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ABSTRACT  

Hypertension is one of the leading causes of death worldwide and often goes undetected due to its 

minimal symptoms. Early detection is crucial, and one non-invasive method involves the use of 

photoplethysmogram (PPG) signals. PPG-based analysis also supports cuffless blood pressure 

monitoring, offering a more comfortable and continuous alternative to traditional cuff-based 

methods. However, PPG signals contain a large number of features, which can lead to information 

redundancy and decreased model performance. This study proposes a hypertension detection system 

based on a CNN-SVM combination, preceded by feature selection using position-based indices 

(odd, even, specific multiples) to reduce data dimensionality and accelerate computation. This 

simple feature selection approach, which is rarely explored in previous studies, aims to reduce 

dimensionality without requiring complex computations. The PPG signal dataset was obtained from 

216 patients at UNS Hospital. After preprocessing and feature selection, feature extraction was 

performed using a Convolutional Neural Network (CNN), followed by classification using a 

Support Vector Machine (SVM). The model was evaluated under three classification scenarios: 

normal vs. prehypertension-hypertension, normal-prehypertension vs. hypertension, and three-class 

classification. The best classification accuracy achieved was 93.10% for the normal vs. 

prehypertension-hypertension scenario. The result shows that the method used in this study is 

practical because it is simple and computationally efficient, but still gives good accuracy. This 

suggests that simple feature selection strategies can effectively enhance PPG-based hypertension 

detection.  

Keywords: Hypertension Detection; Photoplethysmogram (PPG); CNN-SVM; Index-Based 

Selection; Cuffless Monitoring 

INTRODUCTION  

Hypertension is one of the leading causes of death worldwide and is often referred to as the 

"silent killer" because it usually has no symptoms in the early stages[1]. According to the World 

Health Organization, approximately 1.28 billion adults aged 30 to 79 are estimated to be living 

with hypertension globally, with 46% of them unaware of their condition. This lack of 

awareness is due to the fact that hypertension typically shows no symptoms until it reaches a 

critical stage[2]. Regular blood pressure monitoring plays an essential role in early prevention. 

However, current measurement techniques, both invasive and non-invasive (cuff-based), have 

some drawbacks, including patient discomfort, risk of infection, and impracticality for 

continuous monitoring[3,4].  

https://doi.org/10.13057/ijap.v15i2.102421
https://doi.org/10.13057/ijap.v15i2.102421
mailto:*wiharto@staff.uns.ac.id
mailto:*wiharto@staff.uns.ac.id


Implementation of CNN-SVM … page 331 

 

Copyright © 2025 Universitas Sebelas Maret 

With advancements in biomedical technology, photoplethysmogram (PPG) signals have 

emerged as a promising non-invasive and cuffless alternative for monitoring cardiovascular 

parameters, including blood pressure[5]. PPG sensors measure variations in blood volume 

through light absorption at the skin surface, commonly at the fingertip or wrist[6]. These signals 

are easy to acquire and inexpensive, making them suitable for wearable devices. From these 

signals, various physiological parameters can be derived, such as heart rate, blood pressure, and 

blood flow[7]. To ensure accurate interpretation, PPG signals must be properly processed and 

classified using machine learning (ML) techniques, which serve as the primary focus of this 

research. Traditional methods such as Pulse Transit Time (PTT), Pulse Arrival Time (PAT), 

and Pulse Wave Velocity (PWV) estimate blood pressure using mathematical models. 

However, these approaches have notable limitations, such as needing multiple sensors, complex 

modelling, and frequent calibration[3]. ML offers a more practical, adaptive, and accurate 

approach for estimating blood pressure using only PPG signals. 

