
IJAI (Indonesian Journal of Applied Informatics)
Vol. 10 No. 1 Tahun 2025 pISSN: 2548 -3846, eISSN: 2598 -5981

IJAI (Indonesian Journal of Applied Informatics) | 109

Monitoring Kinerja Virtual Machine pada Lingkungan Google Cloud Platform dengan
Notifikasi ke Media Sosial

Irna Widyaningsih1*, Abdul Haq 1, Tri Anggoro1
1Program Studi S1 Informatika, Universitas Nahdlatul Ulama Al Ghazali Cilacap, Indonesia
*Email: irnawidya24@gmail.com

Info Artikel Abstrak

Kata Kunci :
monitoring, GCP, virtual machine,
CPU usage, telegram.

Keywords :
monitoring, GCP, virtual machine,
CPU usage, telegram.

Tanggal Artikel
Dikirim : 18 September 2025
Direvisi : 25 Desember 2025
Diterima : 30 Desember 2025

 Virtual Machine (VM) merupakan elemen penting dalam cloud computing

karena mendukung fleksibilitas dan efisiensi pengelolaan sumber daya.
Namun, lonjakan penggunaan VM dapat menurunkan kinerja jika tidak
terdeteksi cepat. Penelitian ini mengembangkan sistem monitoring pada

Google Cloud Platform (GCP) dengan Grafana yang terintegrasi Telegram

untuk peringatan dini otomatis. Prometheus digunakan sebagai pengumpul
metrik, sedangkan Grafana menampilkan visualisasi, berfokus pada

pemantauan CPU secara real-time di Google Compute Engine (GCE).

Notifikasi dikirim melalui Telegram ketika penggunaan CPU melewati ambang

batas. Pengujian menunjukkan rata-rata keterlambatan notifikasi hanya 1
detik, kecuali satu anomali 11 detik. Pada skenario Threshold Validation,
terjadi satu alert dengan CPU maksimum 37% dan rata-rata 29%, sedangkan

Long Hold menghasilkan tiga alert dengan rata-rata 23,3% sesuai konfigurasi
interval. Hasil ini membuktikan sistem mampu memberikan notifikasi hampir
real-time, menjaga konsistensi, dan mendukung deteksi dini baik pada beban

singkat maupun berkepanjangan di infrastruktur GCP.

 Abstract

 Virtual Machines (VMs) are essential in cloud computing for flexibility and
efficient resource management. However, sudden spikes in VM usage can
degrade performance if not detected quickly. This study develops a
monitoring system on Google Cloud Platform (GCP) using Grafana integrated
with Telegram for automated early alerts. Prometheus collects metrics, while
Grafana provides visualization, focusing on real-time CPU monitoring in
Google Compute Engine (GCE). Alerts are sent via Telegram when CPU usage
exceeds a set threshold. Testing shows an average notification delay of 1
second, except for a single 11-second anomaly. In the Threshold Validation
scenario, one alert occurred with 37% maximum CPU and 29% average,
while the Long Hold scenario produced three alerts with an average of 23.3%,
following configured intervals. Results indicate the system delivers near real-
time, consistent alerts and supports early detection under both short and
sustained load conditions on GCP infrastructure.

IJAI (Indonesian Journal of Applied Informatics)
Vol. 10 No. 1 Tahun 2025 pISSN: 2548 -3846, eISSN: 2598 -5981

| IJAI (Indonesian Journal of Applied Informatics) 110

1. PENDAHULUAN

Di era digitalisasi saat ini, teknologi cloud computing menjadi solusi utama bagi organisasi dalam memenuhi kebutuhan

komputasi. Salah satu teknologi inti dalam cloud computing adalah virtualisasi, yang memungkinkan pembagian sumber daya

fisik ke dalam beberapa lingkungan digital berupa Virtual Machine (VM). Setiap VM dapat menjalankan aplikasi secara

independen, sehingga pemantauan kinerjanya menjadi krusial untuk menjaga stabilitas dan keandalan sistem. Monitoring
diperlukan untuk memastikan performa layanan tetap optimal dan mendeteksi gangguan yang umumnya disebabkan oleh

lonjakan atau keterbatasan sumber daya, terutama CPU, memori, dan disk [1]. Di antara ketiganya, CPU menjadi indikator utama
penurunan kinerja karena seluruh aktivitas pemrosesan bergantung pada komponen ini. Panduan Compute Engine Insights dari

Google Cloud menetapkan kondisi HIGH_CPU_USAGE ketika penggunaan CPU mencapai 83% atau lebih selama 90% waktu

pemantauan [2], yang menjadi tanda awal risiko penurunan performa.
Tanpa sistem monitoring yang dilengkapi notifikasi otomatis, banyak organisasi kesulitan mendeteksi anomali secara dini.

Gangguan sering kali baru diketahui setelah berdampak pada pengguna, sehingga menimbulkan downtime tidak terencana.

