ Ψ(𝑟). This deviation is a key signature of the theory and gives rise correction term in 

the Newtonian potential, as shown in Eq. (6). The ansatz (5) thus provides a general framework 

to capture such deviations while remaining consistent with observational constraints in the 

solar system.  

The correction term to the Newtonian gravitational potential has significant implications for 

the dynamics of astrophysical systems. For instance, it can affect the orbital precession of test 

particles, thereby offering a potential observational signature of modified gravity. This type of 

potential resembles the Yukawa interaction term and is thus commonly referred to as the 

Yukawa-like potential, or simply the Yukawa gravitational potential. In the weak-field 

approximation, the modified potential Φ(𝑟) is given by [36–38]: 

Φ(𝑟) = Φ𝑌(𝑟) = −
𝐺𝑀

(1 + 𝛿)𝑟
(1 + 𝛿𝑒−

𝑟
Λ) (7) 

Here, Λ is related to the parameters of the 𝑓(𝑅) function through Λ2 = −
𝑓1

𝑓2
, where 𝑓1 and 𝑓2 

are coefficients in the Taylor expansion of 𝑓(𝑅). The parameter 𝛿, defined as 𝛿 = 𝑓1 − 1, 

determines the magnitude of the Yukawa correction, which becomes significant in regions 

where 𝑟 ≪ Λ. 

Recent studies have also explored the implications of Yukawa-like potentials in the context of 

dark matter and dark energy. For example, the exponential term in the potential can mimic the 

effects of dark matter on galactic rotation curves, providing an alternative explanation for the 

observed dynamics without invoking exotic particles [18,37]. Additionally, Yukawa-like 

modifications have been proposed as a possible mechanism for explaining the accelerated 

expansion of the universe, offering a geometric alternative to dark energy [29,31]. Therefore, 

Yukawa-like potentials provide a versatile framework for exploring modifications to gravity, 

with applications ranging from local gravitational systems to cosmological scales. By 

incorporating exponential corrections to the Newtonian potential, these models offer a rich 

phenomenology that can be tested against observational data. Future studies will continue to 

refine the constraints on the parameters Λ and 𝛿, shedding light on the nature of gravity and its 

deviations from classical and relativistic predictions. 

 

B. Orbital Precession and Perturbations to Newtonian Gravity 

Orbital precession-the gradual rotation of an orbit's major axis-serves as a sensitive probe of 

gravitational physics. This phenomenon arises from perturbations to the Newtonian potential, 

which may originate from relativistic effects, extended gravitational theories, or non-inverse-

square interactions. In Yukawa-like modified gravity, deviations from the Newtonian potential 
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introduce additional precession components that can be quantified through perturbative 

methods. 

The angular precession Δ𝜑 per orbital period due to a perturbing potential 𝑉(𝑟) is derived from 

the integral expressions [39,40]: 

Δ𝜑rad =
−2𝐿

𝐺𝑀𝑒2
∫  

1

−1

 
𝑧𝑑𝑧

√1 − 𝑧2

𝑑𝑉(𝑧)

𝑑𝑧
=

2

𝐺𝑀𝑒
∫  

𝜋

0

 cos 𝜑𝑟2
𝑑𝑉(𝑟)

𝑑𝑟
𝑑𝜑 (8) 

where 𝑉(𝑧) and 𝑉(𝑟) denote the perturbing potential in axial and radial coordinates, 

respectively. The radial coordinate 𝑟 relates to 𝑧 via 𝑟 = 𝐿/(1 + 𝑒𝑧), with 𝐿 = 𝑎(1 − 𝑒2) 

representing the semi-latus rectum, 𝑎 the semi-major axis, and 𝑒 the orbital eccentricity. 

