
p-ISSN 2089 – 0133 e-ISSN 2477-6416                  Indonesian Journal of Applied Physics (IJAP) Vol. 13 No. 2 page 347 
URL : https://jurnal.uns.ac.id/ijap/article/view/77921                                                    DOI  : https://doi.org/10.13057/ijap.v13i2.77921 

  

Copyright © 2023 Universitas Sebelas Maret 

 

A WEIGHTED AVERAGE OF MULTIPLE 
INVERSIONS OF RAYLEIGH WAVE DISPERSION 

CURVE USING PARTICLE SWARM OPTIMIZATION 
FOR GEOTECHNICAL SITE CHARACTERIZATION  

Jamhir Safani*1, Rezki Wirawan1, Al Rubayn1, Mohd Nawawi2, Toshifumi 
Matsuoka3 

1 Dept. of Geophysical Engineering, Faculty of Mathematics and Natural Sciences, Universitas Halu Oleo, 

Indonesia  
2 Department of Geophysics, School of Physics, Universiti Sains Malaysia, Malaysia 

3 Fukada Geological Institute, Tokyo 113-0021, Japan 
*jamhir.safani@uho.ac.id  

 

Received 15-08-2023, Revised 21-10-2023, Accepted 23-10-2023 

Available Online 23-10-2023, Published Regularly October 2023 

 

ABSTRACT 

Shear wave velocity is an important parameter in geotechnical engineering for studying 

liquefaction, finding bedrock for the basement of a building, and figuring out the presence of 

subsurface cavities. This study aims to develop and evaluate the accuracy of the multiple 

inversions by the Particle Swarm Optimization (MI-PSO) algorithm with a weighted average 

solution. This algorithm is applied to Rayleigh wave dispersion data for geotechnical site 

characterization. Two synthetic models, the HVL model and the complex model (i.e., a 

combination of models with LVL and HVL characteristics), are used to conduct algorithm tests. 

These synthetic models replicate subsurface characteristics that are frequently encountered in 

geotechnical cases. Synthetic data tests show that the MI-PSO algorithm with a weighted 

average solution works excellently. The MI-PSO technique with a weighted average solution 

resolves the model better than the conventional average solution. When applied to two field data 

sets, the MI-PSO algorithm with a weighted average solution can delineate target models that 

are consistent with the qualitative interpretation based on the observed dispersion curve 

characteristics. 
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INTRODUCTION 

Shear wave velocity is a crucial parameter in geotechnical engineering for studying 

liquefaction, finding bedrock for the basement of a building, and figuring out the presence 

of subsurface cavities[1]. Several methods have been developed and utilized to estimate the 

shear wave velocity profile, including spatial autocorrelation (SPAC)[2], spectral analysis of 

surface waves (SASW)[3], and multichannel analysis of surface waves (MASW)[4]. 

In recent decades, the MASW has been commonly used to estimate subsurface shear wave 

velocity (Vs) profiles. Rayleigh wave dispersion describes the characteristic of Rayleigh 

wave phase velocity that changes with frequency[3]. The MASW utilizes this dispersion 

property to determine the shear wave velocity (Vs) profile[4]. The MASW method generally 
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consists of three stages: surface wave data acquisition, dispersion curve extraction, and 

dispersion curve inversion[5]. From the obtained dispersion curve, a profile of the shear wave 

velocity (Vs) was derived by inverting the Rayleigh wave dispersion curve. An inversion of 

the observed Rayleigh wave dispersion curve is carried out to obtain a shear wave velocity 

(Vs) profile[6]. 

Inversion of the surface wave dispersion curve (i.e., Rayleigh waves and Love waves) 

utilizing the local search method presents optimization challenges due to the nonlinear and 

multimodal nature of the dispersion[7-8]. Inversion using a linear approach is only effective 

when there is solid a priori information and a good initial model[9-10]. Due to its nonlinear 

nature, the inversion of the Rayleigh wave dispersion curve is typically conducted using 

nonlinear or global optimization techniques. Genetic algorithms[11-12], simulated 

annealing[13–15], and particle swarm optimization are three common global optimization 

techniques used for inverting the Rayleigh dispersion curve. 

