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ABSTRACT 

In this paper, we show that the exact energy eigenvalues and eigen functions of the Schrödinger 
equation for charged particles moving in certain class of noncentral potentials can be easily 
calculated analytically in a simple and elegant manner by using Supersymmetric method 
(SUSYQM). We discuss the trigonometric Scarf plus Poschl-Teller systems. Then, by operating 
the lowering operator we get the ground state wave function, and the excited state wave functions 
are obtained by operating raising operator repeatedly. The energy eigenvalue is expressed in the 
closed form obtained using the shape invariant properties. The results are in exact agreement with 
other methods. 
 
Keyword: Supersymmetry, Trigonometric Scarf plus Poschl Teller,  Non-central potentials 
 

ABSTRAK 
 

Nilai eigen dan fungsi eigen energi eksak dari persamaan Schrodinger untuk partikel bermuatan 
yang bergerak dalam potensial non-sentral dapat dengan mudah dihitung secara analitik 
menggunakan metode supersimteri (SUSYQM). Selain itu, sistem yang dibahas adalah 
Trigonometri Scarf plus Poschl-Teller. Lowering Operator menghasilkan fungsi gelombang 
keadaan dasar sedangkan Raising Operator menghasilkan fungsi gelombang keadaan tereksitasi. 
Nilai eigen energi diekspresikan dalam bentuk tertutup yang diperoleh dengan menggunakan sifat-
sifat shape invariant. Hasil-hasil eksak yang diperoleh sesuai jika menggunakan metode-metode 
lainnya.  
 
Kata kunci: Supersymmetry, Trigonometric Scarf plus Poschl Teller,  Non-central potentials 

 
INTRODUCTION 

One of the important work in theoretical physics is to obtain exact solution of the 
Schrödinger equation for special potentials[1-3]. It is well known that exact solution of 
Schrödinger equation are only possible for certain cases. The exact solution of Schrödinger 
equation for a class of non-central potentials already studied in quantum chemistry. With the 
advent of supersymmetric quantum mechanics SUSYQM[1-3], and the idea of shape 
invariance [4], study of potential problems in non-relativistic quantum theory has received 
renewed interest. SUSYQM allows one to determine eigenvalues and eigenstates of known 
analytically solvable potentials using algebra operator formalism without ever having to solve 
the Schrödinger differential equation by standard series method. However, the operator 
method has so far been applied only to one dimensional and spherically symmetric theree 
dimensional problems. Supersymmetri is, by definition[5-8], a symmetry between fermions 
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and boson. A supersymmetric field theoretical model consists of a set of quantum fields and 
of a lagrangian for them which exhibit such a symmetry. The Lagrangian determines, through 
the action principle, the equations of motion and hence the dynamical behaviour of the 
particle. 
 
Recently, some authors have investigated the energy spectra and eigenfunction with Non-
central potential[9-13], Trigonometric Poschl-Teller plus Rosen-Morse using SUSY[9], Hulthén 
plus Manning-Rosen potential[10], and Scarf poential plus Poschl-Teller using NU[12]. In this 
paper, we investigate the energy eigenvalues and eigenfunction of trigonometric Scarf plus 
Poschl-Teller potential non-central potentials using SUSYQM method. The trigonometric 
Scarf potential is also called as generalized Poschl-Teller potential[13]. The  trigonometric 
Poschl-Teller play the essential roles in electrodynamics interatomic and intermolecular 
forces and can be used to describe molecular vibrations. Some of these trigonometric 
potential are exactly solvable or quasi – exactly solvable and their bound state solutions have 
been reported[14-17]. 
 

