

SINTESIS DAN KARAKTERISASI STRUKTUR DAN SIFAT MAGNET NANOKOMPOSIT Fe₃O₄@PEG:ZnO

Astuti^{*1}, Syukri Arief², Sri Rahayu Alfitri Usna¹ dan Ihda Khaira¹

¹Jurusan Fisika, FMIPA Universitas Andalas, Limau Manis, Padang, Indonesia ²Jurusan Kimia, FMIPA Universitas Andalas, Limau Manis, Padang, Indonesia *corresponding author: astuti@sci.unand.ac.id

> Received 14-01-2022, Revised 28-06-2022, Accepted 28-09-2022 Available Online 04-10-2022, Published Regularly October 2022

ABSTRACT

Fe₃O₄@PEG:ZnO nanocomposites were synthesized by the coprecipitation method with various of the samples were Fe₃O₄, Fe₃O₄@ZnO (1:1), Fe₃O₄@PEG: ZnO (1:2), and Fe₃O₄@PEG: ZnO (1:3). The samples were synthesized with variation in the concentration of ZnO to Fe_3O_4 . In addition, polyethylene glycol (PEG) is also used to prevent the agglomeration of Fe₃O₄. Sample characterization was carried out using X-Ray Diffraction (XRD), Transmission Electron Microscope (TEM), Fourier Transform Infrared (FTIR), Particle Size Analyzer (PSA), and vibrating Sample Magnetometer (VSM). The XRD patterns show that the sample is composed of Fe₃O₄ phase and ZnO phase with crystal structure cubic and wurtzite respectively. The TEM image shows the formation of a core-shell structure where PEG: ZnO is the shell and Fe₃O₄ is the core. From the FTIR results, there are C-O and C-C bonds which indicate formed from PEG, Fe-O bonds indicate the formation of Fe₃O₄ and Zn-O bonds indicate formation of ZnO. Characterization with PSA obtained particle sizes of 33 nm, 23 nm, and 16 nm with particle size distributions of 25%, 50%, and 75% so that the average particle size is 24 nm. The VSM results show that Fe₃O₄@PEG: ZnO (1:2) nanocomposite has a high magnetic saturation of 66.58 emu/g, with superparamagnetic properties, which has the potential to be developed as a bioimaging material.

Keywords: Fe₃O₄; PEG; ZnO; precipitation, magnetic properties

ABSTRAK

Nanokomposit Fe₃O₄@PEG:ZnO disintesis dengan metode kopresipitasi dengan variasi sampel yaitu Fe₃O₄, Fe₃O₄@ZnO (1:1), Fe₃O₄@PEG:ZnO (1:2), dan Fe₃O₄@PEG:ZnO (1:3). Sampel tersebut disintesis dengan variasi konsentrasi ZnO terhadap Fe₃O₄.. Disamping itu juga digunakan polietilen glikol (PEG) untuk mencegah aglomerasi pada Fe₃O₄. Karakterisasi sampel dilakukan menggunakan X-Ray Diffraction (XRD), Transmission Electron Microscope (TEM), Fourier Transform Infrared (FTIR), Particle Size Analyzer (PSA)), dan vibrating sample magnetometer (VSM). Pola difraksi sinar-X menunjukkan bahwa sampel tersusun dari fasa Fe₃O₄ dan fasa ZnO dengan struktur kristal cubic dan hexagonal wurtzite berturut-turut. Hasil TEM menunjukkan terbentuknya struktur core-shell dimana PEG:ZnO sebagai shell dan Fe₃O₄ sebagai core. Dari hasil FTIR terdapat ikatan C-O dan C-C yang berasal dari PEG, ikatan Fe-O menunjukkan terbentuknya Fe₃O₄ dan ikatan Zn-O menunjukkan terbentuknya ZnO. Pengujian dengan PSA didapatkan ukuran partikel sebesar 33 nm, 23 nm, dan 16 nm dengan distribusi ukuran partikel yaitu 25%, 50%, dan 75%, sehingga didapatkan ukuran rata-rata partikel yaitu 24 nm. Hasil VSM menunjukkan nanokomposit Fe₃O₄@PEG:ZnO (1:2) memiliki saturasi magnetik yang tinggi yaitu 66,58 emu/g, dengan sifat superparamagnetik, yang berpotensi untuk dikembangkan sebagai material bioimaging.