Particle swarm optimization (PSO) is a population-based optimization technique inspired 

by flocks of birds and fish. Potential model solutions, known as particles in PSO, move 

around the search space by following the best solution produced at each iteration[16]. The 

PSO method continues to develop and spawn numerous variants. PSO techniques have been 

extensively used to solve geophysical problems[17], including inversion of gravity data[18], 

geoelectric data[19-20], and magnetic data[21]. A number of PSO variants have been used to 

solve the inversion problem of the Rayleigh wave dispersion curve. Song et al.[8] used a PSO 

method with a constriction factor and showed that when inverting the Rayleigh wave 

dispersion curve, the PSO variant demonstrates a very good model solution. Schutte and 

Groenwold[22] found that the PSO variant with constriction is very effective for solving low-

dimensional inversion problems, but for high-dimensional problems, the PSO variant with 

dynamic inertia reduction and maximum speed limitation performs better. Because 

inversion of the Rayleigh wave dispersion curve is a high-dimensional inverse issue, the 

PSO technique with dynamic inertia reduction is used in this study[23]. 

Global optimization methods like PSO generate different model solutions for each 

inversion, although they use the same search space. Multiple inversions (MI) can indicate a 

model solution trend by averaging all solutions. However, model solutions with high misfits 

and vice versa will affect the accuracy of the final model solution. Thus, this work 

investigates whether weighted averaging of MI-PSO model solutions improves model 

solution accuracy compared to standard averaging.  

METHOD  

Particle Swarm Optimization 

Kennedy and Eberhart[24] were the first to introduce particle swarm optimization (PSO). In 

the PSO technique, candidate solutions to optimization problems are depicted as flocks of 

particles moving through the search parameter space, with paths determined by the optimal 

performance of the particles themselves and the particles surrounding them. In the search 

for the optimal solution to a problem, the path of a particle through the parameter space 

(which is always changing position) is determined by the equations of motion: 

xi(t+1)= xi(t)+ vi(t+1)      (1) 

where t and t +1 denote two successive iterations of the algorithm, and vi is the velocity 

vector of the i-th particle in dimension D. 
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The velocity vector determines how the particle moves along the search space, and it is 

determined by three factors: first, inertia, which ensures that the direction of motion of the 

particle does not change drastically; second, the cognitive component, which determines the 

tendency of the particle to return to the best position it has passed before; and third, the 

social component, which identifies the tendency of the particle to move to the best position 

of the entire herd. The velocity of the i-th particle is determined by the Equation: 

𝐯i(𝑡 + 1) = 𝐯i(𝑡) + c1(𝐩𝐢 − 𝐱𝐢(𝑡))R1 + c2(g − 𝐱𝐢(𝑡))R2  (2) 

where pi is the "personal best" of the particles, i.e., the best solution obtained during 

optimization by a given individual, and g is the "global best," i.e., the overall best solutions 

found by the flock. The acceleration constants c1 and c2 are real numbers that are called, 

respectively, the "cognitive coefficient" and the "social coefficient." R1 and R2 are two 

diagonal matrices of random numbers distributed uniformly between [0, 1]. These two social 

and cognitive factors influence the velocity change in Equation (2). Overall, the iteration 

procedure of Equations (1) and (2) is performed until the conditions are satisfied or the 

maximum iteration limit is reached [16]. 

Shi and Eberhart [25] added the inertial weight parameter (w) to Equation (2) to balance the 

PSO's local and global search capabilities, resulting in the particle velocity being 

represented as: 

𝒗𝒊(𝑡 + 1) = 𝒘𝒗𝑖(𝑡) + 𝒄𝟏(𝒑𝒊 − 𝒙𝒊(𝑡))R1 + 𝒄𝟐(gi − 𝒙𝒊(𝑡))R2 (3) 

To reduce the size of the search step when a particle's position in the search space changes, 

the maximum velocity of each particle (vmax) is regulated by a velocity limiting coefficient 

(𝛾) 
[25]: 

𝒗𝒎𝒂𝒙 =  𝛾(𝒙𝑈𝐵 − 𝒙𝐿𝐵)       (4) 

where 𝐱UB and 𝐱LB are the upper and lower bounds of the search space for each particle, 

respectively. 

Reducing the inertia weight (w) as the iteration advances is supplied to modify the process 

of determining the optimum value from global search to tend to be local search in order to 

optimize the optimum solution. The inertial damping coefficient () with a value between 

0 and 1 (or 0<<1) is given to lower the initial inertia weight 𝐰0 when the solution obtained 

does not increase over a range of successive iterations (h)[26]: 

If 𝑓(𝒈(𝑡) ≥  𝒈(𝑡 − ℎ) , then 𝒘𝑡+1 =  𝒘𝑡    (5) 

Multiple Inversions by PSO (MI-PSO) with a Wighted Model Solution 

Inversion of the observed Rayleigh wave dispersion curves is performed to find the best 

combination of the shear wave velocities (Vs) and the corresponding thicknesses (d) for each 

subsurface layer. This is done by minimizing the difference between the measured 

dispersion curves and the theoretical dispersion curves. The forward modeling method 

incorporated to calculate the theoretical Rayleigh wave dispersion curve is being adopted 

from the stiffness matrix method developed by Kausel and Roësset[27] and Olafsdottir[28]. 

