Improving the Quality of Learning: IT based Learning

Chai Ching Sing National Institute of Education, Singapore (NIE) Corresponding E-mail: <u>chingsing.chai@nie.edu.sg</u>

ABSTRACT

The emergence and advancement of ICT has sparked many calls for reform in education with the promises of improving the quality of learning. A number of 21st century learning frameworks have emerged in respond to the calls. This talk summarizes the common dimensions of 21st century learning and reports several case studies that measured students' perception of some aspects of 21st century learning. Challenges that teachers face in designing and implementing the ICT based lesson; and consequently reflecting and refining the learning packages will be discussed. In sum, our experiences of fostering 21st century quality learning reveal the importance of continuous co-construction of knowledge among teachers and researchers through the full cycle of reflective design and implementation.

1

Top Ranked Trends Across Three NMC Horizon Research Projects					
Technology Outlook for Singaporean K-12 Education 2012-2017	NMC Horizon Report 2012 K-12 Edition	Technology Outlook for Australian Tertiary Education 2012-2017			
Enhanced electronic books are increasingly being used instead of traditional textbooks.	Paradigms in K-12 teaching are shifting to include online learning, hybrid learning and collaborative models.	People expect to be able to work, learn, and study whenever and wherever they want.			
The abundance of resources and relationships made easily accessible via the Internet is increasingly challenging us to revisit our roles as educators.	The abundance of resources and relationships made easily accessible via the Internet is increasingly challenging us to revisit our roles as educators.	Increasingly, students want to use their own technology for learning.			
Education paradigms are shifting to include online learning, hybrid learning and collaborative models.	As the cost of technology drops and school districts revise and open up their access policies, it is becoming increasingly common for students to bring their own mobile devices.	Education paradigms are shifting to include online learning, hybrid learning and collaborative models.			

MNC Horizon report (2015, K-12)

Two long-term trends: rethinking how schools work in order to bolster student engagement and drive more innovation, as well as shifting to deeper learning approaches, such as project and challenge-based learning.

Bring Your Own Device (BYOD) and makerspaces ...increasingly adopted by schools in one year's time or less to make use of mobile learning and cultivate environments where students take ownership of their education by doing and creating.

Topics from the NMC Horizon Report > 2015 K-12 Edition

Case Studies (Tan, L., 2009)

Tiffany - The Blog Skin Creator (14 years old). About my interest:

I like to create my own blog skins for fun, using html language and software like Photoshop.

Ronald Toh - The Young Scientist (9 years old) About my interest: I like to read, draw and write about animals and insects. I like creating my own books, cards and games about them. I asked my mom how I could share my works with my friends and she showed me this cool app called Scoop It. You can find out more about it @ <u>http://www.youtube.com/watch?v=Bnr6QKKcsII</u>

Amanda Tan - The Fan Fiction Writer (14 years old) The longest fan fiction I have written is about teenage troubles and romance. .. To date, I have written 21 long chapters and I am happy to receive 75 reviews. I am revising Chapter 22 now. Thanks to my reviewers who have given me wonderful ideas to make Chapter 22 even better!

More cases!

- Five stories from Thomas and Brown (2011), NCoL:
- Sam's story, Thomas Douglas lost his students, Googling the error, gaming across generations, diabetes online support
- 13 cases: https://www.ted.com/playlists/129/ted_under_20

6

Facets	Dominant Way	Emerging/New Culture of
	of Learning	Learning
Assumption of learning	Learning by acquisition	Learning by doing (the participatory culture)
Learning goal	Pre-determined trajectory	Learner-defined trajectory
Technology Use	Use technology for content learning (CAI)	Use technology to learn about, learn to do and to be (Cognitive tools)
Targeted	Focus on the individual	Focus on the individual in
Learner	(independent learning)	the collective (collaborative learning; opportunistic collaboration)
Learning context	Emphasis on formal learning	Emphasis on the fusion of formal and informal learning
Model of	Push model of accessing	Pull model of accessing
accessing information	information	information
Instructional model	Just-in-case instruction	Just-in-time instruction
Curriculum	Prescribed resources and curriculum	DIY media productions/ cognitive artifacts
Modes of	Emphasis on language-	Emphasis on multiple
meaning- making	dominant meaning making	modes of meaning making
Teacher- student relationship	Expert-Novice	Participant-Expert
Literacy model	Knowledge telling model	Progressive knowledge construction
Sites of	Classroom as an insular	Classroom as a node in the
learning	knowledge space	network of knowledge spaces

New Culture of Learning

Measuring 21st century Learning

4P model: Perception, Process, Performance, and Product

What are the major frameworks?

