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ABSTRACT 

Classification of the types of weld defects is one of the stages of evaluating radiographic images, 

which is essential in controlling the quality of welded joints in materials. By automating the 

weld defect classification based on deep learning and the CNN architecture, it is possible to 

overcome the limitations of visually or manually evaluating radiographic images. Good 

accuracy in classification models for weld defects requires the availability of sufficient datasets. 

In reality, however, the radiographic image dataset accessible to the public is limited and 

imbalanced between classes. Consequently, simple image cropping and augmentation 

techniques are implemented during the data preparation. To construct a weld defect 

classification model, we proposed to utilize the transfer learning method by employing a pre-

trained CNN architecture as a feature extractor, including DenseNet201, InceptionV3, 

MobileNetV2, NASNetMobile, ResNet50V2, VGG16, VGG19, and Xception, which are linked 

to a simple classification model based on multilayer perceptron. The test results indicate that the 

three best classification models were obtained using the DenseNet201 feature extractor with a 

test accuracy value of 100%, followed by ResNet50V2 and InceptionV3 with an accuracy of 

99.17%. These outcomes are better than state-of-the-art classification models with a maximum 

of six classes of defects. The research findings assist radiography experts in evaluating 

radiographic images more accurately and efficiently. 
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INTRODUCTION 

Inspecting welded joints on metal or other materials is essential for ensuring materials' 

performance, reliability, and safety, particularly in industrial manufacturing applications. 

Several factors, including labor, equipment, and environmental conditions, can cause 

defects in welded joints to occur during the welding process. Nondestructive testing (NDT) 

techniques for detecting weld defects are typically categorized as radiographic, dye 

penetrant, ultrasonic, eddy current, magnetic particle, etc. Radiographic tests are widely 

used to inspect welded joints in industry. The inspected material is exposed to ionizing 

radiation, typically X-rays or gamma rays, so that the detector or film captures the radiation 

emitted by the material, and a radiographic image representing the internal condition of the 
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welded joint is created. Radiography experts interpret and evaluate these images as part of 

the inspection process. At this stage, it is crucial to classify the defects found in the welded 

joints. The disadvantages of manual interpretation and evaluation of radiographic images 

include the time-consuming, complex processes, subjective results, inaccuracy, sometimes 

biased results for similar defects, and the difficulty in classifying the type of defect with a 

small size. Implementing automatic classification of weld defects using a computer vision 

system and artificial intelligence algorithms can overcome the insufficiency of manual 

interpretation.  

Recent research developments have focused on automating weld defect classification in 

radiographic images using CNN-based deep learning algorithms. The availability of 

radiographic image datasets is a prerequisite for constructing a weld defect classification 

model. The GDXray database served as the radiographic image database source, consisting 

of 88 high-quality digitized radiographic images categorized into three series and stored as 

uncompressed TIFF files with a 40.3 m pixel size[1]. The WDXI datasets contain 13,766 

radiographic images of welding defects, including seven significant types of weld defects, 

but they are not freely available[2]. The RIAWELC dataset contains 24,407 8-bit 

radiographic images in PNG format with 224 x 224-pixel sizes, which is a further 

application in the development of the GDXray dataset and includes four classes of weld 

defect types[3].  

Various CNN architectures are employed to develop weld defect classification models. As 

a method for automatically detecting weld defects, Faster R-CNN is proposed to integrate 

feature extraction and classification in a single algorithm to automate the detection process[4] 

fully. A framework for object detection with the AF-RCNN attention mechanism is 

proposed because image defects comprise numerous minor defects whose feature 

information is more probable to be lost throughout convolution[5]. In a series of stages for 

detecting and classifying weld defects, the FgSegNet architecture is used to segment weld 

areas and defects. In contrast, the EfficientNet architecture is used to classify weld areas and 

defects[6]. Transfer learning is a deep learning approach that applies pre-trained models to 

new problems. 

As feature extractors, several CNN architectures that have been pre-trained using ImageNet 

datasets are utilized to employ weld defect classification models, including VGG19[7], 

AlexNet[8], MobileNet[9], VGG16[10], VGG16 & ResNet50[11], and Xception[12]. In addition 

to research on the automation of detection and classification of weld defects, the researchers 

compared the performance of several CNN-based pre-trained models as feature extractors 

in a variety of problems, such as rice plant disease classification[13], daily object image 

classification[14], knee image classification[15], chest pneumonia classification[16], and eye 

cancer classification[17]. 