The objective function used to calculate the misfit between the observed and theoretical 

dispersion curves is expressed as follows: 
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𝑀𝑖𝑠𝑓𝑖𝑡 =
1

𝑁
∑

√(𝐶𝑖
𝑂𝑏𝑠(𝑓)−𝐶𝑖

𝐶𝑎𝑙𝑐(𝑓))
2

𝐶𝑖
𝑂𝑏𝑠(𝑓)

× 100𝑁
𝑖=1     (6) 

where 𝐶𝑖
𝑂𝑏𝑠(𝑓) and 𝐶𝑖

𝐶𝑎𝑙𝑐(𝑓) are the observed and the theoretical (calculated) Rayleigh 

wave phase velocity, respectively, as a function of frequency, and 𝑁 is the number of the 

observed frequency points. 

Calculation of the similarity index (SI) uses Equation (7): 

SI = (1 −
∑

|𝑝𝑚
𝑐𝑎𝑙−𝑝𝑚

𝑜𝑏𝑠|

𝑝𝑚
𝑜𝑏𝑠

𝑀
𝑚=1

𝑀
) × 100%     (7) 

where 𝑝𝑚
𝑐𝑎𝑙 is the model parameter resulting from the inversion and 𝑝𝑚

𝑜𝑏𝑠 is the true model 

parameter. 

Inversion of the Rayleigh wave dispersion curve with the PSO algorithm involves four types 

of particles, which represent the physical properties of each subsurface layer, namely layer 

thickness (d), shear wave velocity (VS), compression wave velocity (VP), and density (ρ). 

These four physical parameters have different levels of sensitivity to the Rayleigh wave 

phase velocity as the response model, where the shear wave velocity (VS) and layer thickness 

(d) are the two most sensitive parameters, respectively[29]. Therefore, inversion of the 

Rayleigh wave dispersion curve only estimates these two parameters, while compression 

wave velocity (VP) and density (ρ) are assumed from a priori information[29]. 

Here, we propose the multiple inversions by particle swarm optimization (MI-PSO) 

algorithm. This algorithm was developed by adopting a single inversion algorithm by 

Raha[23], but we added two other steps, namely an inversion loop and a weighted average 

solution. The algorithm procedure for the proposed MI-PSO is as follows: 

1. Determine the upper limit (𝐱𝐔𝐁) and lower limit (𝐱𝐋𝐁) of the particles, namely the 

upper and lower limits of the shear wave velocity (Vs) and layer thickness (d) 

combined in the matrices as follows: 𝐱𝐔𝐁  =  [𝑉𝑆𝑈𝐵1
… 𝑉𝑆𝑈𝐵𝐷+1

  𝑑𝑈𝐵1 … 𝑑𝑈𝐵𝐷],  

 𝐱𝐋𝐁  =  [𝑉𝑆𝐿𝐵1
… 𝑉𝑆𝐿𝐵𝐷+1

  𝑑𝑈𝐵1 …  𝑑𝑈𝐵𝐷] (where D is the number of finite thickness 

layers). In addition, the following quantities are also determined: the number of 

particles per population M, inertial weight (w) = 1, inertial damping coefficient () = 

0.99, personal acceleration coefficient (c1) = 2, global acceleration coefficient (c2) = 

2, velocity limiting coefficient () = 0.05, maximum number of inversions Imax, and 

maximum number of iterations kmax; 

2. Loop the inversion I from 1 to Imax; 
3. Initialize the initial population 𝐱i randomly with an upper bound 𝐱UB and a lower 

bound 𝐱LB. Determine the initial velocities of all the particles with v0 = 0. Calculate 

the misfit of each particle. Initialize the best position of each particle (pi) from the 

initial position of each particle. Select the best global position (g) of the particle with 

the best misfit; 
4. Loop the iteration t from 1 to kmax, where in each iteration, the following steps are 

carried out: 
• Update the particle velocity using Equation (3) with the value of the maximum 

velocity (vmax) according to Equation (4); 
• Update the position of each particle using Equation (2); 

• Update the inertial weight (w) with Equation (5) at each iteration; 
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• Evaluate the position in each iteration if 𝐱i𝑐𝑜𝑠𝑡(𝑡)  < 𝐩
𝐢𝑐𝑜𝑠𝑡

