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ABSTRACT 

The original Weber action at a distance theory is valid for slowly varying 

effects, and it in addition to predicting all of the usual electrodynamical 

results, leads to crucial effects where the Maxwell theory fails. The Weber’s 

approach is an alternative to Maxwell electrodynamics, where the Coulomb's 

law becomes velocity dependent [1-6]. Here we prove that the Weber’s 

theory gives the fine structure energy level splitting for the hydrogen atom 

without the assumption of mass change with velocity. 
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INTRODUCTION 

In Maxwell electrodynamics, Newton's third law does not hold for particles. Instead, particles 

exert forces on electromagnetic fields, and fields exert forces on particles, but particles do not 

directly exert forces on other particles. Therefore, two nearby particles need not experience 

equal and opposite forces. Related to this, Maxwell electrodynamics predicts that the laws of 

conservation of momentum and conservation of angular momentum are valid only if the 

momentum of particles and the momentum of surrounding electromagnetic fields are taken 

into account. The total momentum of all particles is not necessarily conserved, because the 

particles may transfer some of their momentum to electromagnetic fields or vice-versa. The 

well-known phenomenon of radiation pressure proves that electromagnetic waves are indeed 

able to "push" on matter, see Maxwell stress tensor and Poynting [7] vector for further details. 

The Weber force law is quite different: All particles, regardless of size and mass, will exactly 

follow Newton's third law. Therefore, Weber electrodynamics, unlike Maxwell theory, has 

conservation of particle momentum and conservation of particle angular momentum. 

The main point to be noted about the Lagrangian method is that when potential energy depends 

only on position of the particle described (here we shall simplify by considering a one-particle 

system) there is a direct relationship between the Lagrangian function L and physical quantities, 

namely, L T V  , where T is the kinetic energy of the particle and V is its physical potential 

energy. But when potential energy depends on particle velocity as well as position the 

formalism loses direct contact with physics and requires a Lagrangian function employing a 

so-called “generalized potential energy” having nothing to do with, and quite distinct from, the 

mailto:jlopezb@ipn.mx
http://en.wikipedia.org/wiki/Maxwell%27s_Equations
http://en.wikipedia.org/wiki/Coulomb%27s_Law
http://en.wikipedia.org/wiki/Coulomb%27s_Law
http://en.wikipedia.org/wiki/Maxwell%27s_equations
http://en.wikipedia.org/wiki/Newton%27s_third_law
http://en.wikipedia.org/wiki/Conservation_of_momentum
http://en.wikipedia.org/wiki/Conservation_of_angular_momentum
http://en.wikipedia.org/wiki/Radiation_pressure
http://en.wikipedia.org/wiki/Maxwell_stress_tensor
http://en.wikipedia.org/wiki/Poynting_vector
http://en.wikipedia.org/wiki/Newton%27s_third_law


Weber’s Electrodynamics for .. Halaman 40 

 

 

physical potential energy, so V no longer enters L.  Then, the physical potential energy must be 

replaced by some non-physical function which we shall designate as S (following Assis-Caluzi 

[2]). Thus L T S   where  ,k kS S q q , the q’s are generalized coordinates and the q ’s are 

the corresponding generalized velocities. This S-function (not to be confused with Hamilton’s 

principal function [8]) must be contrived to “give the right answer” – meaning that the right 

answer (the forces or equations of motion) must be known from other considerations. The 

Hamiltonian H does not suffer of this detachment from physics because it is always equal to 

the total physical energy, H T V  , and is related to L by a Legendre transform [8-11]: 

            
kk

k

L
H q L

q


 


 .                                     (1) 

 

Eq. (1) is often spoken of as the “definition” of H, but that is a mathematician’s way of looking 

at it. The physics is all in H, which always depends on the physical potential energy V; whereas 

L depends on the non-physical “generalized potential energy” S in the case of  a velocity-

dependent physical potential energy, ( , )k kV V q q . 