In General Relativity (GR), the Schwarzschild precession is a hallmark prediction: 

Δ𝜑GR
rad ≈

6𝜋𝐺𝑀

𝑐2𝑎(1 − 𝑒2)
(9) 

This result arises purely from spacetime curvature. In contrast, Yukawa gravity modifies the 

Newtonian potential as Φ𝑌(𝑟) = −
𝐺𝑀

(1+𝛿)𝑟
(1 + 𝛿𝑒−𝑟/Λ) (see Eq. 7), introducing a perturbing 

potential: 

𝑉𝑌(𝑟) = Φ𝑌(𝑟) +
𝐺𝑀

𝑟
=

𝛿

1 + 𝛿

𝐺𝑀

𝑟
[1 − 𝑒−𝑟/Λ] (10) 

For 𝑟 ≪ Λ, this potential expands as: 

𝑉𝑌(𝑟) ≈ −
𝛿𝐺𝑀𝑟

2(1 + 𝛿)Λ2
[1 −

𝑟

3Λ
+

𝑟2

12Λ2
− ⋯ ] (11) 

Substituting this into Eq. 8 yields the Yukawa-induced precession: 

Δ𝜑𝑌
rad ≈

𝜋𝛿√1 − 𝑒2

1 + 𝛿
(

𝑎2

Λ2
−

𝑎3

Λ3
+

4 + 𝑒2

8

𝑎4

Λ4
− ⋯ ) (12) 

The leading term scales as 𝑎2/Λ2, highlighting the sensitivity of precession to the interplay 

between orbital scale ( 𝑎 ) and Yukawa interaction range ( Λ ). Table I summarizes observed 

perihelion precession rates for solar system planets. GR predictions align closely with 

observations, but residuals provide bounds on Yukawa parameters 𝛿 and Λ. 

The Parametrized Post-Newtonian (PPN) framework quantifies deviations from GR through 

Eddington parameters 𝛾 and 𝛽. In isotropic coordinates, the metric expands as [1]: 

𝑑𝑠2 ≃ [1 − 𝛼
𝑟𝑔

𝑟̃
+

𝛽

2
(

𝑟𝑔

𝑟̃
)

2

+ ⋯ ] 𝑑𝑡2 − (1 + 𝛾
𝑟𝑔

𝑟̃
+ ⋯ ) (𝑑𝑟̃2 + 𝑟̃2𝑑Ω2) (13) 

where 𝑟𝑔 = 2𝐺𝑀/𝑐2. In GR, 𝛾 = 𝛽 = 1; deviations signal new physics. For 𝑓(𝑅) gravity, the 

PPN parameters are [42]: 

𝛾 − 1 = −
𝑓′′(𝑅)2

𝑓′(𝑅) + 2𝑓′′(𝑅)2
, 𝛽 − 1 =

1

4
(

𝑓′(𝑅)𝑓′′(𝑅)

2𝑓′(𝑅) + 3𝑓′′(𝑅)2
)

𝑑𝛾

𝑑𝑅
(14) 
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High-precision tests constrain these parameters: Cassini tracking gives 𝛾 − 1 = (2.1 ±
2.3) × 10−5 [43], while Mercury's precession yields 𝛽 − 1 = (−1.6 ± 1.8) × 10−5 [44]. 

For 𝑓(𝑅) gravity expanded as 𝑓(𝑅) = 𝑓0 + 𝑓1𝑅 +
𝑓2

2
𝑅2 + ⋯, the Yukawa parameters 𝛿 and Λ 

map to PPN coefficients. Using 𝑓′(𝑅) ≈ (𝛿 + 1) −
(𝛿+1)

Λ2 𝑅 and 𝑓′′(𝑅) ≈ −
(𝛿+1)

Λ2 , we derive: 

𝛾 ≈ 1 −
𝛿 + 1

Λ4 + 2(𝛿 + 1)
(15)

𝛽 − 1 ≈
1

4

(𝛿 + 1)2

Λ6(2Λ2 − 3(𝛿 + 1)) (1 +
2(𝛿 + 1)

Λ4 )
2 (16)

 

These expressions enable direct tests of Yukawa gravity using solar system data, constraining 

𝛿 and Λ to levels compatible with GR. Yukawa-like modifications to gravity introduce 

measurable precession effects that depend on the interaction range Λ and coupling strength 𝛿. 

Current solar system observations tightly constrain these parameters, favoring GR but leaving 

room for small deviations detectable in future high-precision experiments. The PPN formalism 

bridges theoretical predictions with empirical tests, providing a robust framework for probing 

modified gravity across scales. 