, update 𝐩
𝐢
 =  𝐱i , if 

𝐱i𝑐𝑜𝑠𝑡(𝑡) < 𝐠
𝑐𝑜𝑠𝑡

 update g = 𝐱i(𝑡); 

5. The model solution obtained in the I-th inversion is the global model solution (g) at t 

= kmax, where the misfit is 𝐠
𝑐𝑜𝑠𝑡

; 

6. Perform averaging of the inversion model solutions with a weighting coefficient 

(1/misfit) to obtain a global solution with the following Equation: 

𝐠 =
∑ (𝐠I∗

1

𝑚𝑖𝑠𝑓𝑖𝑡I
)

I𝑚𝑎𝑥
I=1

∑ (
1

𝑚𝑖𝑠𝑓𝑖𝑡I
)

I𝑚𝑎𝑥
I = 1

      (7) 

RESULTS AND DISCUSSIONS  

Inversion for Synthetic Data of HVL Model 

Multiple inversions (MI) of the Rayleigh wave dispersion curve with PSO begin by utilizing 

synthetic data. This is intended to test the accuracy and feasibility of the developed MI-PSO 

algorithm with a weighted average solution. There are two subsurface profile models used 

in this synthetic test, namely the high-velocity layer (HVL) model, which is characterized 

by the presence of a hard layer between the soft layers (Figure 1a), and the complex model, 

which represents the presence of a low-velocity layer (LVL) and HVL simultaneously in 

the subsurface medium (Figure 1b). These two synthetic models mimic real models that are 

often found in the field. The existence of a low-velocity layer (LVL) in both synthetic 

models can be a trap in geotechnical site investigations if it is not identified properly. These 

two synthetic models refer to Safani (2007) for the complex model and La Hamimu et al. 

(2011) for the HVL model. In geotechnical engineering, the stiffness of the subsurface layer 

is represented by the shear wave velocity parameter (Vs). 

 

Figure 1. Subsurface profile of Vs versus depth: a) for HVL model 

and b) for complex model 

The HVL model shown in Table 1 is characterized by the presence of a hard layer (with Vs 

= 260 m/s) in the second layer, which is flanked by two layers with lower Vs values. The 

inversions of the Rayleigh wave dispersion curve begin with determining the search space 

by setting the upper and lower bound values of the model space (Table 1).  
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Table 1. Parameters for HVL model and inverse search spaces 

The inversions for this first case were carried out 10 times, in which each inversion was 

done for 500 iterations with 30 particles or populations in the search space. Choosing the 

number of inversions of 10 times is ideal for seeing trends in changes in inversion results 

and quite saves computing time. The number of iterations of 500 in inversion for the HVL 

model is a test to check the convergence characteristics of the proposed algorithm. A small 

number of particles can lead the model solution to become stuck in local minima because 

convergence occurs too quickly. This is why, after several trial and error, 30 particles were 

chosen. The inversion results are shown in Figure 2, which describes the observed versus 

theoretic dispersion curves (Figure 2a) and 1D profile shear wave velocity (Vs) versus depth 

(Figure 2b) for conventional average model (red dotted line) and weighted average model 

(green line). Figure 1b shows that the profiles of Vs versus depth for the 10 resulting model 

solutions can very well reconstruct the actual model profile, especially the main target of 

the HVL pattern, even with slightly varying Vs and thickness values.  

 

Figure 2. Inversion results for synthetic data of HVL model: a) Dispersion curves, 

and b) Vs profiles 

The final model solution of the 10 resulting inversion models is obtained by calculating the 

conventional average model and the weighted average model (Table 2). In the conventional 

average model, the model parameters (Vs and d) of each layer show good results, but there 

are still some significant discrepancies, especially in the model parameters with a relative 

error of > 3%. Based on the trend of the resulting model solution, model parameters with a 

relative error >3% are still acceptable, even though they have a slightly lower accuracy 

compared to model parameters with a relative error <3%. In the weighted average model, 

the final model solution obtained from the weighted average is better than the model solution 

Layers 
Parameters for HVL Model Search Spaces 

Vs (m/s) Vp (m/s) ρ (g/cm3)  d (m) Vs (m/s) d (m) 

1 80 370 1.8 2 75-150 1-3 

2 260 600 1.8 4 150-300 2-6 

3 120 700 1.8 8 100-200 4-10 

4 460 700 1.8 Half space 400-550 Half space 
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obtained from the conventional average, where the resulting model profile closely coincides 

with the actual model (green solid line). The weighted average model's relatively small error 

also supports this accuracy. The degree to which the model solution obtained resembles the 

original model is indicated by the similarity index (SI). Both the weighted average model 

and the conventional average model have a similarity index greater than 95%. This indicates 

that there is a strong similarity between the two model solutions and the actual model. The 

weighted average model is marginally better than the traditional average model, as indicated 

by the difference in SI values of about 4%. 