This study employs the deep convolutional neural network (CNN) architecture to extract 

features from a radiographic image with defects. The extracted features are input to a simple 

classifier. We achieve a short computation time with high accuracy during training, 

validation, and testing. Then, we evaluate the performance of each CNN architecture as a 

feature extractor without modifying the input dataset or the configuration of the 

classification model. Finally, we compared the effectiveness of our work to state-of-the-art 

methods. This work contributes to selecting the most efficient CNN architecture for 

classifying specific types of weld defects and provides rapid, straightforward computations. 

A comprehensive step is required to construct a weld defect classification model. In the 

second section of this paper, the stages of preparing radiographic image datasets are 
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described, followed by an explanation of the CNN architecture used as a feature extractor, 

the implementation of multilayer perceptron (MLP) as a classifier, and performance 

evaluation indicators. The experimental results have been described, including the obtained 

dataset and model performance testing and comparison. The paper ends with conclusions 

and suggestions for future work. 

METHOD 

Preparing datasets derived from radiographic images is the first stage in this study. The 

obtained images are augmented to ensure sufficient for the model to be built after being 

cropped to remove everything except one class of weld defects. Each set is fed into the pre-

trained CNN architectures for feature extraction. The dataset is split into training, validation, 

and testing sets. The output of the feature extraction stage is referred to as the bottleneck 

features, which are input for the classifier or Fully Connected (FC) layer in the form of a 

multilayer perceptron using the Leaky ReLU activation function and the Softmax activation 

function in the final layer for categorical classification. 

Data Preparation 

We utilized the publicly accessible GDXray database for our work. The original 

radiographic films were scanned in high-density mode using the Lumisys LS85 SDR 

scanner. After visually adjusting the image content, the original 12-bit data depth was 

rescaled to 8-bit using a linear LUT proportional to the optical film density. This ensures 

that the 8-bit images retain all required defect information. Although only approximately 68 

digitized radiographic images are available, they have a high resolution and represent 

multiple classes of weld defects. Radiographic images may contain multiple types of 

defects. To obtain an image with only one type of defect, it is therefore necessary to crop 

the whole image into small patches. We manually crop images to 224 x 224 pixels because 

this is the default input image size required by most CNN architectures we implement. 

Figure 1 shows an image patch divided into six classes of defects. 

 

     

                      (a)                     (b)                    (c)                    (d)                     (e)                     (f) 

Figure 1. Image patches contain only one defect class. a) crack, b) lack of penetration, c) 

metallic inclusion, d) non-defect, e) porosity, f) slag inclusion 

Due to the limited number of image patches, we use image augmentation techniques to 

artificially increase the size of the training set, thereby providing the model with more 

images for training, enhancing model accuracy, and reducing overfitting[18]. Several image 

augmentation methods based on generative adversarial networks (GAN), including  

Wasserstein GAN[19], contrast enhancement conditional GAN[12], and attention self-

supervised learning-auxiliary classifier GAN[20], have been considered to be significantly 

effective in improving the model's performance. Instead of these three methods, we employ 

simple image augmentation techniques, including vertical-horizontal flipping and 

brightness changes, ensuring that the amount of data stays constant to the level where it 

limits the computational work. Figure 2 shows the results of image augmentation on an 

image patch containing crack-type defects. 
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Figure 2. Example of image augmentation results on “crack” 

The total number of generated image patches is split into training sets, validation sets, and 

testing sets with a ratio of 7:2:1. Thus, 70% of the training sets and 20% of the validation 

sets are selected randomly from the image patch collection. In comparison, the other 10% 

is utilized for testing. It should be noticed that all images in the testing data are entirely 

distinct from those in the training and validation data. 

CNN Architectures 

As feature extractors, various types of modern CNN models are implemented in this work. 

Several CNN models with pre-trained weights were chosen. The Keras Library provides 

access to these pre-trained models. In addition to serving as feature extraction methods, 

these pre-trained models can be utilized for predicting and fine-tuning. The CNN 

architecture is as outlined below: 

1) DenseNet architecture. This architecture is comprised of numerous dense blocks with 

differing amounts of filters. The dimensions of the block are unique. For batch 

normalization, transition layers are positioned between blocks. Using downsampling to 

complement the dimensions of the subsequent layer[21]. The Keras Library includes the 

DenseNet architectures DenseNet 121, DenseNet 169, and DenseNet 201. 

2) Inception architecture. This architecture initially debuted as GoogLeNet, or Inception V1, 

and was subsequently enhanced as Inception V2 and Inception V3. Inception is a contextual 

convolutional feature extractor that can learn additional representations with fewer 

parameters[22]. This architecture was improved to become Inception V4 and combined with 

ResNet to construct Inception-ResNet. In other forms, it becomes Inception-ResNetV2[23]. 