Table 1: Observed values for various planets, including the semi-major axis ( 𝑎 ), orbital period ( 𝑃 ), inclination 

angle ( 𝑖 ), eccentricity (𝑒), observed orbital precession ( 𝜔̇𝑜𝑏𝑠 ), and the orbital precession predicted by 

General Relativity ( 𝜔̇𝐺𝑅 ). Adapted from [41]. 

Planet 
𝑎

(AU) 
𝑃

(yrs)
 

𝑖
 (degrees) 

 𝜖 
Precession (1)/100yrs) 

𝜔̇obs  𝜔̇𝐺𝑅 

Mercury 0.39 0.24 7.0 0.206 43.1000 ± 0.5000 43.5 

Venus 0.72 0.62 3.4 0.007 8.0000 ± 5.0000 8.62 

Earth 1.00 1.00 0.0 0.017 5.0000 ± 1.0000 3.87 

Mars 1.52 1.88 1.9 0.093 1.3624 ± 0.0005 1.36 

Jupiter 5.20 11.86 1.3 0.048 0.0700 ± 0.0040 0.0628 

Saturn 9.54 29.46 2.5 0.056 0.0140 ± 0.0020 0.0138 

 

RESULTS AND DISCUSSION 

Eq.(14) is a crucial expression for describing the perihelion precession of planets under the 

influence of the Yukawa potential. This equation demonstrates that the perihelion precession 

is determined by the orbital parameters of the planet, namely the semi-major axis 𝑎 and 

eccentricity 𝑒, as well as the Yukawa potential parameters 𝛿 and Λ.  Since these orbital 

parameters, including the perihelion precession, are observable physical quantities, they can be 

directly compared with observational data, such as those presented in Table I. Using Eq. 14 

and the orbital data from the table, we obtain plots of the parameter 𝛿 as a function of Λ for 

each planet, as shown in Figures 1, 2, and 3. In these figures, the curves for 𝛿min and 𝛿max 

correspond to the minimum and maximum values of the observed perihelion precession 𝜔̇obs , 

as listed in Table 1. Additionally, reference values of 𝛿 = 1 and 𝛿 = 0.1 are plotted for 

comparison, which will be discussed further in the following sections. 
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Figure 1: Variation of 𝛿 as a function of Λ for Mercury to Mars. 

 

 

Figure 2: Variation of 𝛿 as a function of Λ for Earth to Saturn. 

 

To facilitate data presentation and analysis, the plots for all planets are displayed separately, 

allowing for a detailed examination of the behavior of 𝛿 across different ranges of Λ. From 

Figures 1, 2, and 3, it is evident that 𝛿 tends to be small ( 𝛿 ≪ 1 ) for small values of Λ, 

gradually increases to order unity, and then rises sharply beyond a certain threshold value of 

Λ. If we denote Λ𝑝 as the value of Λ at which 𝛿 begins to increase rapidly, we observe a trend 

where Λ𝑝 is proportional to the planet's distance from the Sun, or equivalently, to the semi-

major axis 𝑎. Another notable feature is that, after this rapid increase, 𝛿 asymptotically 

approaches a large value (≃ 107) at large Λ, with the exact value depending on the specific 

planet. Furthermore, 𝛿min and 𝛿max tend to converge in the region where 𝛿 < 1. 

The Yukawa gravitational potential in Eq. 12 indicates that, in the weak-field regime where the 

Yukawa potential can be treated as a perturbation to the Newtonian potential, the parameter 𝛿 

must be sufficiently small ( 𝛿 ≪ 1 ), and Λ must be much larger than the orbital scale (𝑟 ≪ Λ). 

However, as shown in Figures 1, 2, and 3, very large values of Λ tend to drive 𝛿 toward an 

asymptotically large value (≃ 107). This suggests that if the Yukawa potential is assumed to 
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be effective within the solar system, the parameters Λ and 𝛿 must be carefully chosen to ensure 

consistency across all planets. 

 

Figure 3. Variation of 𝛿 as a function of Λ for Jupiter and Saturn. 