Kata kunci: Fe₃O₄; PEG; ZnO; presipitasi; sifat magnet

PENDAHULUAN

Nanopartikel magnetik Fe₃O₄ (Besi Oksida) merupakan material yang memiliki aplikasi vang sangat luas. Pada ukuran *bulk*, material magnetik Fe₃O₄ bersifat ferrimagnetik. Namun, pada orde nanometer material Fe₃O₄ bersifat superparamagnetik dan memiliki sifat-sifat yang lebih baik, seperti magnetisasi saturasi yang tinggi, environmental stability, dan biological compatibility. Nanopartikel Fe₃O₄ sebagai material biokompatibel dapat diaplikasikan sebagai material bioimaging, drug delivery system, hyperthermia, dan lainlain ^[1,2]. Dalam aplikasinya sebagai material *bioimaging*, Fe₃O₄ dapat digabungkan dengan material luminisens. Beberapa penelitian telah dilakukan untuk meningkatkan efektifitas dan efisiensi material magnetik sebagai material bioimaging dengan mendoping europium (Eu) dan material gadolinium oksida (Gd_2O_3). Pada penelitian tersebut ditunjukkan adanya penurunan kontras akibat adanya pengisian atom Eu pada Gd^[3]. Selain menggunakan unsur Eu sebagai doping, para peneliti juga menggunakan golongan lantanida seperti SrFCl:Nd@PDA. Pada penelitian ini dihasilkan material yang mempunyai luminisens sangat terang sehingga memiliki potensi untuk dikembangkan sebagai material bioimaging. Namun, pada penelitian tersebut diketahui adanya sifat racun dari material yang dihasilkan dan ditemukan adanya ketidakcocokan bahan SrFCl ketika diaplikasikan dalam aplikasi biomedis ^[4]. Diketahui bahwa, pada aplikasi material biomedis sangat diutamakan material yang bersifat biokompatibel atau tidak beracun bagi manusia. Salah satu material luminisens tersebut adalah ZnO (Zink Oksida). Agar dihasilkan suatu material yang mempunyai dua sifat sekaligus dapat dilakukan dengan membuat material dengan struktur core-shell^[5,6]. Kelebihan struktur *core shell* adalah, dapat menggabungkan dua sifat berbeda dari material yang berbeda, dimana sifat dari material penyusunnya dapat dipertahankan tanpa mengganggu sifat masing-masing material tersebut. Namun ketebalan shell (ZnO) sering sekali menurunkan sifat magnet dari core secara sifnifikan, oleh sebab itu perlu dilakukan optimasi ketebalan shell sehingga tidak menurunkan magnetik saturasi dari core (Fe₃O₄).

Nanopartikel Fe₃O₄ mudah mengalami aglomerasi sehingga dapat mempengaruhi sifatsifatnya. Untuk mengatasi masalah tersebut beragam strategi terus dikembangkan sampai saat ini. Strategi tersebut meliputi doping terhadap Fe₃O₄, *coating* permukaan nanopartikel magnetik dengan molekul organik meliputi surfaktan, polimer, dan biomolekul, atau *coating* dengan material non organik seperti SiO₂ dan Au. *Coating* atau pelapisan nanopartikel magnetik sebagai material *bioimaging* tidak hanya menjaga kestabilan nanopartikel magnetik, tetapi juga harus bersifat biokompatibel ^[7,8]. Polietilen glikol (PEG) adalah salah satu polimer yang dapat diaplikasikan dalam struktur *core-shell* pada material *bioimaging*. Hal ini karena PEG mempunyai sifat inert, biokompatibel, transparan secara optik, tidak menimbulkan reaksi dipermukaan *core* (Fe₃O₄) serta dapat menyeragamkan bentuk dan ukuran partikel ^[2,9]. Beragam metode sisntesis telah dilaporkan untuk menghasilkan nanopartikel monodispersif, seperti metode kopresipitasi, ^[8,10], sol gel, mikro emulsi, solvotermal, hidrotermal dan dekomposisi termal ^[11,12].