Table 1. Conventional averaging model and weighted average for synthetic data of HVL model  

Figure 3 shows the trend of changes in misfits over iterations for the synthetic data of the 

HVL model. From the 10 inversions performed, it appears that the misfit values decrease 

exponentially with iteration. The misfit values for all inversions still show a very random 

pattern until the 20th iteration, indicating that the inversion process is in the global search 

stage. At higher iterations, misfit values tend to converge and stabilize. This indicates that 

the algorithm is starting to be exploitative or local. Even though we set the number of 

iterations to 500, the misfit values reach a highly convergent pattern around the 100th 

iteration. In Figure 3, it can also be seen that the 4th inversion has not experienced a 

significant change in the misfit value since the beginning of the iteration. This might happen 

because the global minima from the initial model that was generated has been trapped in the 

local minima. This shows that multiple inversions are important to ensure that the model 

solution obtained is not stuck at the local minima. 

 

Figure 3. Misfit as a fungtion of iteration for inversion 

of dispersion curve for HVL model. 

Model 

Parameter

s  

True 

Model  

Conventional average model  Weighted average model 

Calculatio

n 

Relative 

error (%) 

SI 

(%) 

Calculatio

n 

Relative 

error 

(%) 

SI (%) 

Vs1 80 83.99 4.99 

95.48 

80.00 0.01 

99.96 

Vs2 260 249.05 4.21 260.41 0.16 

Vs3 120 115.29 3.92 119.99 0.01 

Vs4 460 459.86 0.03 460.03 0.01 

d1 2 2.04 1.89 2.00 0.02 

d2 4 4.38 9.43 4.00 0.05 

d3 8 7.43 7.15 8.00 0.04 
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Inversion for Synthetic Data of Complex Model 

The second synthetic test was performed on the complex model, which is a combination of 

LVL and HVL characteristics. The nature of the complex model is simply described by the 

variation pattern of Vs values in Table 3. The use of this mixed model is intended to examine 

the ability of the MI-PSO algorithm to solve more complex inverse problems. Model 

parameters and search spaces for the complex model can be seen in Table 3. 

Table 3. Parameters for complex model and inverse search spaces 

The same as in the case of the HVL synthetic model, here the inversion is carried out ten 

times, with the number of iterations in each inversion being 500 for 30 populations. The 

results of the inversion of the observed dispersion curves are shown in Figure 4. The 

excellent matching between the observed and theoretical dispersion curves as presented in 

Figure 4a, indicates the accuracy of the resulting model parameters. This confirms the 

excellent fit between the true model and all the Vs versus depth profiles obtained from the 

inversion process (Figure 4b). All of the resulting model solutions, namely conventional 

(red dashed line) and weighted average model (green line), can reconstruct the complex Vs 

versus depth profiles consisting of a combination of models with LVL and HVL 

characteristics. This shows the excellent ability of the MI-PSO algorithm to solve the inverse 

problem of the Rayleigh wave dispersion curve for complex subsurface models. 

 

Figure 4. Inversi results for synthetic data of complex model: a) Dispersion 

curves, and b) Vs profiles. 

Layers 

Model Parameters Search Spaces 

Vs (m/s) Vp (m/s) 
𝜌 

(g/cm3) 
d (m) Vs (m/s) d (m) 

1 200 420 1.8 1 150-400 0.5-2 

2 150 600 1.8 2.5 100-300 1-3 

3 240 800 1.8 5.5 150-400 4-6 

4 180 1000 1.8 9 150-250 6-10 

5 430 1300 1.8 
Half 

space 
300-500 

Half 

space 
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The final model solution of Vs versus depth obtained from the conventional and weighted 

averages of all inversion model solutions is shown in Table 4. In general, the relative errors 

of the weighted average model are less than those of the conventional one. Although the 

difference is not significant, the similarity index (SI) of the weighted average model is 

slightly better than the conventional average model, namely 97.09%: 96.15%. These results 

reaffirm the superiority of the weighted average solution over the conventional one. 

The trend of the misfit values obtained during the inversion process for the complex model 

is generally similar to that for the HVL synthesis model (Figure 5), where the misfit values 

change significantly around the initial 20 iterations. This shows the nature of the search 

algorithm, which still tends to be exploratory or global. As in the HVL synthesis model, the 

misfit values begin to change slowly at higher iterations and towards a convergent trend, 

especially around the 100th iteration. So, the search algorithm slowly becomes exploitative 

at around the 100th iteration.  