Strong agreement among the frameworks on these competencies

- Collaboration
- Communication
- ICT literacy
- Social, cultural skills
- Creativity
- Critical thinking
- Problem-solving
- Self-direction
- Learning to learn
- Etc.

Assessing multidimensional students' perceptions of twenty first-century learning practices

Theoretical support

In particular, Biggs (1987) proposed a theoretical framework to understand student learning which includes the presage-process-product (3P) of learning. This model explore the relationship between the individual characteristics, the teaching and learning context (presage factors), the subsequent learning processes stimulated by the context (process factors), and resulting learning outcomes (product factors) in the classroom.

Item	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5	Factor 6	Factor 7
Factor 1: self-di	rected learnir	ng (SDL), M	= 3.74, SD =	$= .89, \alpha = 0.8$	38		
SDL1	0.80						
SDL2	0.76						
SDL3	0.73						
SDL4	0.72						
SDL5	0.59						
Factor 2: collabor	orative learni	ng (CoL), <i>M</i>	= 3.55, SD =	$= .86, \alpha = 0.5$	80		
CoL1		0.75					
CoL2		0.73					
CoL3		0.70					
CoL4		0.62					
CoL5		0.56					
Factor 3: meaning	ngful learning	g with ICT (N	MLT), $M = 3$.26, $SD = 1$.	11, $\alpha = 0.88$		
MLT1			0.79				
MLT2			0.76				
MLT3			0.70				
MLT4			0.65				
MLT5			0.64				
Factor 4: critical	l thinking (C	riT), $M = 3.7$	70, $SD = .83$,	$\alpha = 0.71$			
CriT1				0.72			
CriT2				0.66			
CriT3				0.55			
Factor 5: creativ	e thinking (C	CreT), $M = 3$.51, SD = .90	$\alpha = 0.82$			
CreT1					0.74		
CreT2					0.73		
CreT3					0.71		
CreT4		\sim			0.55		
Factor 6: authen	tic problem-s	solving (APS)	M = 3.66,	$SD = .92, \alpha$	= 0.86		
APS1						0.78	
APS2						0.73	
APS3	\subset					0.71	
APS4						0.64	
APS5						0.63	
Factor 7: knowle	edge creation	efficacy (KC	CE), $M = 3.53$	3. SD = .88.	$\alpha = 0.83$		
KCE1	0		,,	,,			0.75
KCE2							0.70
KCE3							0.67
KCE4							0.65
KCE5							0.54
Eigenvalue	11.93	1.38	2.42	1.00	1.06	2.01	1.44
	11.20	1.00	2.42	1.00	1.00	2.01	1

Total variance explained is 66.39 %; Overall $\alpha = 0.95$

Scale	Item	Factor loading	T value	CR	AVE
SDL	SDL1	0.83	_	0.85	0.54
	SDL2	0.69	11.33		
	SDL3	0.68	11.11		
	SDL4	0.77	12.90		
	SDL5	0.70	11.49		
CoL	CoL1	0.75	_	0.85	0.53
	CoL2	0.76	11.44		
	CoL3	0.75	11.20		
	CoL4	0.71	10.65		
	CoL5	0.68	10.16		
MLT	MLT1	0.85	_	0.90	0.64
	MLT2	0.86	16.57		
	MLT3	0.84	15.83		
	MLT4	0.67	11.40		
	MLT5	0.75	13.33		
CriT	CriT1	0.78	_	0.77	0.53
	CriT2	0.71	10.73		
	CriT3	0.69	10.38		
CreT	CreT1	0.78	_	0.84	0.56
	CreT2	0.81	12.99		
	CreT3	0.73	11.50		
	CreT4	0.67	10.47		
APS	APS1	0.77	_	0.85	0.53
	APS2	0.68	10.52		
	APS3	0.65	10.04		
	APS4	0.76	11.98		
	APS5	0.78	12.38		and the second se
KCE	KCE1	0.79	_	0.87	0.64
	KCE2	0.78	12.82		
	KCE3	0.74	12.12		
	KCE4	0.76	12.40		~ >>
	KCE5	0.68	10.95		