Review of Formula for Supersymmetry Quantum Mechanics 

Supersymmetry Quantum Mechanics (SUSY QM) 

Witten defined the algebra of a supersymmetry quantum system,  there are super charge 
operators iQ which commute with the Hamiltonian ssH [19] 

  0, ssi HQ with,i= 1, 2, 3, …N  (1) 

and  they obey to algebra    ssijji HQQ ,  

with ssH  is called Supersymmetric Hamiltonian. Witten stated that the simplest quantum 

mechanical system has N=2, it was later shown that the case where N = 1, if it is 
supersymmetric, it is equivalent to an N = 2 supersymmetric quantum system[5]. In the case 
where N = 2 we can define, 
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Here the σ୧ are the usual Pauli spin matrices, and 
x

p

 1  is the usual momentum 

operator. For example two component, we shall write ssH  as H . Using equation (1) and (2) 

we get, 
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and,   
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with Hି  and Hା, is defined as supersymmetry partner in the Hamiltonian. )(xV and )(xV  are 
the supersymmetry partner each other.  
Thus, solving equation (4a) and (4b), Hamiltonian equation can be faktorizated,  

AAxH 
 )( ,and 

  AAxH )(                                                                    (5) 
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with, A  as raising operator, and A  as lowering operator. 

Shape Invariance 

Gendenshteın[4] discovered another symmetry which if the supersymmetric system satisfies it 
will be an exactly solvable system, this symmetry is known as shape invariance. If our 
potential satisfies shape invariance we can readily write down its bound state spectrum, and 
with the help of the charge operators we can find the bound state wave functions. It turned 
out that all the potentials which were known to be exactly solvable until then have the shape 
invariance symmetry. If the supersymmetric partner potentials have the same dependence on 
x but differ in a parameter, in such a way that they are related to each other by a change of of 
that parameter, then they are said to be shape invariant. Gendenshteın stated this condition in 
this way, 
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where j = 0,1,2,.., and a is a parameter in our original potential whose ground state energy is 
zero. )(1 jj afa   where  f  is assumed to be an arbitrary function for the  

time being. The remainder )( jaR  can be dependent on the parametrization variable a but 

never on x. In this case V is said to be shape invariant, and we can readily find its spectrum,  
take a look at H, 
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Acoording to equation (9) a further equation is obtained between )(xV and )(xV  we get, 
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(10) 

where )(xV  is often stated os effective potential 
effV . While )(x is determined hypothetically 

based on the shape of effective potential from the associated system. 

The hamiltonian equation can be generalized, 
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By comparing equation (8) and (9), it is found that  
 k

i iaRE
10 )( . So that, in eigen energy 

spectra, the value of Hି, can be generalized as follows,  
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Furthermore, we get the total energy spectra,  
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with ܧ଴ as ground state energy in a Hamiltonian lowering partner potential. 

Based on the characteristics of lowering operator, then the equation of ground state wave 
function can be obtained from the following equation, 

0)(
0 A  (14) 

Meanwhile, the excited wave function, one and so forth ߰௡ି  ሺݔ; ܽ଴ ሻ can be obtained by using 
raising operator and ground state wave function ߰଴ି  ሺݔ; ܽ଴ ሻ. In general, the equation of wave 
function can be stated as follow,  
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Solution of Schrödinger Equation for Trigonometric Scarf Plus Poschl-Teller Non-
Central Potential Using Supersymmetry 
Schrödinger equation trigonometric Scarf plus Poschl-Teller Non-central potential is the 
potentials present simulataneusly in the quantum system. This non-central potential is 
expressed as[11], 
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The three dimensional Schrödinger equation for trigonometric Scarf plus Poschl-Teller non-
central potential is written as, 
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If equation (17) multiplied by factor (
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method since the non-central potential is separable. By setting )()()(),,(   PrRr ,with
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 From equation (18) we obtain radial and angular Schrödinger equation as, 
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with ݈ሺ݈ ൅ 1ሻ is constanta variabel separable, where   as orbital momentum number[11]. 

From equation (19) we get radial and angular wave function Schrödinger equation with single 
variable as following, 
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or equation (20) multiplied by ( 2r

R ), with r
rrR )()(  , so using symple algebra, we get, 
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and than, for solve radial Schrödinger equation, we use approximation for centrifugal term[18],  
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From equation (22) simplied by (
m2