Dari beberapa penelitian tersebut masih terdapat beberapa kelemahan seperti pengontrolan ukuran partikel, stabilitas, dan disperbilitas nanopartikel luminisens, sehingga dalam penelitian ini dikembangkan material magnetik-luminisens Fe₃O₄@PEG:ZnO dengan struktur *core-shell* yang memiliki potensi aplikasi sebagai material bioimaging. Material Fe₃O₄ yang diperoleh merupakan hasil sintesis dengan menggunakan metode kopresipitasi. Metode kopresipitasi lebih cocok digunakan karena lebih sederhana dengan biaya yang murah, dan dalam beberapa penelitian ditemukan ukuran partikel lebih seragam yaitu kurang dari 100 nm dan partikel berbentuk bola ^[13]. Material Fe₃O₄ digunakan sebagai *core*, sedangkan PEG dan ZnO sebagai material

Shell. PEG berfungsi untuk mencegah terjadinya aglomerasi nanopartikel Fe₃O₄. Pada penelitian ini disintesis nanokomposit Fe₃O₄@PEG:ZnO dengan memvariasikan ketebalan ZnO sebagai *shell*. Nanokomposit Fe₃O₄@PEG:ZnO dihasilkan dengan saturasi magnetik dan luminisesn yang tinggi, sehingga berpotensi untuk dikembangkan sebagai material *bioimaging*.

METODE

Sintesis nanokomposit Fe₃O₄@PEG:ZnO dimulai dengan proses pembuatan Fe₃O₄ dengan metode kopresipitasi seperti yang dilakukan oleh zavisova et. al (2015)^[9] dengan beberapa Nanopartikel Fe₃O₄ disintesis dari prekursor Fe³⁺ (FeCl₃.6H₂O) dan modifikasi. Fe²⁺(FeSO₄.7H₂O) dengan rasio molar 2:1. Masing-masing dilarutkan dan diaduk dalam aquades. Asam klorida (HCl) sebanyak 1 ml ditambahkan kedalam larutan dan Amonium hidroxide (NH₄OH) sebanyak 15 ml ditambahkan secara perlahan hingga larutan berubah warna menjadi hitam karena terbentuknya partikel Fe₃O₄. Proses pengadukan menggunakan magnetic stirrer dan dipanaskan pada suhu 100 °C selama 5 jam. Kemudian endapan Fe₃O₄ dipisahkan dan dicuci menggunakan alkohol sebanyak 3 kali. Sebanyak 2,5 g PEG 1000 dilarutkan ke dalam 100 ml aquades, setelah PEG 1000 larut maka ditambahkan endapan Fe₃O₄ sebagai larutan pertama. Zink oxide (ZnO) dilarutkan dalam 100 ml aquades dan ditambahkan 15 ml NH₄OH sambil diaduk. Larutan ZnO ditambahkan ke larutan pertama dan dipanaskan dengan suhu 70 °C selama 24 jam sambil diaduk. Endapan Fe₃O₄@ZnO dipisahkan dan dicuci menggunakan alkohol sebanyak 3 kali, kemudian dikeringkan menggunakan furnace pada suhu 300 °C selama 2 jam. Sintesis dilakukan dengan variasi (Fe₃O₄:ZnO) yaitu (1:1), (1:2), dan (1:3).

Nanokomposit Fe₃O₄@ZnO hasil sintesis dikarakterisasi struktur dan sifat magnetnya. Struktur kristal di karakterisasi menggunakan *X- Ray diffractometry* (XRD) (XRD, Bruker D8 Advance). Selain itu, juga dilakukan karakterisasi menggunakan *Transmission Electron Microscopy* (TEM) (TEM, FEI Tecnai G2 20 S-Twin), untuk melihat morfologi sampel. Serta *Fourier Transform Infra Red* (FTIR) (FTIR, Nicolet iS50 FTIR) untuk melihat ikatan kimia yang terbentuk, dan *Particle Size Analyser* (PSA) (Shimadzu SALD-2300 (WingSALD II:Version 3.4.4)) untuk menentukan distribusi ukuran partikel. Sifat magnet dikarakterisasi menggunakan *Vibrating Sample Magnetometer* (VSM) (VSM, VSM250).