Studi menunjukkan bahwa lebih dari 60% downtime disebabkan oleh keterlambatan deteksi overload CPU, dengan potensi

kerugian finansial mencapai rata-rata USD 125.000 per jam pada perusahaan berskala menengah [3].
Beberapa penelitian sebelumnya telah mengembangkan sistem monitoring menggunakan Prometheus dan Grafana.

Salah satu penelitian mengimplementasikan monitoring pada lingkungan Kubernetes, tetapi mekanisme alerting-nya masih

terbatas [4]. Penelitian lain di Universitas Udayana menggunakan Prometheus dan Grafana untuk memantau metrik CPU,
memori, dan disk, namun belum mengintegrasikan fitur notifikasi otomatis [5].

Penerapan alerting otomatis melalui integrasi dengan Telegram telah dilakukan, tetapi penerapannya masih terbatas pada

server atau jaringan tertentu. Salah satu penelitian membahas sistem monitoring server menggunakan Prometheus dan Grafana
yang berhasil mengirimkan notifikasi real-time ke Telegram ketika layanan server bermasalah, sehingga memudahkan

administrator memantau performa server dengan lebih efisiensi[6]. Penelitian lain menyoroti otomatisasi manajemen insiden
dengan integrasi alerting ke sistem tiket. Sistem monitoring ini memungkinkan pembuatan tiket insiden secara otomatis

berdasarkan alert dari Prometheus, sehingga mempercepat respons terhadap kegagalan sistem dan meningkatkan efisiensi
manajemen insiden[7]. Penerapan unified monitoring pada arsitektur microservices menggunakan Prometheus dan Grafana

menunjukkan efektivitas alerting real-time, tetapi masih terbatas pada lingkungan microservices tertentu tanpa memperhatikan

resource server secara keseluruhan[8]. Monitoring server Linux real-time dengan Prometheus dan Grafana mampu

memberikan pandangan menyeluruh terhadap performa, namun alerting otomatisnya belum dioptimalkan untuk berbagai jenis

gangguan[9].
Penelitian sebelumnya masih memiliki keterbatasan. Sistem monitoring sering hanya fokus pada satu jenis layanan

infrastruktur, sehingga pemantauan tidak menyeluruh. Integrasi notifikasi real-time belum diterapkan secara konsisten,

terutama di lingkungan microservices atau cloud berskala besar. Menanggapi keterbatasan tersebut, penelitian ini merancang

sistem monitoring yang tidak hanya menampilkan data kinerja secara visual, tetapi juga mengintegrasikan notifikasi otomatis
melalui platform Telegram. Telegram dipilih karena mendukung integrasi dengan Grafana melalui Bot API dan banyak digunakan
oleh adiministrator. Selain itu, penelitian ini menggabungkan pengujian beban menggunakan Apache JMeter terhadap layanan

web server pada VM untuk memicu lonjakan CPU sebagai representasi beban kerja nyata di lingkungan cloud.

Fokus penelitian diarahkan pada pengujian efektivitas sistem monitoring dalam mendeteksi lonjakan CPU serta

memberikan peringatan otomatis secara real-time. Penelitian dilakukan pada Google Cloud Platform (GCP) sebagai salah satau

penyedia layanan cloud yang banyak digunakan. Dengan demikian, penelitian ini diharapkan menghasilkan sistem monitoring

yang mampu menampilkan metrik kinerja sekaligus memberikan notifikasi real-time ketika terjadi lonjakan beban, sehingga

mampu mengatasi keterbatasan penelitian sebelumnya yang belum mengintegrasikan mekanisme peringatan.

2. METODE PENELITIAN

Tahapan dalam penelitian proyek akhir ini dilakukan dengan melakukan perumusan masalah pada sistem monitoring VM,
kemudian dilakukan studi literatur untuk mengidentifikasi kebutuhan sistem berupa teknologi dan skema yang akan
diimplementasikan. Berdasarkan hasil studi literatur maka dilakukan perancangan sistem dan arsitektur perangkat yang
digunakan. Tahapan selanjutnya melakukan instalasi perangkat lunak yang akan menunjang terlaksananya penelitian ini. Proses
instalasi mencakup integrasi Grafana dengan Prometheus sebagai data source, pembuatan Alert Rule, serta pengaturan

notifikasi melalui Telegram. Implementasi dijalankan pada tiga VM, yaitu VM Monitoring (Prometheus, Grafana), VM Target
(Node Exporter, Nginx), dan VM Pengujian (Apache JMeter). Pengujian dilakukan secara fungsional untuk memverifikasi proses
monitoring dan notifikasi, serta stress testing untuk menilai kecepatan dan stabilitas sistem dalam mendeteksi lonjakan beban

IJAI (Indonesian Journal of Applied Informatics)
Vol. 10 No. 1 Tahun 2025 pISSN: 2548 -3846, eISSN: 2598 -5981

IJAI (Indonesian Journal of Applied Informatics) | 111

CPU. Tahap akhir berupa analisis hasil pengujian untuk mengevaluasi efektivitas sistem dalam memberikan peringatan real-

time terhadap kondisi kritis. Dan diagram alir metode penelitian ditunjukkan pada Gambar 1.