If we impose the condition 𝛿 ≪ 1 on Eq. 12, we find that the values of Λ for each planet 

generally satisfy the requirement 𝑟 ≪ Λ. For example, for Jupiter, which has a semi-major axis 

𝑎 ≃ 9.54AU (see Figure 3), 𝛿 remains very small ( 𝛿 < 0.1 ) for Λ < 104AU. In contrast, for 

Mercury (see Figure 1), the relevant values of 𝛿 correspond to Λ < 15 AU. Therefore, if we 

apply a strict upper limit of 𝛿 ≤ 0.1 for all planets, the most stringent constraint on Λ arises 

from Mercury, yielding Λ ≤ 15AU, as shown in Figure 1. For comparison, the values of 𝛿min 

and 𝛿max  for Λ = 20 AU, 30 AU, 35 AU, and 40 AU are also presented in Table 2. The table 

also includes the average values 𝛿‾ ± Δ𝛿‾ for all planets at each Λ, as well as estimates of the 

PPN parameters 𝛾 − 1 and 𝛽 − 1 derived from Eqs. 15 and 16. 

Table 2 shows that the average value of 𝛿 for the solar system planets remains small up to Λ =
40 AU. However, since 𝛿‾ + Δ𝛿‾ ≃ 1.52, which violates the assumption 𝛿 ≪ 1, data for Λ ≥
40AU can reasonably be disregarded. To further refine the selection of Yukawa parameters, we 

consider the constraints on the PPN parameters 𝛾 and 𝛽, which are tightly constrained by 

observations from the Cassini and MESSENGER missions to the ranges 𝛾 − 1 =
[−0.2; 4.4] × 10−5 and 𝛽 − 1 = [−3.4; 0.2] × 10−5, respectively. Applying these constraints, 

we find that only Λ = 15 AU satisfies the PPN limits. In summary, the numerical calculations 

in this study suggest that the Yukawa parameter Λ can be chosen within the range [20; 30] AU, 

with corresponding average values of 𝛿‾ ± Δ𝛿‾. Specifically, we obtain 𝛿‾ ± Δ𝛿‾ = 0.0401216 ±
0.0874637 for Λ = 20 AU, 𝛿‾ ± Δ𝛿‾ = 0.1227306 ± 0.2725966 for Λ = 30 AU, and 𝛿‾ ±
Δ𝛿‾ = 0.2209792 ± 0.4969559 for Λ = 35 AU. These results are consistent with previous 

studies, such as [[45–49], which investigated the effects of the Yukawa potential on the S-star 

population near the galactic center and found Λ > 5000AU with 𝛿 ≈ 10−3. . However, our 

results align more closely with solar system studies, such as [50,51], which reported Λ ≈
0.182AU and 𝛿 ≈ 2 × 10−10 for Earth and Mercury. This highlights the strong dependence of 

the Yukawa potential's influence on the scale of the gravitational source, with the Sun's 

influence being significantly smaller than that of galactic-scale sources [52–54]. 
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Table 2: Values of 𝛿min and 𝛿max for various Λ(AU) and its average values 𝛿‾ ± Δ𝛿‾. We also provide the predicted 

PPN parameters 𝛾 − 1 and 𝛽 − 1 based on formula in Eq. 15 and Eq. 16 

Planet 𝛬 = 15 AU 𝛬 = 20 AU 𝛬 = 30 AU 𝛬 = 35 AU 𝛬 = 40 AU 

 𝛿min 𝛿max 𝛿min 𝛿max 𝛿min 𝛿max 𝛿min 𝛿max 𝛿min 𝛿max 

Mercury 0.115518 0.118552 0.223865 0.230331 0.691811 0.719739 1.250011 1.318028 2.631403 2.870483 

Venus 0.002095 0.009144 0.003686 0.016174 0.008232 0.036682 0.011200 0.050416 0.014640 0.066698 

Earth 0.001487 0.002232 0.002602 0.003909 0.005777 0.008691 0.007843 0.011810 0.010231 0.015426 

Mars 0.000226 0.000226 0.000392 0.000392 0.000861 0.000862 0.001164 0.001165 0.001512 0.001514 