Table 4. Conventional and weigthed average model for the synthetic data of complex model  

Model 

Parameter

s  

True 

Model 

Conventional average model Weighted average model 

Calculatio

n 

Relative 

error (%) 

SI 

(%) 

Calculatio

n 

Relative 

error (%) 

SI 

(%) 

Vs1 200 212.44 6.22 

96.1

5 

204.84 2.42 

97.0

9 

Vs2 150 151.51 1.01 151.16 0.77 

Vs3 240 244.43 1.85 242.99 1.25 

Vs4 180 172.37 4.24 174.62 2.99 

Vs5 430 422.32 1.79 424.05 1.38 

d1 1 1.02 1.52 1.04 4.32 

d2 2.5 2.65 6.03 2.58 3.15 

d3 5.5 5.66 2.95 5.66 2.88 

d4 9 8.18 9.07 8.36 7.07 

 

Figure 5. Misfit as a fungtion of iteration for inversion of 

dispersion curve for complex model. 
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Inversion for Rayleigh Wave Data from Archeological Site of Lahad Datu (Malaysia) 

The black dots in Figure 6a show measured Rayleigh wave dispersion data in Lahad Datu, 

Malaysia. This site is particularly intriguing since it is an archaeological site that is supposed 

to be a place of ancient human life. The investigation's goal is to estimate the subsurface 

structure at the site. The observed dispersion curve shows a trend of a significant decrease 

in phase velocity over the wavelength range around 2–6 m and a slight change at 16–20 m. 

Changes in the curve trend with such a profile indicate the presence of two soft layers 

beneath the surface. This initial assumption will be verified in the inversion process.  

The search space used in the inversion of the observed Rayleigh wave dispersion curve is 

shown in Table 5. It is assumed that the compression wave velocity (Vp) and density (ρ) 

parameters for each layer are known, as presented in Table 5. Because the shear wave 

velocity (Vs) and thickness (d) are two parameters that are estimated through the inversion 

process, each of these parameters is given a search space. The search space is determined 

based on the characteristics of the existing phase velocity and wavelength.  

Table 5. Search space for inversion of dispersion data at the archeological site of Lahad Datu 

The MI-PSO algorithm for inverting the Lahad Datu site dispersion curve is set to 10 

inversions, with 600 iterations for each inversion and 50 populations. For this field data, the 

number of iterations and population for the inversion algorithm are set higher than for 

synthetic data. This is because field data usually contains a certain amount of noise. 

Inversion shows that the observed and theoretical dispersion data have a good fit. The best 

fit of the dispersion curves appears in the wavelength range of 0–40 m (Figure 6a). There is 

one point where the observed phase velocity does not closely correspond to the theoretical 

phase velocity, namely at a wavelength of around 100 m. There appears to be a very low 

underestimate of the calculated phase velocity at the highest wavelength of around 100 m. 

This basically describes the phase velocity pitfall, which is usually found at the lowest 

frequency (or highest wavelength) due to over-picking when the dispersion curve extraction 

is performed [29]. The MI-PSO also displays model solutions, both those calculated 

individually from each inversion (grey solid lines) and those calculated with the weighted 

average of the 10 inversions (green solid line in Figure 6b). The model solution from the 

weighted average is then used to describe the estimated subsurface structure of the Lahad 

Datu site. The subsurface structure is distributed in five layers plus a half-space consisting 

of two soft layers in the depth ranges of 1.4–3.0 m and 6.6–12.2 m. 

 

Layers 
Search Spaces 

Vp (m/s) 𝜌 (g/cm3) Vs (m/s) d (m) 
    

1 663 1.8 100-200 0.5-3 

2 663 1.8 75-200 0.5-3 

3 995 1.8 150-250 2-5 

4 995 1.8 120-250 2-10 

5 995 1.8 200-300 5-15 

6 995 1.8 450-650 Half space 
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Figure 6. Inversion results for field data in the archeological site of Lahad Datu: 

a) Dispersion curves, and b) Vs profiles. 

Tabulation of model parameters for each layer, resulting from individual inversions as well 

as weighted average model solutions, for Rayleingh wave data at the archeological site of 

Lahad Datu, is presented in Table 6. The individual results for the 10 inversions show the 

different parameter values vary with a fairly small misfit value for each inversion (i.e., less 

than 2%). The lowest misfit value was obtained in the 2nd inversion, and the highest misfit 

was obtained in the 3rd inversion. The weighted average values for a total of 10 individual 

inversions indicate the presence of layers with complex characteristics at the Lahad Datu 

site, representing the presence of a combination of LVL and HVL characteristics. The layers 

with lower Vs are located in the second and fourth layers, with Vs values of 93.7 m/s and 

164.5 m/s at depths of 1.4–3.0 m and 6.6–12.2 m, respectively. The presence of these two 

soft layers justifies the qualitative assumptions given earlier. 