Gambar 1. Diagram alir penelitian

Berikut penjelasan tahapan dari Gambar 1:
1) Studi Literatur

Tahap ini dilakukan untuk mengumpulkan teori, penelitian terdahulu, serta referensi terkait sistem monitoring, cloud

computing, dan metode pengujian yang relevan.

2) Analisis Kebutuhan

Mengidentifikasi kebutuhan sistem baik dari sisi perangkat keras maupun perangkat lunak, termasuk spesifikasi VM, tools

monitoring, serta media notifikasi yang akan digunakan.

3) Perancangan Sistem
Pada tahap perancangan, kegiatan difokuskan pada penyusunan arsitektur sistem monitoring, perancangan alur kerja,
serta perencanaan integrasi antar komponen seperti Prometheus, Grafana, Telegram, dan JMeter yang akan dijalankan di

lingkungan cloud. Perangkat laptop tidak digunakan untuk menjalankan sistem monitoring, melainkan berfungsi sebagai

perangkat kerja untuk mengelola layanan cloud, melakukan konfigurasi, serta mengakses dashboard monitoring secara

remote.

Laptop digunakan untuk menyusun desain arsitektur, membuat konfigurasi awal, menyiapkan script, serta melakukan

manajemen VM di Google Cloud Platform melalui SSH dan antarmuka web. Oleh karena itu, spesifikasi laptop harus
memadai agar proses pengelolaan cloud, editing konfigurasi, serta akses dashboard Grafana dapat berjalan lancar.

Keterbatasan spesifikasi pada perangkat lokal dapat menghambat proses administrasi dan monitoring jarak jauh, meskipun

eksekusi sistem sepenuhnya berjalan di sisi cloud.

Tabel 1. Spesifikasi hardware tahap perancangan

Perangkat CPU RAM Storage Sistem Operasi Keterangan

Laptop
Intel Core
i5-12450H 8GB

512 GB
SSD Windows 11

Digunakan untuk perancangan sistem,
konfigurasi cloud, dan akses dashboard

monitoring

IJAI (Indonesian Journal of Applied Informatics)
Vol. 10 No. 1 Tahun 2025 pISSN: 2548 -3846, eISSN: 2598 -5981

| IJAI (Indonesian Journal of Applied Informatics) 112

4) Implementasi Sistem
Tahap implementasi dilakukan sepenuhnya pada Virtual Machine (VM) di Google Cloud Platform (GCP) sesuai dengan

rancangan yang telah disusun sebelumnya. VM ini berperan sebagai lingkungan utama tempat seluruh komponen sistem
monitoring dijalankan, termasuk Prometheus, Grafana, Telegram Bot, dan layanan web server yang akan diuji.

Implementasi dilakukan pada lingkungan cloud agar mendekati kondisi operasional nyata dan memungkinkan pengujian

performa secara objektif. Pada tahap ini, Prometheus dikonfigurasikan untuk mengumpulkan metrik performa VM, Grafana
digunakan untuk menampilkan visualisasi monitoring, serta Telegram Bot diintegrasikan sebagai media notifikasi otomatis
ketika terjadi lonjakan penggunaan sumber daya. Apache JMeter dijalankan untuk memberikan beban pada web server di

dalam VM guna memicu peningkatan penggunaan CPU sebagai skenario uji. Seluruh proses ini berlangsung di cloud,

sehingga performa sistem tidak bergantung pada spesifikasi perangkat lokal.

Tabel 2. Spesifikasi hardware tahap implementasi

Perangkat vCPU RAM Storage Sistem
Operasi

Region /
Data Center

Keterangan

Virtual Machine

Google Cloud
Platform 2 vCPU 8GB 50 GB

Ubuntu 22.04
LTS

Asia
Tenggara

Lingkungan utama

implementasi sistem
monitoring

5) Pengujian Sistem

Menjalankan uji fungsionalitas dan stress testing untuk memverifikasi kemampuan sistem dalam memantau CPU

utilization serta mengirim notifikasi otomatis melalui Telegram. Pengujian meliputi uji fungsionalitas dilakukan satu kali

untuk memastikan seluruh komponen sistem terintegrasi dan berjalan sesuai perancangan. Stress testing dilakukan

melalui beberapa skenario pengujian variasi beban dan durasi, di mana setiap skenario dijalankan satu kali dan
menghasilkan beberapa kejadian alert akibat fluktuasi CPU. Pendekatn ini digunakan untuk mengevaluasi kecepatan respon

dan konsistensi sistem dalam memicu alert, mengirim notifikasi, serta melakukan recovery.