Jupiter 0.000001 0.000001 0.000002 0.000002 0.000004 0.000004 0.000005 0.000006 0.000006 0.000007 

Saturn 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 

𝛿‾ ± 𝛥𝛿‾ 0.020798±0.045028 0.040121± 0.087463 0.122730± 0.272596 0.220979± 0.496955 0.467668± 1.067895 

𝛾 − 1 [−1.93; −2.09]
× 10−5 

[−6.11; −6.95]
× 10−6 

[−1.06; −1.70]
× 10−6 

[−0.51; −1.12]
× 10−6 

[−3.03; −8.34]
× 10−7 

𝛽 − 1 [4.90; 4.91] × 10−11 [4.90; 4.90] × 10−12 [1.90; 1.90] × 10−13 [5.55; 5.57] × 10−14 [1.90; 1.90] × 10−14 

 

 

Figure 4. Variation of 𝛿 as a function of Semi-major axes 𝑎 for all planets. 

 

 

CONCLUSION  

The 𝑓(𝑅) theory of gravity is a modification of general relativity that extends the gravitational 

action. In the weak-field limit, 𝑓(𝑅) gravity gives rise to a Yukawa gravitational potential 

𝑉𝑌(𝑟) =
𝛿

1+𝛿

𝐺𝑀

𝑟
[1 − 𝑒−𝑟/Λ], which deviates slightly from the Newtonian potential. The 

Yukawa parameters must satisfy 𝛿 ≪ 1 and Λ ≫ 𝑟 to remain consistent with Newtonian 

gravity in the weak-field regime. To determine the viable ranges for 𝛿 and Λ, we employed 

solar system tests, such as perihelion precession and PPN constraints, which measure 

deviations from Newtonian gravity. 

Perihelion precession, the gradual shift in a planet's closest approach to the Sun, is a small but 

measurable effect. For example, Mercury's precession is approximately 43.1′′ per century. This 

phenomenon does not occur in Newtonian gravity but is predicted by more complex theories, 

such as general relativity and 𝑓(𝑅) gravity. 
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In this study, observational data on perihelion precession were used to determine the minimum 

and maximum values of 𝛿 using Eq. 14. The permissible range of Λ was inferred by analyzing 

the 𝛿 plots for all planets. Figures 1, 2, and 3 demonstrate that the tightest constraint on Λ arises 

from Mercury's data. By calculating the average values 𝛿‾ ± Δ𝛿‾ for each Λ, we applied PPN 

constraints from Eqs. 15 and 16. 

Our numerical results indicate that the Yukawa parameter Λ can be chosen within the range 

[20;30] AU, with corresponding average values of 𝛿‾ ± Δ𝛿‾. For instance, we obtain 𝛿‾ ± Δ𝛿‾ =
0.0401216 ± 0.0874637 for Λ = 20 AU, 𝛿‾ ± Δ𝛿‾ = 0.1227306 ± 0.2725966 for Λ = 30 AU, 

and 𝛿‾ ± Δ𝛿‾ = 0.2209792 ± 0.4969559 for Λ = 35 AU. These findings are consistent with 

previous studies, underscoring the importance of the gravitational source's scale in determining 

the influence of the Yukawa potential. 

It is important to note, however, that this analysis is based on several simplifying assumptions. 

First, the derivation of the Yukawa potential relies on the linearized approximation of 𝑓(𝑅) 

gravity in the weak-field limit, which may not capture full nonlinear effects present in more 

general models. Second, the model assumes a static, spherically symmetric spacetime and 

neglects higher-order perturbations such as the solar quadrupole moment (𝐽2) and planetary 

interactions, which could affect the precision of perihelion precession residuals. Third, the 

Yukawa parameters δ and Λ are treated as universal constants, whereas in realistic 𝑓(𝑅) models 

with screening mechanisms, such as the chameleon mechanism, these parameters may depend 

on the local matter density, leading to suppressed deviations in high-density regions like the 

solar system. Therefore, while our results are consistent with current observational constraints, 

they should be interpreted within the context of the adopted perturbative framework and may 

benefit from future analyses incorporating high-precision ephemeris models and environmental 

dependence. 
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