Indexing metadata

Peringkasan Teks Berita Berbahasa Indonesia Menggunakan LSTM dan Transformer


 
Dublin Core PKP Metadata Items Metadata for this Document
 
1. Title Title of document Peringkasan Teks Berita Berbahasa Indonesia Menggunakan LSTM dan Transformer
 
2. Creator Author's name, affiliation, country Christina Prilla Rosaria Ardyanti; Universitas Pendidikan Indonesia; Indonesia
 
2. Creator Author's name, affiliation, country Yudi Wibisono; Universitas Pendidikan Indonesia; Indonesia
 
2. Creator Author's name, affiliation, country Rani Megasari; Universitas Pendidikan Indonesia; Indonesia
 
3. Subject Discipline(s) computer science, artificial intelligence
 
3. Subject Keyword(s) Peringkasan Teks, Natural Language Processing, Deep Learning, LSTM, Transformer, Mekanisme Atensi, ROUGE
 
4. Description Abstract

Abstrak

Pertumbuhan informasi di internet membuat volume data tekstual semakin besar. Hal ini membuat manusia kesulitan dalam mengolah informasi dengan cepat. Peringkasan teks dapat membantu manusia untuk memahami informasi dalam jumlah yang banyak dengan cepat. Pada penelitian ini, arsitektur encoder-decoder akan diimplementasikan pada dataset Indosum menggunakan Long Short Term Memory (LSTM) dengan tambahan  mekanisme atensi dan Transformer. Ujicoba juga dilakukan menggunakan  fine-tuning pada pre-trained model T5-Small dan BART-Small. Eksperimen juga dilakukan dengan membandingkan dataset yang menggunakan praproses dan tanpa praproses. Berdasarkan eksperimen, model LSTM-Atensi memiliki kinerja rendah  dengan nilai ROUGE-L sebesar 13.0 pada dataset yang menggunakan praproses. Sedangkan nilai ROUGE-tertinggi didapatkan dari hasil fine-tuning T5-Small dengan nilai sebesar 66.2.

===================================================

Abstract

The proliferation of information on the internet has led to an increasing volume of textual data. This presents a challenge for humans in processing information rapidly. Text summarization can aid humans in quickly comprehending large amounts of information. In this research, an encoder-decoder architecture will be implemented on the Indosum dataset using Long Short-Term Memory (LSTM) along with attention mechanisms and Transformer. Experiments will also involve fine-tuning pre-trained models T5-Small and BART-Small. The influence of preprocessing will also be studied through experiments. Based on the experiments, the LSTM-Attention model demonstrates poor performance with an ROUGE-L score of 13.0 on the preprocessed dataset. Conversely, the highest ROUGE score was achieved through fine-tuning T5-Small, scoring 66.2.

 
5. Publisher Organizing agency, location Universitas Sebelas Maret
 
6. Contributor Sponsor(s) Universitas Pendidikan Indonesia
 
7. Date (YYYY-MM-DD) 2024-08-10
 
8. Type Status & genre Peer-reviewed Article
 
8. Type Type Experiment
 
9. Format File format PDF
 
10. Identifier Uniform Resource Identifier https://jurnal.uns.ac.id/ijai/article/view/78856
 
10. Identifier Digital Object Identifier https://doi.org/10.20961/ijai.v8i2.78856
 
11. Source Title; vol., no. (year) IJAI (Indonesian Journal of Applied Informatics); Vol 8, No 2 (2024)
 
12. Language English=en id
 
13. Relation Supp. Files
 
14. Coverage Geo-spatial location, chronological period, research sample (gender, age, etc.)
 
15. Rights Copyright and permissions Copyright (c) 2024 The Author(s)
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.