6) Analisis Hasil Pengujian

Mengevaluasi data hasil uji untuk menilai efektivitas sistem dalam memberikan peringatan real-time terhadap lonjakan

beban CPU.

Berdasarkan hasil analisis kebutuhan, dirancang arsitektur sistem monitoring yang terdiri dari komponen utama
Prometheus, Grafana, Node Exporter, dan Telegram. Arsitektur ini digunakan sebagai acuan dalam proses implementasi pada
lingkungan Google Cloud Platform.

Gambar 2. Arsitektur sistem monitoring

IJAI (Indonesian Journal of Applied Informatics)
Vol. 10 No. 1 Tahun 2025 pISSN: 2548 -3846, eISSN: 2598 -5981

IJAI (Indonesian Journal of Applied Informatics) | 113

Arsitektur yang ditunjukkan pada Gambar 2 kemudian diimplementasikan melalui beberapa tahapan. Proses dimulai
dengan (1) instalasi Node Exporter pada VM target untuk menyediakan metrik CPU, memori, dan disk. Selanjutnya, (2)
Prometheus dipasang pada VM monitoring dengan konfigurasi prometheus.yml yang memuat alamat IP VM target agar dapat
melakukan scraping metrik secara periodik. Kemudian, (3) Grafana diintegrasikan dengan Prometheus sebagai data source dan

dibuat dashboard khusus untuk menampilkan metrik CPU utilization secara real-time. Tahap berikutnya adalah (4) pembuatan

alert rule pada Grafana dengan menentukan ambang batas CPU utilization sehingga status akan berubah menjadi Alerting ketika

nilai melewati threshold yang ditetapkan. Untuk mendukung notifikasi otomatis, (5) Telegram Bot dibuat dan dihubungkan ke
Grafana melalui notification channel menggunakan token API. Dengan konfigurasi ini, setiap alert yang aktif akan langsung

dikirim sebagai pesan peringatan ke Telegram. Pada tahap akhir, (6) dilakukan pengujian sistem yang mencakup uji fungsional
dan stress testing. Uji fungsional memastikan Prometheus mampu melakukan scraping, Grafana menampilkan visualisasi

dengan benar, serta notifikasi terkirim ke Telegram, sedangkan stress testing menggunakan Apache JMeter pada VM pengujian

untuk memberikan beban ke web server (Nginx) sehingga memicu lonjakan CPU.

Berikut merupakan landasan teori dari penelitian ini:

2.1 Cloud Computing

Cloud computing merupakan teknologi jaringan berbasis internet yang menyediakan sumber daya komputasi secara

daring[10]. Teknologi ini digunakan dalam penelitian karena mampu menyediakan sumber daya secara fleksibel dan skalabel
tanpa memerlukan infrastruktur fisik. Keunggulan cloud computing terletak pada kemudahan pengelolaan, efisiensi biaya, serta

kemampuan penyesuaian sumber daya sesuai kebutuhan sistem monitoring[11].

2.2 Google Cloud Platform

Google Cloud Platform merupakan layanan cloud computing yang dikelola oleh Google untuk memenuhi kebutuhan

komputasi secara daring[12]. GCP digunakan dalam penelitian ini karena menyediakan layanan Compute Engine yang
memungkinkan pembuatan dan pengelolaan virtual machine dengan konfigurasi yang fleksibel. Keunggulan GCP terletak pada

tingkat reliabilitas, availability, serta dukungan terhadap implementasi sistem monitoring berbasis cloud[13], [14].

2.3 Monitoring

Monitoring adalah proses pengumpulan dan analisis data secara rutin untuk mengetahui status dan performa suatu sistem
secara berkelanjutan[15]. Monitoring digunakan dalam penelitian ini untuk memantau kondisi sumber daya sistem secara real-

time. Keunggulan sistem monitoring adalah kemampuannya dalam mendeteksi gangguan lebih dini serta membantu

pengelolaan dan optimalisasi sumber daya seperti CPU, memori, dan jaringan[16].

2.4 Prometheus

Prometheus merupakan alat open-source yang umum dirancang untuk pencatatan dan penyimpanan data dalam format

deret waktu (time-series)[5]. Prometheus digunakan karena memiliki mekanisme pull-based yang efisien serta mudah

diintegrasikan dengan exporter. Keunggulan Prometheus terletak pada kemampuannya dalam mengumpulkan dan menyimpan
metrik performa sistem secara real-time, termasuk melalui penggunaan Node Exporter untuk pemantauan tingkat sistem

operasi.