2 ) we get radial Schrödinger equation,  
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and we have the angular and Schrödinger equation as, 
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With 2m as variable separation and we get angular Schrödinger equation one dimentional, 
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The Solution of Radial Scrodinger Equation Trigonometric Scarf plus Poschl Teller 
Potential 
Factor R in equation (20) is defined as wave function  , then the Schrödinger equation for 

trigonometric Scarf plus Poschl Teller non-central potential in radial with the assumption of 
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Based on equation (28), the effective potential of radial SE trigonometric Scarf potential plus 
Poschl Teller can be rewritten as follow, 
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By inserting effective potential in equation (30) into equation (10), its obtained 
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By using incisive hypothesis, it is assumed that superpotential in equation (30) is, 
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Where A and B are indefinite constantans that will be calculated. From equation (32), we can 

determine the value of )(' x  and )(2 x , then the result is distributed into equation (31), then 
the following is obtained, 
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By analysing the similar concept between left flank and right flank, from equation (33), it is 
obtained, 
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(34) 

From the three equation in equation (34), it is obtained, 
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(35b) 
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(35c) 

The value of A and B are determined in certain way so the value of ܧ଴ is equal to zero, so, 
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By using equation (6) and (36), we get 
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And,
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The ground state wave function can be obtained from equation (14) and (38), which are, 
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Then the ground state wave function of Scarf potential is as follow, 
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By using equation (15) we can obtain excited wave function on the first level as follow,  
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1 araxAar                                                                      (40)  
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where 110  MaMa , and 110  MaMa  …, nMan  , is the independent parametre to variable 

“r”. By inserting the value of the parametre to equation (39) and (37) and by using equation 
(40), the following we get, 
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The breakdown in equation (41) can be continued to find wave function 
);(),;( 0

)(
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2 axar   , ... and so on. 

The determination of the potential partner which have shape invariant, by using equation (8a) 
and (8b) results, 
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(42a) 

and, 
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(42b) 

If we have choose parameters ܽ଴ ൌ ; ܯ ܽଵ ൌ ܯ ൅ 1,  … 
then Vିሺr, aଵሻ Obtained if on equation (42) the value of v′, changed into v′ ൅ 1, i.e 
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  (43)  

From those equation (42b) and (43) can be seen that V+ (r,a0) have similar shape with Vିሺr, aଵሻ, and with using shape invariance  relation on equation (8) obtained R(a1) i.e,, 
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We repeat the step as on the determination of equation (48) by using the steps equation (42a), 
(42b), and (43), to obtain equation Vାሺr, aଵሻ and Vି ሺr, aଶሻ, so obtained, 

      2
2
3

22

2

22

2

2
4

15222

1 2)(sin

)cos(
22

2)(sin

4

2
),( 


 M

mr

r
MK

mr

KMM

m
arV






 

 (4.5) 

      2
2
5

22

2

22

2

2
4

15222

2 2)(sin

)cos(
22

2)(sin

4

2
),( 


 M

mr

r
MK

mr

KMM

m
arV






 

  (45b) 

From equation (45a) and (45b) so obtained, 
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(46) 

Then, the determination steps on equation (44) or equation (46) above are repeated until 
parameters heading to n, an  to determinate R(an) and finally obtained, 

    2

2
12

2
1

22

1

)(

2
)(   

 MnM
m

aRE
n

k kn



 
(47) 

If equation (47) and equation (36c) incorporated to equation (13) obtained energy spectrum 
for Scarf system i.e., 
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with, 'nE , and
2
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4
1)1()1'(''   , so equation (48) can be rewritten energy 

solution of Schrödinger equation for trigonometric Scarf plus Poschl-Teller non central 
potential as,   

nE
m

 2
2

2

  

  0

2

2
1

22

2

2

)1(
2

2

2
dnM

m
E

m

m







 





   

  0

2

2
1

22

)1(
2

dnM
m

Enr  
 

 
(49) 

Equation (49) showed the  energy spectra of  trigonometric Scarf plus Poschl-Teller non 
central potential. The results are in exact agreement with derived using NU method [11] with,  ℏ : planck constants,  ݉ : mass of particle ܽ and ܾ : constants potential depth,  ݊ : principe quatum numbers, ݊=1,2,3…  ݊ݎ : radial quantum numbers, ݊0,1,2=ݎ…  ݈ : orbital quantum numbers (the value same with polar wave function solving) ݈=0,1,2…݊−1. 
 