Previous studies have used different machine learning methods to detect hypertension from 

PPG signals, such as CNN-LSTM models[8] and regression models on FPGA hardware[5]. These 

models gave good results, with the CNN-LSTM achieving an accuracy of 76% and the 

regression model reaching up to 92.42%. However, many studies still face challenges in 

effectively handling high-dimensional data. To address this, feature selection is often 

employed. Yet, many studies rely on complex methods, such as Wavelet Scattering Transform 

(WST)[2], achieving 71.42% accuracy, or deep spectral-morphological networks (e.g., MTFF[9] 

and CS-NET[10], both achieving 98.7% accuracy), which demand high computational resources 

and are often trained on public datasets that lack population diversity. Using local data is 

important due to the characteristics of body signals can vary between populations such as skin 

pigmentation. The research results showed that people with darker skin tone may get less 

accurate PPG readings because their skin absorbs more infrared light before it reaches the blood 

vessels. Many public datasets mostly contain data from lighter-skinned individuals, which can 

cause bias and make the models less accurate for other groups[11]. 

This study focuses on developing a hypertension detection model based on local PPG signal 

data from UNS Hospital. The approach utilizes a simple feature selection technique based on 

positional indices (e.g., odd, even, specific multiple positions) to reduce dimensionality and 

processing time. This method is rarely explored in previous research. The selected features are 

then processed through a hybrid CNN-SVM architecture, which has demonstrated strong 

performance in biomedical signal analysis[10]. The combination of CNN and SVM leverages 

the strengths of both methods: CNN excels at extracting noise-resilient features, while SVM 

provides robust classification by maximizing the decision margin. Replacing the CNN’s 

classification layer with an SVM, can enhance the model’s accuracy and generalization 

capabilities[12]. The proposed model also aims to provide better relevance and generalizability 

to local populations, where physiological differences such as skin pigmentation may affect PPG 

signal quality. Overall, this approach offers an alternative that is both accurate and 

computationally efficient, and more suitable for Indonesian population. 

 

METHOD  

The workflow of this study for detecting hypertension using PPG signals is illustrated in Figure 

1. This research is an experimental quantitative study, as it involves designing, testing, and 

evaluating a computational model based on measured numerical data. It consists of several main 

stages: dataset collection, preprocessing, feature selection, feature extraction, classification, and 

model evaluation. The initial stage begins with collecting PPG signal data from local sources, 
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followed by preprocessing to enhance data quality. This process includes handling missing 

values, removing duplicates, and grouping the data into several classification scenarios. Next, 

feature selection is performed based on positional indices, with several experimental schemes 

such as selecting odd indices, even indices, multiples of 3, and multiples of 4. The selected 

feature data is then used as input for a hybrid CNN-SVM architecture, where CNN is 

responsible for extracting important features from the signals, and SVM acts as the classifier. 

Various configurations of CNN (number of layers, number of filters, kernel sizes) and SVM 

(kernel types, C parameter) are tested to obtain the best parameter combination. Finally, the 

model's performance is evaluated using metrics such as accuracy, specificity, sensitivity, and 

F1-score to assess the system's effectiveness in detecting hypertension based on PPG signals. 

The computational experiments were conducted using Google Colaboratory, a cloud-based 

Python programming environment that provides GPU support and facilitates real-time 

collaboration and reproducibility of the research workflow. 

 

Figure 1. Proposed system for hypertension detection using PPG signals 

 

PPG Dataset  

The PPG data used in this study were collected from patients at UNS Hospital using a device 

developed by Nuryani[13] using Arduino and Android-based device. The system consists of 

several main components: the Easy Pulse Plugin PPG sensor, Arduino Nano, HC-05 Bluetooth 

module, and an Android application as the user interface. As shown in Figure 2, the PPG sensor 

detects changes in light intensity reflected by blood flow in the fingertip. It emits light using an 

LED and captures it with a photodiode, detecting changes in blood volume caused by heartbeats 

and converting them into signals. The signal is sent to the Arduino Nano, where a peak detection 

algorithm using thresholding and time interval constraints. The processed PPG signal is then 

wirelessly transmitted via the HC-05 Bluetooth module to an Android smartphone. Data is sent 

every 5 ms, allowing real-time and practical heart rate monitoring through the mobile app. 
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Figure 2. Structure of the PPG Measurement System[13] 

Recordings were conducted for 2 minutes per patient across 216 individuals. There were no 

specific inclusion or exclusion criteria applied in selecting the patients; the data were collected 

randomly from available patients. The PPG signal was segmented into one-second intervals, 

each representing a single pulse and consisting of 120 data points, resulting in a total of 30,694 

samples. Of these, 21,884 samples were from hypertensive patients, 5,766 from 

prehypertensive patients, and 3,045 from individuals with normal blood pressure. 