Weber’s law, in this context, postulates the physical potential energy to be: 
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and the “generalized Lagrangian potential” to be 
2 2

2

0

1
1

4
Weber

Ze r
S

r c

 
  

 
; the Hamiltonian is 

with the reduced mass em  : 
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As the Weber theory has no radiation one can think that it can be useful to calculate the energy 

levels for the hydrogen atom [12, 13] including corrections through order 




2
, where α is the 

fine structure constant [14-18], and compare with the typical corrections through order 




2
 

obtained from the relativistic Dirac’s equation or the Schrödinger’s equation with relativistic 

mass correction and spin-orbit effect. In this paper we show that the Weber electrodynamics 

automatically gives the fine structure energy level splitting of the hydrogen atom [19-24] 

without having to make the additional assumption of mass change with velocity  

Hydrogen fine structure with Weber theory 

Without taking into account the spin of the electron we define:  
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where 



n

0
 is the unperturbed energy, then: 
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For the unperturbed state 




0
of the Schrödinger equation, we have



ˆ P 
2
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. 

 Eq. (5) gives a correction for the relativistic velocity of the electron which is of the order of 
2 2/v c , then using the right-hand-side of this equation, the energy correction is: 

                                            1 0* 0 3

weber weberE H d r      ,                                            (6) 

and 1r   can be calculated with the help of the virial theorem [12, 25, 26]: 

      



T  
1

2
r V ,     



V 
e

2

40r
 T  

1

2
r 

e
2

40











ˆ r 

r 2  
1

2

e
2

40r
.  

Now  



E  T  V  
1

2
V  V =



1

2
V ,  but  

2
0

2

0

1 1

2 4
n

B

e
E E

a n

 
   

 
and 

2
1

04

e
V r




 ,  therefore  1

2

B

Z
r

a n

  . The expectation value 
2r

 is more difficult, 
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It is traditional to write these energy corrections in terms of the Fine Structure Constant [14-

18] 
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The equivalent Weber expression for energy level is: 
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which can be compared with the Klein-Gordon expression or the Schrödinger equation plus the 

term
4 3 2/8p m c  which gives a correction for the relativistic velocity of the electron of order 

2 2/v c : 
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It can be seen from here that the splitting of levels is proportional to the square of the fine 

structure constant. Thus:   
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down by a factor of




2
from the Bohr energies which are themselves proportional to




2
, 

of the same order as the relativistic correction of formula (9) which exactly coincides with the 

expressions for the additional relativistic energy that can be derived in the same approximation 

with the help of the Klein-Gordon equation. 

With the help of the Weber wave equation results the energy spectrum:  
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where the first term is identical to the corresponding expression in the non-relativistic theory 

while the second term, which is proportional to the square of the fine structure constant 

1/137  , gives the relativistic correction. With this expression (11) we can evaluate the 

levels 3/ 2(2 )p 1/ 2(2 )p 1/ 2(2 )s : 
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A consideration of relativistic corrections for the hydrogen atom, Z=1, is interesting since it 

removes degeneracy with respect to l and hence levels with a given value of n spilt up into n 

closely spaced sublevels, because the orbital quantum l may assume n values ( 1, 2, 3..... 1l n 

). 

For the shake of comparison with the experimental result, let us calculate the double splitting 

for the Balmer series (n=2) [28]. With the help of nl  the splitting can be written as  
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R
   , and a comparison of results with the experimental  data shows that 

the real magnitude of the splitting for the Balmer series is about three times less than the value 

obtained experimentally. The reason behind this discrepancy is that the fine structure of the 

atomic levels is not exhausted by the term weberH or relativistic dependence of mass on 
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velocity, so we should also take into account the spin of electron. Obviously the Weber 

equation is applicable to pi-mesons which are particles without spin, in particular, it can also 

describe the motion of negative pi-mesons around the nucleus; such pi-mesons have already 

been observed experimentally. 

At the same time, if we use the Klein-Gordon equation the corresponding splitting is equal to  
2

(2) 8
(2 ) (2 )

3 16
KG

R
s p


    , which is the same result obtained if we take into account 

only the relativistic effects (Klein-Gordon equation), see eq. (9). In this connection, it is 

interesting to note that the fine structure of the hydrogen atom spectrum was first calculated by 

Sommerfeld [14] from Bohr semiclassical theory by taking the relativistic expression for the 

Hamiltonian as the starting point. Sommerfeld obtained without taking spin into account  

(2) 2(2 ) (2 )
16

S

R
s p     . He was not able to show three levels for n=2 whose existence 

was later confirmed experimentally [19-22]. 