CORRELATION

Table 3 Correlations among the seven scales (N = 482)

	SDL	CoL	MLT	CriT	CreT	APS	KCE
SDL	1	0.53**	0.52**	0.58**	0.50**	0.61**	0.51**
CoL		1	0.56**	0.51**	0.50**	0.53**	0.44**
MLT			1	0.50**	0.54**	0.52**	0.53**
CriT				1	0.54**	0.58**	0.52**
CreT					1	0.55**	0.68**
APS						1	0.59**
KCE							1
** p \ (0.01						

SEM

Figure 2. The final model of structural relationships between learning practices, learning approaches, and learning outcomes.

The journey to improved quality learning: Nan Chiau Primary School

- https://books.google.com.sg/books?id=tQe5CgAAQBAJ&printsec=frontc over#v=onepage&q&f=false
- Hard work
- Iterative design

	Experimental (n =76) vs.	Mean	SD	<i>t</i> -value	Cohen's d
	Comparison (n =126) classes				
SDLT	Experimental	5.20	1.30	9.53***	1.42
	Comparison	3.12	1.61		
CLT	Experimental	4.97	1.38	7.79***	1.03
	Comparison	3.27	1.70		
AL	Experimental	5.39	1.45	1.10	0.16
	Comparison	5.15	1.51		
WI	Experimental	4.96	1.47	2.63**	0.38
	Comparison	4.43	1.33		
KC	Experimental	5.26	1.39	3.55***	0.52
	Comparison	4.53	1.44		

More cases: Social Studies

View		Category	Frequency (%)
First three months	Question types	Basic information questions	84 (57.1%)
		Wonderment questions	63 (42.9%)
	Answer levels	Level 1	93 (93.9%)
		Level 2	5 (5.1%)
		Level 3	1 (1.0%)
		Level 4	0 (0%)
Last three months	Question types	Basic information questions	68 (40.7%)
		Wonderment questions	99 (59.3%)
	Answer levels	Level 1	287 (80.6%)
		Level 2	57 (16.0%)
		Level 3	12 (3.4%)
		Level 4	0 (0%)

QUALITATIVE CONTENT ANALYSIS

Table 6.The distribution of students' notes according toquestion types and answer levels

More results

- Science: Better in open-ended questions
- Chinese: Growth in vocabularies
- Mathematics: Weaker students progress to the level of stronger students
- English: Stronger perception on critical thinking, creative thinking, oral communication (P2)

REFERENCES

- Https://Books.Google.Com.Sg/Books?Id=Tqe5cgaaqbaj&Printsec=Frontcover#V =Onepage&Q&F=False
- CS Chai, F Deng, PS Tsai, JHL Koh, CC Tsai, Asia Pacific Education Review 16 (3), 389-398
- Howland, Marra, & Jonassen (2012) considered 21st CL as Meaningful Learning with ICT
- Howland, J. L., Jonassen, D., & Marra, R. M. (2012). Meaningful learning with technology (4th ed.). Boston, MA: Allyn & Bacon.

https://www.ted.com/playlists/129/ted_under_20

http://www.youtube.com/watch?v=Bnr6QKKcsII

The New Media Consortium. (2012). Technology Outlook: Singapore K-12 Education 2012 – 2017 (An NMC Horizon Project Regional Analysis). Retrieved from <u>http://www.nmc.org/publications/2012-technology-outlook-singapore-k12</u>

Lister, Dovey, Giddings, Grant, & Kelly, 2009