HASIL DAN PEMBAHASAN

Karakterisasi XRD dilakukan untuk mengetahui struktur kristal nanokomposit Fe₃O₄@PEG:ZnO. Gambar 1 menunjukkan pola difraksi sinar-X dari sampel Fe₃O₄, Fe₃O₄@ZnO (1:1), Fe₃O₄@PEG:ZnO (1:2), dan Fe₃O₄@PEG:ZnO (1:3). Semua sampel mengandung fasa Fe₃O₄ dan ZnO tanpa adanya fasa pengotor. Berdasarkan Gambar 1, untuk sampel Fe₃O₄ diperoleh puncak difraksi maksimum pada sudut $2\theta = 35,7909^{\circ}$. Data standar *International for Diffraction Database* (ICDD) dengan kode referensi 01-071-6339, menunjukkan bahwa Fe₃O₄ memiliki struktur kristal *cubic* dengan parameter kisi a = b = c = 8,3153 Å. Sampel nanokomposit Fe₃O₄@ZnO (1:1) menunjukkan intensitas maksimum pada sudut $2\theta = 35,4896^{\circ}$. Ada dua fasa yang terbentuk pada hasil karakterisasi sampel yaitu Fe₃O₄ dan ZnO. Berdasarkan Pencocokan data standar ICDD dengan kode referensi 01-078-3149, Fe₃O₄ memiliki struktur kristal *monoclinic* dengan parameter kisi a = 5,9444 Å, b = 5,9247 Å, dan c = 16,7751 Å. Pencocokan pada data standar ICDD kode referensi 01-078-4605 menunjukkan fasa ZnO memiliki struktur kristal *hexagonal wurtzite* dengan parameter kisi a = 3,1870 Å, b = 3,1870 Å, dan c = 5,1420 Å. Nanokomposit Fe₃O₄@PEG:ZnO (1:2) menunjukkan pola difrasi dengan intensitas maksimum pada sudut $2\theta = 36,2455^{\circ}$. Data

standar ICDD dengan kode referensi 01-075-7917 menunjukan fasa ZnO memiliki struktur kristal *hexagonal wurtzite* dengan parameter kisi a = 3,2525 Å, b = 3,2525 Å, dan c = 5,2111 Å. Pencocokan pada data standar ICDD kode referensi 01-071-6766 untuk fasa Fe₃O₄ memiliki struktur kristal *rhombohedral* dengan parameter kisi a = 5,9277 Å, b = 5,9277 Å, dan c = 14,5699 Å. Selanjutnya, pada sampel nanokomposit Fe₃O₄@PEG:ZnO (1:3) diperoleh pola difraksi dengan intensitas maksimum pada sudut 2θ = 36,2455°. Pencocokan pada data standar ICDD kode referensi 01-089-7102, fasa ZnO memiliki struktur kristal *hexagonal wurtzite* dengan parameter kisi a = 3,2495 Å, b = 3,2495 Å, dan c = 5,2069 Å

Gambar 1. Grafik hasil uji XRD pada variasi Fe₃O₄, PEG, dan ZnO

Sedangkan untuk fasa Fe₃O₄ menggunakan data standar ICDD kode referensi 01-076-7171 yang memiliki struktur kristal *cubic* dengan parameter kisi a = b = c = 8,3761 Å. Nanopartikel magnetik Fe₃O₄ dan sampel Fe₃O₄ dan Fe₃O₄@PEG:ZnO (1:3) memiliki struktur kristal *cubic*. Hal ini membuktikan bahwa PEG dapat berfungsi sebagai *tamplate* bagi Fe₃O₄ dimana PEG memiliki sifat inert sehingga melindungi dan tidak menimbulkan reaksi pada Fe₃O₄ [^{11,13].}

Karakterisasi PSA dilakukan terhadap material nanokomposit Fe₃O₄@PEG:ZnO (1:2). Pungujian ini bertujuan untuk mengetahui ukuran partikel yang terdapat pada nanokomposit Fe₃O₄@PEG:ZnO. PSA yang digunakan yaitu tipe Shimadzu SALD-2300 (WingSALD II:Version 3.4.4) *High Concentration Cell*. PSA dengan tipe ini menganalisis ukuran partikel dimana partikel didispersikan didalam media cair sehingga nanokomposit Fe₃O₄@PEG:ZnO tidak teraglomerasi dan terukur sebagai *singgle* partikel. Hasil pengukuran partikel dengan menggunakan PSA ditunjukkan pada Gambar 2. Grafik tersebut menunjukkan bahwa distribusi partikel Fe₃O₄@PEG:ZnO dengan populasi 25%, 50%, dan 75% yang memiliki ukuran partikel 33 nm, 23 nm, dan 16 nm dengan rata-rata diameter partikel yaitu 24 nm. Ukuran parikel ini tidak jauh berbeda dengan pengukuran dengan menggunakan TEM, yang terlihat seperti sekumpulan partikel.

Gambar 2. Grafik distribusi ukuran partikel Fe₃O₄@PEG:ZnO (1:2)

Karakterisasi TEM dilakukan untuk melihat struktur *core-shell* dari sampel, yang diwakili oleh sampel Fe₃O₄@PEG:ZnO (1:2) sebagaimana ditunjukkan oleh Gambar 3.