Fine structure analysis according to Weber theory plus spin effects 

After some algebra including the spin orbit effect we can write the expression for the energy 

levels of hydrogen atom including corrections through order 




2
. If we take into account the 

fine structure, the energy levels of a hydrogen atom are found to depend on the internal 

quantum number j as well. The corresponding terms are equal to: 
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the factor of 2 at the end comes from the electron spin S=1/2, see [12]. This modification of the 

energy levels of a hydrogen atom due to a combination of relativity and spin-orbit coupling is 

known as fine structure. It is clear that from this formula, in according with the Dirac’s theory, 

the fine structure depends only on the principal quantum number n and the inner quantum 

number j. Unlike the Klein-Gordon theory which does not take into account, the fine structure 

of levels does not depend on the orbital quantum number l in this case. It can be seen in figure 

1 that all levels are split into two sublevels, since two values of j correspond to each value of l. 

For example, instead at the simple level 2p (l=1), we now have two levels 



2
P1 2 and 



2
P3 2 . The 

only exception is the s-level ( 0l  ) for which j can assumes only one value ( 1/ 2j  ). 

It should be noted that due to splitting of the energy levels, the degeneracy undergoes a change. 

Instead, the principal quantum number n assume the following values: n=1, 2, 3. The orbital 

quantum number l  can change from 0l   to 1l n  . The inner quantum number j assumes 

the values 1/ 2j    ( 0l  ) and 1/ 2j   ( 0l  ). The fine structure breaks the degeneracy in 



, 

and the energies are determined by n and j. Fig. 1 shows this effect. Coincidentally, the 

corrections add up in such a way that the 
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2
P1/2 and

2
S1/2 states remain degenerate. 

 

 

 



Weber’s Electrodynamics for .. Halaman 44 

 

 

 

    



2
P3/ 2  

       

  



n  2  =1  S 1 2              



2
S1 2    



  
2
P3 2  

2
P1 2  

2
S1 2                    



2
P1 2    



2
P3 2  

       

    spin-orbit 

               



2
S1 2

2
P1 2  

               spin-orbit 

              + Weber effect 

 
Figure 1. Splitting of energy levels of the hydrogen atom using the Weber theory plus 

spin orbit effects. 

Actually the 



2
S1/2 and

2
P1/2  levels are degenerate even under the complete relativistic Dirac 

equation treatment and the Weber approach. While determining the magnitude of splitting of 

spectral lines, we must take into account the selection rules. Then, instead of one line in the 

Lyman series [29], we shall now get two lines 
(1)

1 2 1 2(1 ) ( )s np    a weak intensity line 

since 0j  , and  
(2)

1 2 3/2(1 ) ( )s np   . 

For the Balmer series line we get the following splitting: 
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1 2 3 2(2 ) ( )s np   ,  
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3/2 3/2(2 ) ( )p nd   , 

(7)

3/2 5/2(2 ) ( )p nd   , 

where the line 3/ 2 3/ 2(2 ) ( )p nd must be missing since in this case delta j=2 (forbidden 

transition). It should be observed that if the degeneracy with respect to l is not removed, the 

lines 
(1) and 

(3)  (as well as 
(2) and

(4) ) coincide with each other, since the initial 

and final levels have the same value for the principal quantum number n and the inner quantum 

number j; similary, we can determine the law of splitting for other lines. In this case, the lowest 

energy level which undergoes splitting is the level with n=2. For a hydrogen atom (Z=1), the 

splitting of this level was experimentally investigated quite extensively. The level n=2 must 

split into three levels, and in concordance with the theory described above, two of these levels 

coincide: 
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In accordance with the Dirac’s theory we get 
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p p     which is 

found to be equal to 
41.095 10x MHz (H fine structure). 
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Also, for 



2
S1/2  and 

2

1/ 2P the degeneracy is lifted (slightly) by quantum electrodynamics due to 

the interaction of the electron with its own electromagnetic field.  The



2
S1/2  level shifts upward 

ever so slightly, this is known as the Lamb shift [30-33], and it is of order 
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mec
2


5
log : 

                         
2 2

1/ 2 1/ 22 2 1057.862  S P MHZ  (microwave range Lamb shift). 
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