Naskah

Review : Metode Sintesis Katoda LiFePO₄ Baterai Lithium-Ion

Moch Khabibul Adi Rachmanto^{1,a}, Liliana Triatmajaning Wibowo^{1,b}, dan Tika Paramitha^{1,c,*}

¹Program Studi Teknik Kimia, Fakultas Teknik, Universitas Sebelas Maret, Jl. Ir. Sutami 36A Jebres, Surakarta, 57126 E-mail: ^amochkhabibuladi@gmail.com, ^bliliana81298@gmail.com, ^ctikaparamitha@staff.uns.ac.id (*Corresponding author)

Abstract. Cathode material is one of important component in lithium ion batteries. Cathode materials used in lithium ion batteries including LNCA ($\text{LiNi}_{0,8}\text{Co}_{0,15}\text{Al}_{0,05}\text{O}_2$), LiCoO_2 , LiMn_2O_4 , LiFePO_4 , and LNCM ($\text{LiNi}_{0,3}\text{Co}_{0,3}\text{Mn}_{0,3}\text{O}_2$). The advantage of LiFePO_4 cathode are high operating voltage (3.45 V phosphoolivines), high specific capacity (170 mAh/g), low cost raw material, environmentally friendly, high heat stability, and can be applied as high power storage. However, LiFePO_4 also has disadvantages, such as low conductivity, slow diffusion rate of Li^+ ions, and low energy density. To optimize these deficiencies, cathode synthesis has been carried out with various methods. This scientific article discusses the synthesis of the LiFePO_4 cathode with several methods, namely precipitation, solid state, and sol gel. In addition, this article discuss about review of the structural analysis, morphology, and electrochemical performance of LiFePO_4 cathode batteries.

Keywords: LiFePO4, cathode, synthesis, lithium ion batteries

EQUILIBRIUM Volume 3 No.2 December 2019 Online at http://equilibrium.ft.uns.ac.id

1. Pendahuluan

Kebutuhan baterai semakin meningkat setiap harinya. Salah satu baterai yang paling banyak dikembangkan adalah baterai sekunder (baterai yang dapat diisi ulang), seperti baterai *lithium-ion*. Baterai *lithium-ion* sebagai perantara penyimpanan energi listrik penggunaanya tidak terbatas pada alat-alat elektronik seperti *handphone* dan laptop, tetapi juga pada bidang transportasi seperti *electric vehicle, electric train*, dan bidang lainnya. Baterai *lithium-ion* memiliki daya yang besar, siklus hidup yang panjang, stabilitas yang tinggi, ketahanan terhadap temperatur tinggi, ekonomis, dan lebih ramah lingkungan [1]. Secara umum baterai *lithium-ion* terdiri dari komponen katoda, anoda, dan elektrolit. Katoda merupakan logam yang mengalami reduksi dengan menangkap elektron hasil dari oksidasi logam [2]. Sedangkan anoda merupakan logam yang mengalami oksidasi. Elektrolit berupa larutan yang molekulnya dapat larut dalam air dan terurai menjadi muatan partikel-partikel bermuatan positif atau negatif [3].

Katoda merupakan komponen penting untuk mendapatkan baterai dengan performa yang baik Beberapa katoda baterai *lithium-ion* yaitu LNCA (LiNi_{0,8}Co_{0,15}Al_{0,05}O₂), LiCoO₂, LiMn₂O₄, LiFePO₄, dan LNCM (LiNi_{0,3}Co_{0,3}Mn_{0,3}O₂). LiFePO₄ merupakan salah satu katoda yang banyak digunakan sebagai komponen baterai sekunder berbasis *lithium-ion*. Reaksi redoks yang terjadi pada baterai *lithiumion* dengan katoda LiFePO₄ dan anoda LiC₆ adalah sebagai berikut:

- Katoda : $Li_{1-x}FePO_4 + xLi^+ + xe^- \leftrightarrow LiFePO_4$
- Anoda : $LiC_6 \leftrightarrow Li^+ + e^- + 6C$

[4]