3) MobileNet architecture. This architecture is founded on a simpler algorithm that utilizes 

depthwise separable convolutions. It performs a minor computational task with rapidity and 

precision[24]. MobileNetV2 employs lightweight depthwise convolutions to filter 

intermediate expansion layer features instead of expanding output representations[25]. 

4) NASNet architecture. This architecture was discovered through a neural architecture 

search (NAS). NASNet is a scalable CNN architecture comprising fundamental building 

blocks that have been optimized[26]. 

5) ResNet architecture. The fundamental concept of residual networks (ResNet) is to use 

convolutional layer blocks by forming residual blocks from shortcut connections to create 

networks that can update the layer's weight to a lower depth[27]. These stacked residual 

blocks enhance training efficiency and address existing problems with deep tissue 

degradation. 

6) VGG architecture. The Visual Geometry Group's (VGG) network with 16 layers and 19 

layers, VGG16 and VGG19, respectively, served as the foundation for the ImageNet 

Challenge 2014 submission. VGG16 consists of thirteen convolutional layers, five pooling 

layers, three fully connected layers, and a softmax layer, frequently used in classification 

problems because of its high accuracy. Like the VGG16, the VGG19 comprises multiple 

layers, resulting in a more intensive training process[28]. 



A Comparison of CNN-based … page 194 

Copyright © 2024 Universitas Sebelas Maret 

7) Xception architecture. This architecture comprises a linear stack of depthwise separable 

convolution layers with residual connections to decrease time and space complexity[29]. 

Xception is an acronym for ‘Extreme Inception’ because this hypothesis is a more robust 

type of the foundational hypothesis of the Inception architecture. 

Feature Extraction using CNN-based Pre-trained Models 

Transfer learning is based on utilizing pre-trained CNN models to solve our problems, which 

may be distinct. We use a pre-trained model that has been trained without retraining it, or 

we freeze the weight of this pre-trained model to implement transfer learning. In this 

instance, the frozen model is utilized as a feature extractor. The pre-trained CNN model 

provides an arbitrarily selective feature extractor during feature extraction. The input image 

can transmit forward through a pre-trained model, break at a pre-specified layer, and extract 

features from the input image using the layer's output. This feature is known as a bottleneck 

feature. The extracted features can be quickly processed as input for the classifier and stored 

as a numerical array. In the proposed approach, we randomly utilized CNN architectures 

from Keras libraries, including DenseNet201, InceptionV3, MobileNetV2, NASNetMobile, 

ResNet50V2, VGG16, VGG19, and Xception, as a pre-trained base model that has 

completed the task of object detection on a data set from ImageNet, which contains public 

data and up to 1.28 million images from 1000 classes. 

Classifier Architecture 

The bottleneck features generated by the feature extraction stage are in a two-dimensional 

array; therefore, they must be flattened into one-dimensional single-vector data. The FC-

100 layer receives data in a single dimension and then transmits it to the FC-50 and FC-6 

layers using the Leaky ReLU activation function, which has a negative slope coefficient of 

0.3. Leaky ReLU is a ReLU-based activation function with a slight slope for negative values 

instead of a flat slope. Before training, the coefficient value is decided; it is not acquired 

through training. The Softmax activation function is employed to classify the category of 

weld defects in the final layer. 

Performance Indicator 

A set of evaluation indicators is provided to verify the model’s performance. The accuracy 

value is the most widely employed model performance metric. In image classification, a 

confusion matrix is utilized to accurately describe the model’s performance by comparing 

the predicted and actual labels. The confusion matrix, on the other hand, reveals true and 

false classifications and error categories at the class level. TN, which stands for “true 

negative,” represents the number of cases accurately identified as harmful. 

Similarly, TP stands for “true positive” and denotes the number of positively classified 

instances that were accurately identified. “False negative” (FN) refers to the number of 

actual positive cases misclassified as unfavorable. “False positive” (FP) refers to the number 

of actual negative examples misclassified as positive. Figure 3 represents the confusion 

matrix cells. 
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Figure 3. Confusion matrix 

Using the confusion matrix, the six types of weld defect distribution can be identified 

directly, with the accuracy determined by equation (1).  

𝐴𝐶𝐶 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
        (1) 

In contrast to accuracy, misclassification refers to the proportion of incorrectly predicted 

data relative to the total prediction. 

RESULTS AND DISCUSSION 

After performing image preprocessing, which included image cropping and simple data 

augmentation, we obtained 1178 images with a size of 224 x 224 pixels. These images were 

divided into six classes of weld defects, including crack (CR), lack of penetration (LP), 

metallic inclusion (MI), non-defect (ND), porosity (PO), and slag inclusion (SI). The types 

of welding defects we have selected are the types that commonly occur during the welding 

process. Table 1 shows the distribution of the number of images used for training, validation, 

and testing in each class. 