2.5 Grafana

Grafana merupakan platform open-source yang digunakan untuk visualisasi data metrik dari berbagai sumber[8]. Grafana

digunakan karena mendukung integrasi langsung dengan Prometheus dan menyediakan dashboard interaktif. Keunggulan
Grafana adalah tersedianya fitur alerting yang memungkinkan pengiriman notifikasi otomatis ketika metrik mencapai ambang

batas tertentu.

IJAI (Indonesian Journal of Applied Informatics)
Vol. 10 No. 1 Tahun 2025 pISSN: 2548 -3846, eISSN: 2598 -5981

| IJAI (Indonesian Journal of Applied Informatics) 114

2.6 Telegram

Telegram merupakan platform komunikasi digital yang mendukung penggunan bot melalui Bot API[17]. Telegram
digunakan sebagai media notifikasi karena mampu mengirimkan pesan secara real-time. Keunggulan Telegram terletak pada

kemudahan integrasi, kecepatan pengiriman pesan, serta dukungan lintas platform, sehingga efektif digunakan dalam sistem
monitoring berbasis notifikasi otomatis[18], [19].

2.7 Apache Jmeter

Apache JMeter merupakan aplikasi open-source yang digunakan untuk pengujian performa dan beban sistem[20]. JMeter

digunakan dalam penelitian ini untuk menghasilkan beban terukur pada sistem guna menguji respons monitoring. Keunggulan
JMeter adalah kemampuannya mensimulasikan banyak permintaan secara parallel sehingga efektivitas sistem monitoring
dalam mendeteksi lonjakan dan mengirim notifikasi dapat dievaluasi [24].

3. HASIL DAN PEMBAHASAN

3.1 Pengujian fungsional

Pengujian fungsional bertujuan untuk memastikan bahwa sistem monitoring berjalan sesuai fungsi yang dirancang. Fokus
pengujian meliputi verifikasi koneksi dan scraping data metrik oleh Prometheus, visualisasi real-time pada Grafana, pemicu alert

berdasarkan ambang batas CPU usage, serta pengiriman notifikasi otomatis ke Telegram.

Tabel 3. Hasil pengujian fungsional sistem monitoring

Komponen Pengujian Deskripsi Hasil

Scraping Prometheus
Verifikasi Prometheus berhasil mengumpulkan metrik
dari VM target

Berhasil, data
termonitor

Status Node Exporter
Cek status endpoint Node Exporter terdaftar dan “UP” di
Prometheus

Terhubung dan aktif

Konfigurasi prometheus.yml
Alamat IP VM target dan port Node Exporter telah

ditambahkan di konfigurasi
Terdeteksi

Visualisasi Dashboard Grafana
Panel Grafana menampilkan metrik CPU, Memori dan
Disk secara real-time

Data tampil dengan

benar

Integrasi Data Source Grafana
Grafana berhasil menarik data dari Prometheus sebagai
data source utama

Terintegrasi

Trigger Alert > 20 %
Uji ambang batas alert pada CPU Utilization dengan

kondisi beban

Alert aktif setelah > 2

menit

Status Alert Grafana
Status alert berubah dari Normal menjadi Alerting saat
threshold terlampaui

Terkirim < 5 detik

Format Pesan Telegram
Pesan alert mencantumkan nama alert, nilai CPU, dan
status dengan jelas

Format sesuai

Ketersediaan Layanan
Layanan Prometheus dan Grafana tetap berjalan pasca

reboot VM monitoring

Tetap aktif tanpa

konfigurasi ulang

Scrape Interval Konsisten
Interval pengambilan data sesuai konfigurasi (15 detik per
scrape)

Stabil dan sinkron

3.2 Stress Testing

3.2.1 Pengujian Kecepatan

Pengujian fungsional bertujuan untuk memastikan bahwa sistem monitoring berjalan sesuai fungsi yang dirancang. Fokus

pengujian meliputi verifikasi koneksi dan scraping data metrik oleh Prometheus, visualisasi real-time pada Grafana, pemicu alert

berdasarkan ambang batas CPU usage, serta pengiriman notifikasi otomatis ke Telegram. Pengujian dilakukan dengan variasi

jumlah threads 60–120 dan durasi 120–150 detik menggunakan JMeter untuk memicu CPU melewati ambang batas 20%.

IJAI (Indonesian Journal of Applied Informatics)
Vol. 10 No. 1 Tahun 2025 pISSN: 2548 -3846, eISSN: 2598 -5981

IJAI (Indonesian Journal of Applied Informatics) | 115

Selisih waktu antara status Alerting di Grafana dan notifikasi di Telegram dicatat sebagai indikator kecepatan sistem. Ringkasan
hasil pengujian ditunjukkan pada Tabel 2.