Secara teoritis, LiFePO₄ mempunyai kapasitas energi yang tinggi yaitu 170 mAh/g dan tegangan discharge 3,4 V [5]. LiFePO₄ juga memiliki stabilitas termal dan stabilitas kimia yang tinggi, ekonomis dan ramah lingkungan karena menggunakan meterial yang tidak beracun [6]. Dibandingkan dengan LiCoO₂, biaya sintesis LiFePO₄ lebih murah [7]. Namun LiFePO₄ juga memiliki kekurangan seperti konduktivitas rendah, laju difusi ion Li⁺ yang lambat, dan kerapatan energi yang rendah [8][9][10]. Untuk mengatasi kekurangan tersebut, hal-hal yang dapat dilakukan terhadap katoda adalah melapisi dengan karbon [11][12], mendoping dengan beberapa logam besi [13][14], mengurangi ukuran partikel [15], mensubtitusi kation aliovalen [16], serta memodifikasi sintesis katoda LiFePO₄ (*sol-gel*, presipitasi, atau *solid state*).

2. Metode Sintesis

2.1. Metode Sol-Gel

Sol-gel merupakan metode sintesis katoda dengan suhu rendah menggunakan campuran bahan kimia yang biasanya digunakan untuk membuat logam oksida. Sintesis sol-gel melibatkan pembentukan sol yaitu suspensi koloid yang stabil dari partikel padat dalam pelarut dan proses gelasi dari sol untuk membentuk gel. Kelebihan dari metode sol-gel adalah murah, temperatur proses rendah, produk memiliki ketepatan stoikiometri, kemurnian tinggi, struktur yang seragam, ukuran partikel kecil, dan yield besar [5][17]. Namun, sintesis dengan metode sol-gel membutuhkan aliran gas Argon yang tinggi untuk menghindari terjadinya oksidasi pada ion *ferrous*. Pada beberapa kasus sintesis sol-gel membutuhkan perlakuan lanjutan yang memakan waktu yang lama, kompleks, dan mahal. Oleh karena itu, metode sol-gel tidak digunakan secara luas [18].

Proses sintesis katoda dengan metode *sol-gel* telah dilakukan oleh Negara dkk. [19]. Sintesis LiFePO₄ dilakukan dengan dua sumber Fe, yaitu bahan komersial (FeCl₂·4H₂O) dan bahan alami yaitu batu besi. Sintesis *sol-gel* dilakukan dengan prosedur di bawah ini :

- a. Proses sintesis dengan bahan alami (sampel A)
 - Pertama, batu besi sebagai sumber Fe dilarutkan dalam HCl 37% pada suhu 100°C. Kemudian campuran disaring untuk memisahkan komponen bukan logam. Senyawa Li₂CO₃ dan NH₄H₂PO₄ dilarutkan dalam HCl 37% dan *aquadest*. Kedua larutan dicampur tetes demi tetes pada temperatur 100°C selama 1 jam. NH₄OH ditambahkan sampai pH 4 sambil diaduk sampai terbentuk *gel. Gel* kemudan dikeringkan pada suhu 300°C. Prekursor digiling dalam *planetary ball mill* dan dalam alkohol sebagai media pencampuran. Kemudan dikalsinasi pada suhu 600°C selama 10 jam dibawah aliran gas N₂ dengan kecepatan pemanasan 5°C/menit.
- b. Proses sintesis dengan bahan komersial (sampel B) FeCl₂.4H₂O dan NH₄H₂PO₄ dilarutkan dalam *aquadest*. Li₂CO₃ dilarutkan dalam HCl 37%. Kedua larutan dicampur tetes demi tetes pada temperatur 80°C selama 1 jam. NH₄OH ditambahkan sampai pH 7, sambil diaduk hingga terbentuk gel. Gel kemudian dikeringkan pada temperatur 120°C. Prekursor digiling dalam *planetary ball mill* dan dalam alkohol sebagai media

pencampuran. Larutan kemudian dikalsinasi pada suhu 700°C selama 10 jam dibawah aliran gas Ar dengan kecepatan pemanasan 5°C/menit.

Hasil karakterisasi XRD pada sampel A mengandung dua fase, yaitu *olivine* LiFePO₄, dan *nasicon* Li₃Fe₂(PO₄)₃. Sedangkan sampel B hanya mengandung fase *olivine*. Hal ini karena sampel A yang menggunakan batu besi sebagai sumber Fe mempunyai dua ion Fe, yaitu Fe²⁺ dan Fe³⁺. LiFePO₄ *olivine* mempunyai tahap oksidasi Fe²⁺, sedangkan LiFePO₄ *nasicon* mempunyai tahap oksidasi Fe³⁺.