The Solution of Angular Schrödinger Equation Trigonometric Scarf Plus Poschl-Teller 
Non-Central Potential. 
To ease the solution of angular Schrödinger Equation, i.e., 
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If equation (50) incorporated to equation (28) so angular Schrödinger equation of  
Trigonometric Scarf plus Poschl-Teller non central potential chanced into, 
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(51) 

Based on equation (51), effective potential of angular Poschl-Teller plus Scarf non central 
potential describe as, 
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if, )1'(')1( 4
12  aamaa , we get 
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According to the form of those effective potential equations, then superpotential equation of 
angular Scarf plus Poschl-Teller non central potential can be describe as,  

         cottan)( BA                                                                                     (54) 

where A and B are unstable constant that will be counted. From equation (54), determinated 
value of ߶଴′ ሺݔሻ and ߶଴ଶሺݔሻ, thus the results are subtituted into equation (6), obtained relation,  
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By using in common concept of coefficient between left and right internode, so that from 
equation (55), value is obtained, 
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from those third equation on equation (56) is obtained, 
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A and  B value are chosen so that )(
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E  value is zero. By using equation (8a) and (8b) are 

obtained, 
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From  those two equations (59a) and (59b) is obtained a଴ ൌ a′;  b଴ ൌ b;  
 ܽଵ ൌ ܽ′ ൅ 1; ܾଵ ൌ ܾ ൅ 1; …   
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From those two equation (59b) and (60) can be seen that V+ (ߠ,a0ܾ଴) have the same form with ܸି ሺߠ, ܽଵܾଵሻ , and by using shape invariance relation on equation (8), is obtained ܴሺܽଵܾଵሻ i.e., 
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We repeated the step as on determination of equation (61) with using steps equation (59), and 
equation (60) to obtain Vାሺθ, aଵbଵሻ and Vି ሺθ, aଶbଶሻ equations, so obtained, 
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By repeated the step from equation (62a) to (62b) we often,  
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Then determination steps on equation (61) or equation (63) on above are repeated until 
parameters heading to n, anܾ௡ to deteminate R(anܾ௡) as on equation (64) and finally obtained 
the order of energy parameters that described, 
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If equation (65) and equation (57c) are inserted into equation (13) we obtain, 
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2
12' )1(  maaa  

By using the same order of energy parameters with eigen value of angular square momentum 
as mentioned on equation (66) so obtained angular quantum numbers that described as, 
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angular quantum numbers on equation (67) is used to calculate energy spectrum equation 
(49) with potential non central system.              

By using equation (6) and (58) are obtained 
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By using decreasing operator on equation (68b), determinated basic wave function for 
angular trigonometric Poschl-Teller plus Scarf non-central potential as follows, 
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Then, by using increasing operator on equation (68a) and basic wave function determinated 
first level excited wave function, 
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To determinate excited eigenfunction above can be done as on determination of  first level 
excited wave function as follows, 
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Therefore obtained wave function level that is wanted, with ܽᇱ ൌ ඥܽሺܽ െ 1ሻ ൅ ݉ଶ ൅ ଵଶ 

RESULT AND DISCUSSION 

It has been shown that the eigen spectra and eigenfunction Schrodinger equation of Scarf 
potential plus Poschl-Teller non-central potential is solved exactly using Supersymmetric 
method. The energy spectrum of the system is obtained in the closed form, showed by 
equation (49) and the radial ground state wave function by equation (29), and angular wave 
function by equation (69).The presence of Poschl-Teller non-central potential causes the 
decrease in energy spectrum of Scarf potential and increases the orbital quantum number. 
Where the complete eigenfunction in form ),,( mnn lrtot , with m positif, we obtain, 
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CONCLUSION 

Based on the describtion, on III and IV point, proved that the energy spectra and 
eigenfunction for trigonometric Scarf plus Poschl Teller non central potential with group of 
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shape invariance potential can be solved using Supersimmetric method (SUSYQM). By 
operating the lowering operator we get the ground state wave function, and the excited state 
wave functions are obtained by operating raising operator repeatedly. The energy eigenvalue 
is expressed in the closed form obtained using the shape invariant properties. The results are 
in exact agreement with NU methods.  
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