Tabel 1. Hasil pengujian kecepatan

No Threads Duration
Waktu

Grafana Telegram

1 60 120s 04:14:10 04:14:11
2 70 120s 20:33:00 20:33:11
3 80 120s 20:43:50 20:43:51

4 100 150s 04:51:00 04:51:01
5 120 150s 10:25:20 10:25:21

Selanjutnya, Gambar 3 menunjukkan tampilan status Alerting pada Grafana saat CPU usage melewati ambang batas 20%,

sedangkan Gambar 4 memperlihatkan notifikasi otomatis yang dikirim melalui Telegram. Kedua bukti visual ini mengonfirmasi
kecepatan dan akurasi sistem dalam merespons lonjakan beban. Pada Gambar 3 memperlihatkan grafik CPU usage pada VM

target yang meningkat hingga melewati ambang batas 20%. Perubahan status ditandai dengan garis merah (Alerting) pada

dashboard Grafana, yang menunjukkan sistem berhasil mendeteksi lonjakan beban.

Gambar 3. Status alert Grafana

Pada Gambar 4 menampilkan pesan peringatan otomatis yang dikirim oleh sistem ke aplikasi Telegram saat CPU usage

melampaui ambang batas. Notifikasi berisi detail nilai CPU aktual serta tautan menuju dashboard Grafana, sehingga
administrator dapat segera melakukan verifikasi.

Gambar 4. Notifikasi Telegram

IJAI (Indonesian Journal of Applied Informatics)
Vol. 10 No. 1 Tahun 2025 pISSN: 2548 -3846, eISSN: 2598 -5981

| IJAI (Indonesian Journal of Applied Informatics) 116

3.2.2 Pengujian Stabilitas

Pengujian stabilitas dilakukan untuk memastikan sistem monitoring mampu memberikan peringatan secara konsisten,

baik pada kondisi beban singkat maupun beban yang berlangsung lama. Pada tahap ini digunakan JMeter sebagai load
generator dengan konfigurasi sesuai skenario pengujian. Rincian parameter uji ditunjukan pada Tabel 3.

Tabel 2. Parameter uji JMeter

Skenario Uji Threads Ramp-up Duration

Threshold Validation 60 30s 180s

Long Hold (10 menit) 120 30s 600s

Pengujian stabilitas dilakukan untuk memastikan sistem monitoring mampu memberikan peringatan secara konsisten,

baik pada kondisi beban singkat maupun beban yang berlangsung lama. Pada tahap ini digunakan JMeter sebagai load

generator dengan konfigurasi sesuai skenario pengujian. Rincian parameter uji ditunjukan pada Tabel 3.

Tabel 3. Hasil pengujian stabilitas

Skenario Uji Status Waktu CPU Usage (%)

Threshold

Validation

Trigger 8:36:00 22

Notifikasi (1) 8:36:16 28

Notifikasi (2) 8:37:21 37

Recover 8:37:50 19

Normal 8:38:50 18

Long Hold (10

menit)

Alerting 8:58:00 22

Notifikasi (1) 8:58:16 28

Notifikasi (2) 8:59:21 28

Recover 8:59:40 20

Alerting 9:02:20 23

Notifikasi 9:02:36 23

Recover 9:03:00 20

Alerting 9:03:10 21

Recover 9:03:30 20

Normal 9:03:40 19

Pengujian menunjukkan sistem mengirim notifikasi sesuai konfigurasi, yaitu pending period 20 detik, repeat interval 1

menit, dan keep firing 10 detik. Pada kondisi beban tinggi, alert aktif, notifikasi terkirim ke Telegram, lalu sistem melakukan

recovery saat CPU turun di bawah ambang batas. Tabel 5 Rekapitulasi Hasil Pengujian Sistem Monitoring.

Tabel 4. Rekapitulasi hasil pengujian sistem monitoring

Skenario Uji Jumlah Alert CPU Max (%) CPU Min (%) Rata-rata CPU

Threshold

Validation
1 kali 37 22 29

Long Hold (10

menit)
3 kali 28 21 23.3

Berdasarkan Tabel 12, pada skenario Threshold Validation terjadi satu alert dengan CPU rata-rata 29% dan puncak

37%, menunjukkan sistem mampu mendeteksi lonjakan singkat. Pada skenario Long Hold (10 menit) tercatat tiga alert

dengan CPU rata-rata 23,3%, menandakan mekanisme alerting tetap konsisten meski beban lebih rendah. Hasil ini

menunjukkan sistem stabil dalam mendeteksi alert baik pada beban singkat maupun lama, dengan status alert terlihat aktif

di Grafana dan kembali normal saat CPU turun.

IJAI (Indonesian Journal of Applied Informatics)
Vol. 10 No. 1 Tahun 2025 pISSN: 2548 -3846, eISSN: 2598 -5981

IJAI (Indonesian Journal of Applied Informatics) | 117

Pada skenario uji threshold validation menghasilkan tampilan dashboard seperti pada Gambar 5.

.

Gambar 1. Dashboard Threshold Validation

Kemudian jika pada Dashboard sudah terdapat status “alerting” maka seharusnya masuk ke history alert rule

seperti pada Gambar 6 berikut.