Table 6. Model solutions for the archaeological site of Lahad Datu 

Parameter 
model 

Model for each inverse 
Weighted 

average 

model 1 2 3 4 5 6 7 8 9 10 

Vs1 175.4 148.7 141.1 146.8 149.8 148.8 146.3 149.8 146.7 146.4 150.2 

Vs2 93.5 81.6 109.7 107.3 88.4 87.5 80.6 91.8 104.5 103.7 93.7 

Vs3 181.8 207.4 246.3 210.9 201.7 206.4 213.1 209.6 215.6 202.6 208.8 

Vs4 173.4 165.2 157.6 168.1 162.4 168.5 163.4 153.6 164.6 167.8 164.5 

Vs5 300.0 240.9 251.8 283.0 243.0 263.8 275.2 257.5 236.1 247.5 259.9 

Vs6 549.6 583.2 568.2 572.1 557.6 591.7 560.7 594.3 575.0 574.6 572.8 

d1 0.92 1.55 1.41 1.25 1.44 1.49 1.67 1.42 1.32 1.34 1.39 

d2 1.59 1.19 2.24 2.07 1.35 1.32 1.17 1.48 1.91 1.82 1.57 

d3 4.23 3.42 2.75 3.33 4.02 3.26 3.80 4.04 3.05 3.87 3.60 

d4 6.17 5.25 5.27 6.55 4.97 6.36 6.04 4.54 5.41 5.57 5.61 

d5 10.08 7.67 7.57 5.91 6.47 7.07 6.34 8.35 6.40 5.37 7.15 

misfit 1.26 1.11 1.52 1.44 1.14 1.14 1.12 1.22 1.42 1.39  
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Inversion for Rayleigh Wave Data from Shiga Site (Japan)  

MI-PSO implementation is then carried out on the field data of the Shiga site, Japan. This 

geotechnical site is a residential area that generally has soft layers near the surface (Safani, 

2007). Changes in the Rayleigh wave phase velocity with respect to frequency and 

wavelength are shown in Figures 7a and 7b, respectively. The phase velocity undergoes a 

unique changing trend with frequency. In the frequency range of 5 Hz to 20 Hz, the phase 

velocity decreases with increasing frequency. But at higher frequencies (i.e., > 20 Hz), the 

phase velocity undergoes at least four segment jumps to higher modes of phase velocities. 

Such a dispersion curve pattern qualitatively describes the occurrence of wave energy 

trapping in a near-surface LVL zone [30]. Quantitative estimates of the presence of the LVL 

will be examined through the inversion of the existing field dispersion curves. 

The inversion process begins by setting the search space for shear wave velocity (Vs) and 

layer thickness (d), while the compression wave velocity (Vp) and density (ρ) parameters 

are usually assumed from a priori information (Table 7). Setting the Vp values in Table 7 

does not show a low value in the second layer as seen in the corresponding Vs value because 

the Vp parameter usually does not detect the presence of soft layers near the surface (Safani, 

2007). The search space settings for parameters Vs and d are determined based on the trend 

of the dispersion curve from the field data presented in Figure 7, where the phase velocity 

at higher frequencies represents shallower layers and at lower frequencies represents deeper 

layers. 

Table 7. Search space for measured data inversion at the Shiga site, Japan 

As with the inversion of the previous field data, the inversion of the Rayleigh wave data at 

the Shiga site was carried out 10 times. The number of iterations and population in each 

inversion are 600 and 50, respectively. The results of the inversion of the dispersion curve 

data are presented in Figure 7. In the lowest wavelength range up to 80 m, the theoretical 

dispersion curve shows a very good agreement with the measured dispersion curve (Figure 

7a). However, at the highest wavelengths (i.e., at about 130 m), the theoretical phase 

velocity shows a very large difference from the corresponding observed phase velocity. As 

previously described, such a case is referred to as the "pitfalls" of phase velocity, which 

usually occur at the highest wavelength (or lowest frequency) due to over-picking when 

dispersion curve extraction is performed. Such a Pitfall is usually solved simply by 

removing the data from the inversion calculation process. This is necessary to avoid 

misinterpretation of the results of the This is necessary to avoid misinterpretation of the 

results of the Rayleigh wave inversion when such a fact is encountered.  