Gambar 3. TEM sampel Fe₃O₄@PEG:ZnO (1:2)

Berdasarkan Gambar 3, nanopartikel Fe₃O₄ terlihat berbentuk bulat membentuk klaster. Klaster-klaster ini menyerupai struktur seperti rantai disebabkan adanya interaksi dipole magnet antara partikel Fe₃O₄ terdekat ^{[13].} Selain itu, juga terlihat adanya lapisan ZnO sebagai *shell* (warna abu-abu) yang melapisi Fe₃O₄ sebagai *core* (warna hitam), dengan kata lain sampel nanokomposit ini tersusun atas *core* dan *shell* ^[4,13].

Pengujian FTIR dilakukan pada material nanokomposit Fe₃O₄@PEG:ZnO (1:2). Pengujian ini bertujuan untuk melihat gugus molekul yang terdapat pada nanokomposit. Hasil pengujian menunjukkan adanya puncak-puncak transmisi yang berkaitan dengan energi vibrasi nanokomposit Fe₃O₄@PEG:ZnO yang ditunjukkan pada Gambar 4. Gugus fungsi yang didapatkan dari FTIR yaitu dengan rentang bilangan gelombang 400-4000 cm⁻¹. Bilangan gelombang 3244,32 cm⁻¹ berkaitan dengan vibrasi gugus -OH (hidroksil). Puncak vibrasi ini menunjukkan terjadinya serapan molekul air pada permukaan nanopartikel

Fe₃O₄. Puncak serapan pada bilangan gelombang 1502,57 cm⁻¹ dan 1392,63 cm⁻¹, terjadinya vibrasi rengangan ikatan besi simetri dan asimetri (C=O). Munculnya vibrasi rengangan ikatan C=O ini berasal dari karbon selama proses sintesis. Adanya PEG-1000 ditunjukkan oleh puncak serapan pada vibrasi C-O dan C-C yaitu 1094,62 cm⁻¹ dan 967,32 cm⁻¹ Bilangan gelombang 858,43 cm⁻¹ dan 637,48 cm⁻¹ terdapat vibrasi ikatan Fe-O tetrahedral dan Fe-O oktahedral serta pada bilangan gelombang 537,14 cm⁻¹ mengindikasikan ikatan Zn-O. Hal ini menujukkan bahwa sintesis Fe₃O₄@PEG:ZnO dengan menggunakan metode kopresipitasi berhasil dilakukan.

Gambar 4. Pola FTIR nanokomposit Fe₃O₄@PEG:ZnO (1:2)

Hasil pengukuran sifat magnetik menggunakan VSM terhadap nanopartikel Fe_3O_4 dan $Fe_3O_4@PEG:ZnO$ diperlihatkan pada Gambar 5. Dari gambar tersebut didapatkan nilai medan koersivitas (H_c) yang cukup rendah yang menunjukan bahwa sampel yang disintesis merupakan bahan superparamgnetik dan nilai magnetisasi saturasi (M_s) yang tinggi. Nilai medan koersivitas (H_c) dan magnetisasi saturasi (M_s) yang berbeda untuk setiap sampel disajikan pada Tabel 1.

Tabel	1.	Sifat	magnet	nanokomposit	Fe ₃ O ₄	4@PEG:ZnC
-------	----	-------	--------	--------------	--------------------------------	-----------

No	Sampal	Sifat Magnet		
	Samper	M _s (emu/g)	$H_{c}(T)$	
1	Fe ₃ O ₄	68,10	0,0031	
2	Fe ₃ O ₄ @PEG: ZnO (1:2)	66,53	0,0037	
3	Fe ₃ O ₄ @PEG: ZnO (1:3)	44,65	0,0038	

Gambar 5. Hasil VSM nanokomposit Fe₃O₄@PEG:ZnO

Berdasarkan Gambar 5 dan Tabel 1, nilai M_s dari nanopartikel Fe₃O₄ yaitu 68,10 emu/gr dan pada sampel Fe₃O₄@PEG:ZnO (1:2) nilai M_s mengalami sedikit penurunan yaitu 66,53 emu/gr. Pada sampel Fe₃O₄@PEG:ZnO (1:3) nilai M_s jauh berkurang dari sampel sebelumnya yaitu 44,65 emu/gr. Penurunan nilai M_s pada nanokomposit Fe₃O₄@PEG:ZnO ini terjadi karena adanya penambahan PEG dan ZnO yang tidak bersifat magnet yang dapat menurunkan jumlah momen magnetik dalam sampel ^[6,13]. Selain itu, disini terlihat bahwa ketebalan *shell* (ZnO) juga mempengaruhi nilai saturasi magnetik, dimana semakin tinggi konsentrasi ZnO maka semakin rendah nilai saturasi magnetiknya ^[6].