Gambar 2. History Alert Rule

Selain terdapat Riwayat, sama seperti uji kecepatan sebelumnya. Uji stabilitas threshold validation juga

mendapat notifikasi. Kali ini mendapat dua notifikasi karena hasil pengujian memenuhi evaluasi selama dua kali.
Berikut tampilan notifikasi ada pada Gambar 7 yang menampilkan dua notifikasi yang diterima sesuai konfigurasi

pending period dan repeat interval.

Gambar 3. Notifikasi Telegram Uji Threshold Validation

IJAI (Indonesian Journal of Applied Informatics)
Vol. 10 No. 1 Tahun 2025 pISSN: 2548 -3846, eISSN: 2598 -5981

| IJAI (Indonesian Journal of Applied Informatics) 118

Pada Gambar 8 Grafik CPU usage menunjukkan beberapa siklus alerting selama 10 menit, dengan status alert

aktif saat CPU berada di atas threshold.

Gambar 4. Dashboard Long Hold

Pada Gambar 9 Menampilkan urutan perubahan status alert sesuai fluktuasi CPU: Normal → Pending →

Alerting → Recovering → Normal, berulang beberapa kali.

Gambar 5. Riwayat Alert Rule Long Hold

Notifikasi periodik yang dikirim selama status alert aktif, mengikuti konfigurasi pending period, repeat interval,

dan group wait ditunjukkan pada Gambar 10.

Gambar 6. Notifikasi Telegram Long Hold

IJAI (Indonesian Journal of Applied Informatics)
Vol. 10 No. 1 Tahun 2025 pISSN: 2548 -3846, eISSN: 2598 -5981

IJAI (Indonesian Journal of Applied Informatics) | 119

4. KESIMPULAN

Berdasarkan hasil implementasi dan pengujian, sistem monitoring berbasis Prometheus, Grafana, dan Telegram Bot yang

dibangun pada infrastruktur Google Cloud Platform memberikan kinerja sesuai tujuan penelitian. Kesimpulan utama adalah:
1. Sistem berhasil memantau penggunaan CPU pada VM secara real-time, menampilkan data melalui dashboard Grafana,

dan mengirimkan notifikasi otomatis ke Telegram ketika CPU usage melebihi ambang batas 20% yang telah ditentukan.

2. Semua komponen berjalan optimal. Prometheus konsisten melakukan scraping metrik, Grafana menyajikan visualisasi
real-time, dan notifikasi Telegram terkirim rata-rata kurang dari 5 detik setelah status alert aktif. Format pesan yang

dikirim mencantumkan informasi metrik dan tautan dashboard.
3. Pengujian stress menunjukkan selisih rata-rata sekitar 1 detik antara status alert di Grafana dan notifikasi di Telegram,

membuktikan sistem hampir real-time. Hanya terjadi satu anomali delay hingga 11 detik pada skenario 70 threads,

akibat mekanisme evaluasi metrik, bukan kegagalan sistem.

4. Sistem tetap stabil saat CPU berada di atas threshold untuk periode lama. Pada skenario Long Hold, rata-rata CPU

usage mencapai 23,3%, notifikasi terkirim sesuai konfigurasi repeat interval tanpa menimbulkan alert storm, dan
proses pemulihan berlangsung normal saat CPU kembali di bawah 20%.

Secara keseluruhan, konfigurasi sistem monitoring ini terbukti optimal, responsif, dan andal untuk mendukung deteksi dini
serta respons cepat terhadap anomali CPU di lingkungan produksi. Sistem memiliki potensi untuk dikembangkan lebih lanjut
dengan memperluas pemantauan tidak hanya pada CPU, tetapi juga memori, disk dan ketersediaan jaringan. Selain itu,

penyempurnaan dashboard Grafana serta penerapan otomatisasi instalasi dan pemisahan VM dapat meningkatkan kemudahan
pengelolaan, keamanan, dan kinerja sistem secara keseluruhan, sehingga sistem tidak hanya memantau kondisi secara real-

time tetapi juga mampu mendukung pengambilan Keputusan yang lebih cerdas dan proaktif.

DAFTAR PUSTAKA

[1] A. Marchenko and D. Shchemelinin, “Development of an Accessibility Testing System for the Virtual Machine

Deployment Service in the Cloud,” Proc. of Telecommunication Universities, vol. 9, no. 3, pp. 68–73, July 2023, doi:

10.31854/1813-324X-2023-9-3-68-73.
[2] Google Cloud, “View and Understand VM Instance Insights,” Compute Engine Documentation. Accessed: Aug. 24,

2025. [Online]. Available: https://cloud.google.com/compute/docs/instances/view-and-understand-vm-insights
[3] K. Fitzgerald, “Radically Reduce Downtime and Data Loss with SaaS-based Disaster Recovery,” CIO. Accessed: Aug.