The model solution obtained in each inversion is shown with gray solid lines (Figure 7b). 

There are four layers plus a half-space in the estimation model. Although the ten inversions 

show diverse model profiles, all of the resulting model solutions show consistency in model 

profile trends, especially when describing the presence of an LVL in the second layer. The

Layers 
Search Spaces 

Vp (m/s) ρ (g/cm3) Vs (m/s) d (m) 
    

1 663 1.8 150-300 0.5-3 

2 663 1.8 75-200 0.5-5 

3 995 1.8 150-450 9-14 

4 995 1.8 400-600 3-8 

5 995 1.8 500-800 Half space 
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 weighted average profile of the shear wave velocity (Vs) versus thickness (d) shown by the 

green solid line in Figure 7b is the final model solution that represents the characteristics of 

the subsurface layers of the observation area at the Shiga site. 

 

Figure 7. Results of the inversion of the measured data at Shiga site, Japan: a) 

Dispersion curves, and b) Vs profiles. 

A more detailed inspection of the model parameter values (or model solutions) generated 

for each inversion is tabulated in Table 8. The model solution values for each inversion are 

quite diverse, but all have small misfit values (i.e., less than 3%). The lowest misfit value is 

achieved in the 8th inversion, and the highest is in the 4th inversion. The calculating results 

of the weighted average values show that the low-velocity layer (LVL) in the second layer 

has a shear wave velocity (Vs) value of 120.2 m/s with a layer thickness (d) of 2.63 m. This 

LVL is flanked by two harder layers, namely the surface layer (with Vs = 255.0 m/s and d 

= 2.13 m) and the third layer (with Vs = 233.20 m/s and d = 12.08 m). 

Table 8. Model solution for the measured data at Shiga site, Japan 

Parameter 

model 

Model for each inversion Weighted 

average 1 2 3 4 5 6 7 8 9 10 

Vs1 237.1 258.6 240.4 247.6 261.6 266.4 257.5 243.0 278.9 252.2 255.0 

Vs2 83.3 135.6 96.2 105.8 140.9 122.2 114.4 122.6 129.9 139.2 120.2 

Vs3 225.2 240.2 215.3 211.5 250.8 228.2 229.9 241.6 231.0 251.0 233.2 

Vs4 487.0 506.9 519.5 532.2 473.6 500.8 480.2 487.0 517.1 550.4 504.7 

Vs5 722.5 723.5 732.0 698.4 727.9 731.7 706.9 723.3 717.3 738.3 722.4 

d1 2.67 2.00 2.28 2.01 1.88 2.02 2.22 2.43 1.81 2.03 2.13 

d2 1.27 3.37 1.22 1.30 3.84 2.73 2.47 2.72 3.04 3.69 2.63 

d3 12.05 12.01 11.93 11.82 12.61 11.55 11.59 12.43 11.79 13.01 12.08 

d4 6.86 5.84 5.81 6.11 5.50 5.86 5.54 6.18 6.05 5.45 5.91 

misfit 2.76 2.36 2.84 2.97 2.46 2.25 2.27 2.20 2.27 2.42  
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CONCLUSION 

The algorithm for multiple inversions using particle swarm optimization (the so-called MI-

PSO algorithm) for inversions of Rayleigh wave dispersion curves for geotechnical site 

characterization has been developed. Algorithm testing is carried out by utilizing two 

synthetic models that replicate subsurface characteristics that are often found in geotechnical 

cases, namely the HVL model and the complex model. The complex model represents a 

combination of models with LVL and HVL characteristics. The test results with synthetic 

data show that the developed MI-PSO algorithm with a weighted average solution can work 

with excellent accuracy. The final model solution obtained through the MI-PSO algorithm 

with a weighted average solution is better than the model solution obtained from the 

conventional average. The superiority of the weighted average model compared to the 

conventional one is also indicated by its higher similarity index. All of the resulting model 

solutions can reconstruct Vs versus depth profile patterns very accurately, both for the HVL 

and the complex models. This shows that the MI-PSO algorithm with a weighted average 

solution has a very good ability to solve the Rayleigh wave dispersion curve inversion 

problem, even for complex subsurface models.  

Implementation of the MI-PSO algorithm with a weighted average solution on two 

measured data sets may work excellently and can delineate the target models. The 

assumption of the existence of a complex model at Lahad Datu's archeological site through 

a qualitative interpretation of the trend of the dispersion curve can be proven quantitatively 

through inversion with this algorithm. Likewise, the presence of a near-surface LVL at the 

Shiga site (Japan) can be estimated and presented in the resulting subsurface profile. 
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