As illustrated in Figure 3, the three blood pressure categories have clear visual differences. In 

normal patients, as shown in Figure 3a, the signal descends gradually. In prehypertensive 

individuals, as illustrated in Figure 3b, the signal drops more quickly and then flattens, creating 

a slight notch. Meanwhile, in hypertensive patients, as can be seen in Figure 3c, the signal 

shows a sharper decline, making it steeper than the other two.  

 

 

 

 

 (a)  

  

(b) (c) 

Figure 3. PPG data for each category (a) Normal, (b) Prehypertension, (c) Hypertension 

Preprocessing 

Before training, the dataset underwent several preprocessing steps to ensure data quality and 

consistency. First, missing values were identified and removed to prevent potential bias and 

learning disruption during model training. Duplicate records were also eliminated to avoid 

redundancy and ensure that each sample contributed uniquely to the learning process. After 

cleaning, the data were grouped into different experimental settings based on classification 
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scenarios. The first experiment was a binary classification between normal vs. prehypertensive-

hypertensive, to separate healthy people from those at risk or already having high blood 

pressure. The second experiment also used binary classification, between normal-

prehypertension vs. hypertension, to tell apart people still in the early stage from those who 

already have hypertension. The third experiment used three classes—normal, prehypertension, 

and hypertension—for a more detailed classification that clearly separates all three conditions. 

This grouping allowed for comprehensive evaluation of model performance across different 

levels of diagnostic granularity. Table 1 presents the distribution of data across the experimental 

groups after preprocessing.  

Table 1. The distribution of data in each Experiment after preprocessing 

Experiment Blood Pressure Category 
Total 

Data 

Experiment A Normal 3,045 

 Prehypertension - Hypertension 13,949 

Experiment B Normal - Prehypertension 8,811 

 Hypertension 8,183 

Experiment C Normal 3,045 

 Prehypertension 5,766 

 Hypertension 8,183 

 

Feature Selection 

  

(a) (b) 

  

(c) (d) 
 

Figure 4. Visualization of the selected features (a) Odd Index, (b) Even Index, (c) Multiples of 3 Index, (d) 

     Multiples of 4 Index 

After the duplicate data removal process, feature selection was carried out. Four feature 

selection schemes were applied, based on positional indices: odd indices, even indices, 

multiples of 3, and multiples of 4. A visualization of the selected features for each scheme is 
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shown in Figure 4. Visually, the overall shape of the signals did not change significantly; 

however, the number of features was substantially reduced. From the original 120 features, the 

count was reduced to 60 features for the odd and even index schemes (Figure 4a and 4b), 40 

features for the multiple-of-3 scheme (Figure 4c), and 30 features for the multiple-of-4 scheme 

(Figure 4d).  

CNN-SVM Architecture 

In this study, a hybrid Convolutional Neural Network–Support Vector Machine (CNN-SVM) 

model was employed to perform hypertension classification based on PPG signals. The CNN 

component functions as a feature extractor, while the SVM acts as a classifier. The CNN 

architecture receives raw or pre-processed PPG data and extracts features, which are 

subsequently flattened and passed into the SVM for classification as shown in Figure 5. 

 

Figure 5. CNN-SVM Architecture 

Rather than using a fixed CNN architecture, this study tested several experimental experiments 

involving different CNN configurations to identify the most effective setup for each 

classification scenario. These configurations varied in the number of convolutional layers, filter 

sizes, and kernel sizes. The convolutional layers function to extract spatial features from input 

data, while pooling layers reduce the dimensionality and help retain the most important 

information[14]. In each experiment, the CNN model that gave the highest validation accuracy 

was chosen as the best model for that experiment. 