24, 2025. [Online]. Available: https://www.cio.com/article/410036/radically-reduce-downtime-and-data-loss-with-

saas-based-disaster-recovery.html
[4] P. B.C., H. Maddirala, and S. M., “Implementing an Effective Infrastructure Monitoring Solution with Prometheus and

Grafana,” IJCA, vol. 186, no. 38, pp. 7–15, Sept. 2024, doi: 10.5120/ijca2024923873.

[5] A. P. Putra, G. Sukadarmika, and D. M. Wiharta, “Model Utilisasi dan Visualisasi Resource Menggunakan Prometheus
dan Grafana Untuk Pengelolaan Server di Universitas Udayana,” JTE, vol. 22, no. 2, p. 305, Jan. 2024, doi:

10.24843/MITE.2023.v22i02.P19.
[6] M. Bajpai, “Automating Monitoring and Incident Management with Prometheus, Grafana, and Google Cloud

Pub/Sub,” IJSR , vol. 11, no. 1, pp. 1673–1675, Jan. 2022, doi: 10.21275/SR24829151754.

[7] G. Y. Kusuma and U. Y. Oktiawati, “Application Performance Monitoring System Design Using Opentelemetry and
Grafana Stack,” Journal of Internet and Software Engineering, vol. 3, no. 1, Art. no. 1, Nov. 2022, doi:

10.22146/jise.v3i1.5000.
[8] Y. Jani, “Unified Monitoring for Microservices: Implementing Prometheus and Grafana for Scalable Solutions,”

JAIMLD, vol. 2, no. 1, pp. 848–852, Mar. 2024, doi: 10.51219/JAIMLD/yash-jani/206.

[9] M. D. Elradi, “Prometheus & Grafana: A Metrics-focused Monitoring Stack,” Journal of Computer Allied

Intelligence(JCAI, ISSN: 2584-2676), vol. 3, no. 3, pp. 28–39, June 2025, doi: 10.69996/jcai.2025015.

[10] D. Gustian, Y. Fitrisia, W. Novayani, and S. Purwantoro, “Implementasi Automation Deployment pada Google Cloud
Compute VM Menggunakan Terraform,” ISI, vol. 8, no. 1, p. 50, June 2023, doi: 10.35314/isi.v8i1.3095.

[11] M. Kondoj, H. Langi, Y. Putung, and V. Lengkong, “Performance Analysis of Cloud Computing Based E-Commerce
Server Using PROXMOX Virtual Environment,” in Proc. 5th Int. Conf. Appl. Sci. Technol. Eng. Sci. (iCAST-ES),

SCITEPRESS, 2022, pp. 741–745. doi: 10.5220/0011876000003575.
[12] “Manfaat Google Cloud Compute Engine,” Elitery. Accessed: May 02, 2025. [Online]. Available:

https://elitery.com/articles/manfaat-google-cloud-compute-engine/

IJAI (Indonesian Journal of Applied Informatics)
Vol. 10 No. 1 Tahun 2025 pISSN: 2548 -3846, eISSN: 2598 -5981

| IJAI (Indonesian Journal of Applied Informatics) 120

[13] Praveen Borra, “A Survey of Google Cloud Platform (GCP): Features, Services, and Applications,” IJARSCT , vol. 4, no.

3, pp. 191–199, June 2024, doi: 10.48175/IJARSCT-18922.

[14] N. Ramsari and A. Ginanjar, “Implementasi Infrastruktur Server Berbasis Cloud Computing Untuk Web Service
Berbasis Teknologi Google Cloud Platform,” in Conference SENATIK STT Adisutjipto Yogyakarta, Mar. 2022, pp. 169–

182. doi: 10.28989/senatik.v7i0.472.
[15] Z. Nurrifa’at and M. N. Dasaprawira, “Pengembangan Aplikasi Monitoring PKL dengan Firebase Menggunakan Metode

Agile (Studi Kasus: Fakultas Fmikom Unugha),” vol. 8, no. 3, 2024.

[16] P. K. G. Pandian, “Effective Resource Management In Virtualized Environments,” vol. 1, no. 7, 2023.
[17] “Bots: An Introduction for Developers,” Telegram. Accessed: May 02, 2025. [Online]. Available:

https://core.telegram.org/bots

[18] F. Fitriansyah, “Penggunaan Telegram sebagai Media Komunikasi dalam Pembelajaran Online,” Jurnal Humaniora,

vol. 20, no. 2, pp. 111–117, 2020.
[19] N. C. Dewi, T. Sutabri, and F. Putrawansyah, “Analisis Penyadapan pada Telegram dengan Network Forensic,” JIKO

(Jurnal Informatika dan Komputer), vol. 7, no. 2, pp. 183–190, Sept. 2023, doi: 10.26798/jiko.v7i2.789.