Table 1. Datasets Distribution 

Class Train set Val set Test set Total 

Crack (CR) 196 56 29 281 

Lack of Penetration (LP) 105 30 15 150 

 Metallic Inclusion (MI) 37 10 6 53 

Non-defect (ND) 175 50 25 250 

Porosity (PO) 176 50 26 252 

Slag Inclusion (SI) 134 38 20 192 

Total 823 234 121 1178 

In comparison to other classes of weld defects, the number of image datasets generated for 

the metallic inclusion class is disproportionately low. This is because the metallic inclusion 

class has fewer original images than the other classes. It is intriguing for us to determine if 

these issues affect the performance of the classification model that we have developed. Each 

data set is fed to the DenseNet201, InceptionV3, MobileNetV2, NASNetMobile, 

ResNet50V2, VGG16, VGG19, and Xception architectures to extract features. The feature 

extraction output is a two-dimensional array of data called bottleneck features. As a result 

of comparing eight feature extractor architectures, we obtain eight bottleneck features for 

training, validation, and testing, named bottleneck_features_training, 

bottleneck_features_validation, and bottleneck_features_testing, respectively. The 
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bottleneck_features_training and bottleneck_features_validation are used to train and 

validate a weld defect classification model. 

We use an epoch of up to 100 because the training accuracy value for the eight used feature 

extractor architectures, including DenseNet201, InceptionV3, MobileNetV2, 

NASNetMobile, ResNet50V2, VGG16, VGG19, and Xception, was close to 1 at that epoch. 

Figure 4 depicts the rising trend of training accuracy, whereas Figure 5 shows training loss, 

Figure 6 shows validation accuracy, and Figure 7 shows validation loss. 

 

Figure 4. Train accuracy 

 

Figure 5. Train loss
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Figure 6. Validation accuracy 

 

Figure 7. Validation loss 

Figure 4 illustrates that at minor epochs below 30, the distinction in training accuracy values 

is quite pronounced, and the classification model with feature extractors VGG16 and 

VGG19 has yet to reach 90% accuracy. Consequently, these two architectures require more 

training epochs than the others. Meanwhile, it can be observed in the classification model 

with other feature extractors that can achieve training accuracy above 90% prior to reaching 

epoch 10: ResNet50V2, Xception, DenseNet201, InceptionV3, NASNetMobile, and 

MobileNetV2 are, in order of speed, the algorithms with the highest accuracy. These six 

architectures do not necessitate an excessively long training epoch to achieve high accuracy. 

Particularly on ResNet50V2, Xception, and DenseNet201, the training accuracy value 

appears stable and close to 100%. The eight models were tested using unseen images taken 

from the testing set after we obtained eight weld defect classification models based on 

distinct feature extractor architectures. Therefore, the accuracy and misclassification of the 

classification model derived from the confusion matrix are tested using 

bottleneck_features_testing. Figure 8 illustrates each model's testing accuracy. 
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Figure 8. Comparison of testing accuracy results 

Using a single random image, we further evaluated the eight classification models. By 

providing one image for each class as input, the classification model can predict the type of 

defect in the image. The test results are shown in Table 2. 

Table 2. Comparison of prediction result using single random image test 

  True Labels 

   
CR 

 
LP 

 
MI 

 
ND 

 
PO 

 
SI 

P
re

d
ic

ti
o
n

 R
es

u
lt

s 

DenseNet201 CR (100%) LP (100%) MI (100%) ND (100%) PO (100%) SI (100%) 

InceptionV3 CR (100%) LP (100%) MI (100%) ND (100%) PO (100%) SI (100%) 

MobileNetV2 CR (100%) LP (100%) MI (100%) ND (100%) PO (100%) SI (100%) 

NASNetMobile CR (100%) LP (100%) MI (100%) ND (100%) PO (100%) SI (100%) 

ResNet50V2 CR (100%) LP (100%) MI (100%) ND (100%) PO (100%) SI (100%) 

VGG16 CR (100%) LP (100%) 

MI (99.98%) 

ND (0.01%) 

PO (0.01%) 

ND (100%) PO (100%) SI (100%) 

VGG19 

CR 

(99.98%) 

LP (0.02%) 

LP (93.57%) 

PO (6.43%) 

MI (96.68%) 

PO (3.28%) 

SI (0.03%) 

LP (0.19%) 

ND (99.78%) 

PO (0.03%) 

PO (100%) 

MI (0.01%) 

PO (32.63%) 

SI (67.36%) 

Xception CR (100%) LP (100%) MI (100%) ND (100%) PO (100%) SI (100%) 

Based on testing with a single random image, most weld defect classification models can 

recognize the type of defect in each class with a percentage of 100% or close to it. In 

contrast, the classification model with a feature extractor based on VGG19 experiences 

conflicts in almost every defect class, excluding porosity. The model exhibits minor 

misclassification errors in other defect classes, including crack, lack of penetration, metallic 

inclusion, and non-defect. In the slag inclusion class, the misclassification rate exceeds 30%. 