After feature extraction, the output from the CNN was flattened and passed to the SVM 

classifier. The SVM then performed classification by finding the optimal hyperplane that 

separates classes with the maximum margin [15]. To determine the most suitable SVM 

configuration, several kernel types were tested, including linear, polynomial, and radial basis 

function (RBF). Hyperparameters such as the regularization parameter C and kernel-specific 

parameters (such as gamma for RBF and degree for polynomial) were also tuned during 

experimentation. The best-performing SVM model for each experiment was selected based on 

validation performance metrics.  
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Figure 6. Illustration of 5-fold cross-validation 

To validate the classification performance of the model, the k-fold cross-validation method is 

used with 5-fold. Each fold involved training the CNN feature extractor and then training an 

SVM model using the extracted features. In this method, the data is divided into 5 equally sized 

parts. In each iteration, one part is used as testing data, while the remaining parts are used as 

training data. This process is repeated 5 times so that each part is used as testing data once [16]. 

After all iterations are completed, the accuracy, precision, recall, and F1-Score of each fold is 

calculated and then averaged to obtain the final accuracy of the system. An illustration of 5-

fold cross-validation is shown in Figure 6. 

To evaluate the model’s performance, this study uses several key evaluation metrics; accuracy, 

sensitivity, specificity, and F1-Score[17]. Accuracy indicates how often the model’s prediction 

are correct for both positive and negative classes. Sensitivity measures the model’s ability to 

correctly detect all positive cases of hypertension. On the other hand, specificity shows the 

model’s ability to correctly identify negative cases, referring to individuals who do not have 

hypertension. F1-Score assesses the balance between the model’s precision and its ability to 

comprehensively identify positive cases[18]. By using these metrics, the model’s performance 

can be assessed more comprehensively, especially in medical applications. 

 

RESULTS AND DISCUSSION  

In this study, a series of experiments was carried out to find the best model for detecting 

hypertension using PPG signals. The experiment was divided into several stages. The first step 

was to test different numbers of CNN layers, consisting of 3, 4, and 5 to see which gave the 

best results. The best number of layers was chosen based on how well each performed during 

validation. Once the number of layers was decided, the next step was to test other parts of the 

model, such as the number of filters, kernel sizes, and stride values. Each configuration was 

evaluated using 5-fold cross-validation to identify the most effective architecture for extracting 

relevant features from the PPG data.  

After obtaining the optimal CNN architecture, the features it produced were tested with 

different machine learning classifiers. The classifiers tested included Support Vector Machine 

(SVM), Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), Gradient 

Boosting (GB), and Extreme Gradient Boosting (XGBoost). Among them, SVM gave the best 

results across all three experiment experiments and was therefore selected for further 

optimization. The performance of each classifier is shown in Table 2. 
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Table 2. Comparison of CNN performance with classifiers 

Model Experiment A Experiment B Experiment C 

    

CNN-SVM 92.10% 86.82% 79.72% 

CNN-LR 91.63% 86.43% 79.52% 

CNN-DT 89.04% 85.81% 77.05% 

CNN-RF 91.70% 86.49% 77.74% 

CNN-GB 91.73% 86.42% 77.97% 

CNN-XGBoost 91.53% 86.58% 79.19% 

For the SVM, additional tuning was performed to find the best combination of parameters. This 

included experimenting with various kernel functions (linear, RBF, and polynomial), as well as 

adjusting hyperparameters such as the regularization parameter C, kernel coefficient gamma, 

and degree. The best-performing configuration was selected individually for each scenario, as 

the optimal setup varied depending on the data distribution and classification task. Table 3 

summarizes the performance of different CNN architectures and classifier combinations across 

the three experiments. 