KESIMPULAN

Berdasarkan hasil penelitian ini dapat disimpulkan bahwa terbentuknya struktur *core-shell* dari nanokomposit Fe₃O₄@PEG:ZnO dengan PEG:ZnO sebagai *shell* dan Fe₃O₄ sebagai *core*. Nanokomposit Fe₃O₄@PEG:ZnO bersifat superparamagnetik dengan ukuran partikel rata-rata 24 nm. Berdasarkan hasil VSM diperoleh semua sampel bersifat superparamagnetik dengan medan koersivitas yang sangat kecil yaitu mendekati nol dan saturasi magnetik yang tinggi. Nilai optimum diperoleh pada sampel Fe₃O₄@PEG:ZnO (1:2) dengan saturasi magnetik 66,53 emu/g, yang berpotensi untuk dikembangkan sebagai material *bioimaging*.

UCAPAN TERIMAKASIH

Penelitian ini didanai oleh PNBP Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Andalas dengan kontrak penelitian No: 21/UN.16.03.D/PP/FMIPA/2021. Tahun ajaran 2021

DAFTAR PUSTAKA

- 1. Sarangi, T. 2017. Synthesis and Properties of Iron Oxide Particles Prepared by Hydrothermal Method, *IOP Cover. Series: Materials Science and Engineering*, (9)2.
- Silva, R. L. D. S., Figueiredo, A. T. D., Barrado, C. M., & Sousa, M. H. 2017. Luminescent and Magnetic Properties of Fe 3 O 4@ SiO 2: phen: Eu 3+. *Materials Research*, 20(5), 1317-1321.
- 3. Maalej NM, Qu rashi A, Assadi AA, Maalej R, Nasiruzzaman, M, 2015, Synthesis of Gd2O3:Eu nanoplatelets for MRI and fluorescence imaging, *Nanoscale Research Letters*, 10:215.
- 4. Zhao, X., Yu, Q., Yuan, J., Thakor, N. V., & Tan, M. C. 2020. Biodegradable rare earth fluorochloride nanocrystals for phototheranostics. *RSC advances*, *10*(26), 15387-15393.
- 5. Ulya, H. N., & Taufiq, A. 2019. Comparative structural properties of nanosized ZnO/Fe3O4 composites prepared by sonochemical and Sol-Gel methods. In *IOP Conference Series: Earth and Environmental Science*, 276(1), 1-9.
- 6. Gupta, J., Hassan, P. A., & Barick, K. C. 2021. Core-shell Fe3O4@ ZnO nanoparticles for magnetic hyperthermia and bio-imaging applications. *AIP Advances*, *11*(2), 1-6.
- 7. Kandasamy, G., & Maity, D. 2015. Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics. *International journal of pharmaceutics*, 496(2), 191-218.
- 8. Pellico, J., Ellis, C. M., & Davis, J. J. 2019. Nanoparticle-based paramagnetic contrast agents for magnetic resonance imaging. *Contrast Media & Molecular Imaging*, 2019.
- Zavisova, V., Koneracka, M., Kovac, J., Kubovcikova, M., Antal, I., Kopcansky, P., ... & Muckova, M. 2015. The cytotoxicity of iron oxide nanoparticles with different modifications evaluated in vitro. *Journal of Magnetism and Magnetic Materials*, 380, 85-89.
- 10. Astuti, Gaby Claudia, Noraida, Melvira Rahmadani. 2013. Synthesis Of Fe₃O₄ Nanoparticles From Ironstone Prepared By Polyethylene Glycol (PEG) 4000. *Makara Science Series*, (17)2.
- 11. Fernández-Barahona, I., Muñoz-Hernando, M., Ruiz-Cabello, J., Herranz, F., & Pellico, J. 2020. Iron oxide nanoparticles: An alternative for positive contrast in magnetic resonance imaging. *Inorganics*, 8(4), 28.
- 12. Hanemann, T., & Szabó, D. V. 2010. Polymer-nanoparticle composites: from synthesis to modern applications. *Materials*, *3*(6), 3468-3517.
- Kratz, H., Taupitz, M., Ariza de Schellenberger, A., Kosch, O., Eberbeck, D., Wagner, S., ... & Schnorr, J. (2018). Novel magnetic multicore nanoparticles designed for MPI and other biomedical applications: From synthesis to first in vivo studies. *PloS* one, 13(1).