Therefore, this model needs to be revised for determining the types of slag inclusion defects. 

This may be due to the similarity between the slag inclusion classes and the porosity. This 

model should be trained on a more significant number of data sets to overcome this issue. 

We compared the performance of our three best weld defect classification models, based on 

the DenseNet201, ResNet50V2, and InceptionV3 architectures, to that of a state-of-the-art 

model with a maximum of six weld defect classes that also uses the feature extractor 

architecture described in the CNN Architectures Section. Table 3 provides a performance 

comparison of the models. 
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Table 3. Performance comparison of different weld defect classification models 

Reference 
Number of 

Classes 
Architecture Evaluation Mode Result 

Thakkallapally [7] 3 VGG19 

Train Acc 

Val Acc 

Test Acc 

93.17% 

91.14% 

91% 

Zhang et al. [19] 4 
Inception & 

MobileNet 

Acc (normal) 

Acc (burn through) 

Acc (crack) 

Acc (porosity) 

100% 

94.77% 

99.75% 

99.67% 

Pan et al. [9] 5 MobileNet Mean Acc 97.69% 

Nazarov et al. [10] 5 VGG16 Acc 86% 

Guo et al. [12] 5 Xception Acc 92.5% 

Ours 6 

DenseNet201 

ResNet50V2 

InceptionV3 

Acc (DenseNet201) 

Acc (ResNet50V2) 

Acc (InceptionV3) 

100% 

99.17% 

99.17% 

Our classification model outperforms the state-of-the-art model regarding accuracy and 

number of defect classes. The model proposed by Zhang et al.[19] has good accuracy for each 

class of defects, but compared to our model, it uses a much larger dataset, over 7000 images 

augmented with the WGAN technique. Guo et al.'s CECGAN augmentation technique 

generates an even more significant dataset [12]. In addition to a large number of datasets, Pan 

et al.[9] Moreover, Thakkallapally[7] utilized 6208 and 3000 images, respectively. Larger 

data sets necessitate more complex computing systems and longer processes. Meanwhile, 

our augmentation method is a simple, primary method that does not require time-consuming 

computational processes. The total number of datasets we employ is comparable to Nazarov 

et al.[10] who employ 1270 images divided into five classes of weld defects. However, our 

model is more accurate. Increasing the number of datasets will improve the classification 

model's accuracy. However, the number of this dataset should refer to the original image 

dataset before applying the augmentation technique. According to the obtained results, the 

weld defect classification model that we developed, particularly those based on the 

DenseNet201, ResNet50V2, and InceptionV3 feature extractors, could recognize and 

classify weld defects with very satisfactory performance and has the potential to detect weld 

defects in real time, particularly in the manufacturing industry. 

CONCLUSION 

A large dataset is required to create a weld defect classification model with high accuracy. 

However, the availability of public radiographic image datasets is limited, with imbalanced 

classes of weld defects. Developing a weld defect classification model using transfer 

learning methods and a pre-trained model as a feature extractor should be described as a 

method of overcoming this issue. This paper proposes selecting the optimal CNN-based pre-

trained model architecture as a feature extractor for a simple classification model. Our study 
indicates that the eight pre-trained model architectures are capable of serving as feature 

extractors to classify six classes of weld defects, with results indicating that the three best 

classification models were obtained by using the DenseNet201 feature extractor with a test 

accuracy of 100%, followed by ResNet50V2 and InceptionV3 with an accuracy of 99.17%. 

In the future, we will develop models with more than six classes of weld defects, particularly 

models for effectively detecting classes of weld defects that occur relatively infrequently 

during welding. The preparation of datasets is also a crucial aspect of model development.
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Consequently, we will provide this dataset as radiographic images of elliptical welding or 

double-wall techniques. Even though this dataset is public, it still needs to be explored. In 

the future, radiographic image datasets will be more widely available so that they can be 

utilized for future work, and weld defect detection, as well as the classification model, can 

be directly applied to tests based on real-time radiography. 
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