Table 3. The optimal set of parameters for CNN-SVM after tuning  

Experiment 
CNN 

Layers 
Filters 

Kernel 

Size 

Strides SVM 

Kernel 

C Accuracy 

        

Experiment A 4 16-128 7x7 3 linear 100 92.10% 

Experiment B 4 16-128 7x7 2 linear 10 86.87% 

Experiment C 4 16-128 9x9 2 linear 100 79.72% 

In each experiment, the CNN architecture with 4 layers using 16, 32, 62, and 128 filters proved 

to be the most effective. This means that this architecture shows the consistency of effectiveness 

in extracting features from PPG signals. Additionally, all experiments employed a linear kernel 

in the SVM, indicating that the features extracted by the CNN were sufficiently linearly 

separable. 

After identifying the best CNN architecture and classifier combination for each experiment, the 

next step involved applying feature selection to further enhance the model’s performance and 

efficiency. Initially, a simple index-based feature selection method was applied, which reduced 

the input dimension by selecting features based on positional patterns such as odd-indexed, 

even-indexed, multiples of 3, and multiples of 4. The performance results of the feature 

selection can be found in Table 4. 

Table 4. The performance of the feature selection methods across all experiments  

Feature Selection 

Method 
Experiment A Experiment B Experiment C 

    

odd-indexed 92.81% 88.38% 81.64% 

even-indexed 92.12% 86.34% 80.06% 

Multiples of 3 93.10% 88.15% 82.79% 

Multiples of 4 91.91% 85.44% 78.86% 

In Experiment A and Experiment C, the feature selection method using multiples of 3 gave the 

highest accuracy, which were 93.10% and 82.79%, respectively. This shows that selecting 
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features at every third index can still retain important information from the PPG signal, even 

with fewer input features. In Experiment B, the odd-indexed feature selection method produced 

the best accuracy at 88.38%. Meanwhile, in all experiments, the method using multiples of 4 

consistently gave the lowest accuracy compared to the other methods. These results suggest 

that features at odd indexes or at multiples of 3 captured important patterns for differentiating 

blood pressure conditions. This shows that feature subsets taken periodically with a certain 

interval are able to capture quite representative information from the PPG signal. 

Table 5. Performance metrics of the best parameter combination for each experiment  

Experiment Model Accuracy Specificity Sensitivity F1-Score 

      

Experiment 

A 

Multiples of 3 

feature selection – 

CNN-SVM 

93.10% 72.41% 97.17% 95.85% 

Experiment 

B 

Odd indexed 

feature selection – 

CNN-SVM 

88.38% 87.85% 88.83% 88.04% 

Experiment 

C 

Multiples of 3 

feature selection – 

CNN-SVM 

82.79% 90.63% 82.79% 82.86% 

Table 5 presents the performance evaluation of the CNN-SVM model using the best parameter 

combinations for each Experiment, based on accuracy, specificity, sensitivity, and F1-score. In 

Experiment A, which used features based on multiples of 3, the model achieved the highest 

accuracy of 93.10% and sensitivity of 97.17%, indicating strong performance in detecting 

positive cases. However, its specificity was relatively low at 71.41%, suggesting weaker 

performance in identifying negative cases. Experiment B, using odd-indexed features, showed 

a more balanced performance with 88.38% accuracy, 87.85% sensitivity, and 88.44% 

specificity, indicating consistent detection of both positive and negative cases, though slightly 

less effective than Experiment A in identifying positives. Experiment C, using features of 

multiples of 3, achieved the highest specificity of 90.63%, but with lower accuracy and 

sensitivity at 81.79%, implying that the model is better at avoiding false positives but may miss 

actual hypertension cases. 

 

Figure 7. Learning Curve 

Figure 7 shows the learning curve graph during the model training process. Both the training 

loss and validation loss show a decreasing trend as the number of epochs increases, indicating 

that the model is progressively learning the data patterns. The validation loss decreases during 
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the early stages of training and begins to stabilize around the 40th epoch, suggesting that the 

model has reached a point of convergence. There is a slight gap between the training and 

validation loss, but this gap remains consistent and does not widen, indicating that the model’s 

generalization ability is still within acceptable limits. Moreover, there are no prominent signs 

of overfitting, as the validation loss does not increase even though the training loss continues 

to gradually decline. 

Besides using the index-based method, this study also tested other well-known techniques for 

reducing the number of features, such as Principal Component Analysis (PCA), Kernel PCA 

(KPCA), and Linear Discriminant Analysis (LDA). Table 6 presents the performance 

comparison between the index-based feature selection methods across other feature selection 

method. 

Table 6. The performance of alternative feature selection and extraction methods  

Feature 

Selection/Extraction 

Method 

Experiment A Experiment B Experiment C 

    

PCA 91.94% 85.87% 79.62% 

KPCA 88.90% 80.65% 71.74% 

LDA 82.08% 66.52% 54.91% 

The results show that even though index-based feature selection is a simple approach that does 

not require complicated calculations like PCA, KPCA, or LDA, it can still give comparable or 

even better performance. This means that choosing features based on certain position, such as, 

odd, even, or multiple of certain indices can still keep essential information in the PPG signals 

for classification. 

Table 7. Performance comparison of the proposed model with other studies  

Experiment Study Dataset Feature Classifier F1-Score 

      

Experiment A 
(Martinez-Ríos 

et al., 2022)[2] 
PPG-BP 

19 WST 

Features 
SVM 76.00% 

Experiment A 
(Nuryani et al., 

2024)[19] 
MIMIC PPG and ECG CNN 95.27% 

Experiment B 
(Liang et al., 

2018)[20] 
MIMIC CWT Scalogram GoogleNet 82.95% 

Experiment C 
(Kuzmanov et 

al., 2022)[8] 

UCI Machine 

Learning 

Dataset 

PPG and ECG CNN-LSTM 66.00% 

Experiment A This study Local Dataset 

Multiples of 3 

indices from the 

PPG signal 

CNN-SVM 

(This study) 
95.85% 

Experiment B This study Local Dataset 

Odd indices 

from the PPG 

signal 

CNN-SVM 

(This study) 
88.04% 

Experiment C This study Local Dataset 

Multiples of 3 

indices from the 

PPG signal 

CNN-SVM 

(This study) 
82.86% 
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Tabel 7 presents a performance comparison between the proposed model in this study and 

several previous works. Earlier studies employed feature extraction methods, such as Wavelet 

Scattering Transform (WST), Continuous Wavelet Transform (CWT), or a combination of PPG 

and ECG signals. In contrast, this study applied a simple feature selection method based on 

positional indices using a PPG signal from a local dataset. Nevertheless, the results are quite 

competitive, achieving F1-Scores of 95.85% in Experiment A, 88.04% in Experiment B, and 

82.86% in Experiment C. These results indicate that the CNN-SVM approach, despite its 

simplicity in feature processing, delivers good performance compared with several previous 

studies that used public datasets and more complex feature extraction techniques.  

 

CONCLUSION  

This study developed a hypertension detection model based on PPG signals using a hybrid 

CNN-SVM approach, combined with index-based feature selection. The dataset used was local 

data collected from 216 patients at UNS Hospital, so the constructing model is more relevant 

and suitable for the Indonesian people with specific skin color. Evaluation results showed that 

the CNN-SVM model performed best in Experiment A, achieving an accuracy of 93.10% using 

features selected from multiples of 3. Moreover, in Experiment B, the highest accuracy of 

88.38% was obtained using features from odd indices, while in Experiment C, the multiples of 

3 index method produced the highest accuracy at 82.79%. These findings indicate that a simple 

feature reduction technique can effectively keep important information from PPG signals for 

classification. Compared to other more complex feature selection methods like PCA, KPCA, 

and LDA, the index-based approach showed competitive performance, and in some cases, it 

outperformed them, despite requiring less computational effort. However, it is important to 

acknowledge that index-based feature selection methods do not explicitly consider the 

statistical importance of each feature in relation to the target variable. This means that some 

important features might be missed. However, due to its simplicity and efficiency, this method 

remains worth considering, especially for developing systems that require fast and lightweight 

processing.  
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