Salah satu cara untuk mengatasi kekurangan LiFePO₄ yaitu dengan pelapisan dengan karbon. Lapisan karbon dapat meningkatkan konduktivitas listrik dan memperkecil ukuran partikel serta menghindari agregasi partikel, sehingga dapat memperpendek jalur Li⁺. Berdasarkan penelitian yang dilakukan oleh Ma dkk.[18], sintesis LiFePO₄/C dilakukan dengan memvariasikan jumlah asam sitrat sebagai sumber karbon. Performa elektrokimia terbaik diperoleh dengan penambahan asam sitrat sebanyak 1 mol yang menghasilkan karbon sisa 4,5 %berat. LiFePO₄/C tersebut memiliki performa siklus yang stabil dan kapasitas *discharge* tinggi yaitu 163, 119, dan 108 mAh/g pada 0,1 C, 5 C, dan 10 C, berturut-turut. Pelapisan karbon juga dapat dilakukan dengan penambahan sukrosa. Pada siklus kedua, LiFePO₄/C) mempunyai kapasitas 102,2 mAh/g, sedangkan LiFePO₄ dengan penambahan karbon (LiFePO₄/C) mempunyai kapasitas 117 mAh/g pada 0,2 C. Selain itu, kapasitas *discharge* hilang selama 2000 siklus sebesar 9,5% dengan efisiensi culoumbic sebesar 100% [20].

Pada penelitian Triwibowo dkk.[21] dilakukan variasi penambahan asam sitrat untuk mengontrol pH gel yang dibentuk. Sol dalam penelitian ini memiliki pH 5, 5,4 dan 5,8. Berdasarkan hasil karakterisasi XRD, puncak XRD dari bahan sampel identik dengan puncak fase LiFePO₄ yang mengacu pada pola difraksi PCPDF 81-1173. Sesuai dengan referensi tersebut, fase LiFePO₄ yang diperoleh memiliki struktur kristal ortorombik dengan Pnma *space group*. Selain fase LiFePO₄, trbentu fase pengotor berupa fase Fe₂O₃. Puncak pola difraksi dari pengotor ini mengacu pada PCPDF 33-0664. Ukuran katoda yang diperoleh cenderung lebih kecil dengan meningkatnya pH prekursor. Morfologi berbentuk aglomerasi bulat. Peningkatan pH akan menyebabkan laju pengendapan ion lebih tinggi daripada laju disolusi. Hal tersebut mengakibatkan fase nukleasi lebih dominan daripada pertumbuhan kristal. Kelasi asam sitrat dengan Fe²⁺ menghambat pertumbuhan kristal sehingga ukuran partikel yang dihasilkan kecil.

2.2. Metode Presipitasi

Metode presipitasi merupakan metode sintesis dengan mengendapkan masing-masing material pada reaktan sehingga menghasilkan endapan yang ketika digabung membentuk senyawa sesuai stoikiometri yang diharapkan. Proses dalam metode presipitasi tergolong sederhana, mudah, dan murah. Metode presipitasi berpengaruh pada sifat material seperti fase yang terbentuk, impuritas, dan aglomerasi [22].

Pada penelitian yang dilakukan oleh Procini dkk.[23], dilakukan pengujian sampel berdasarkan sumber Li yang digunakan. Sampel A menggunakan sumber Li dari LiOH, sampel B dari Li₂CO₃, sampel C dari LiH, sampel D dari Li₂S, sampel E dari Li₂CO₃, dan sampel F dari CH₃COOLi. Bahan lain yang digunakan adalah Fe(NH₄)₂(O₄)_{2.6}H₂O, NH₄H₂PO₄, H₃PO₄, dan *aquadest*.

- a. Proses sintesis FePO₄ : Sintesis FePO₄ dilakukan dengan mencampur Fe(NH₄)₂(O₄)₂.6H₂O dengan NH₄H₂PO₄ (perbandingan volume 1:1) dan ditambahkan dengan H₃PO₄ sambil diaduk dengan *stirrer*. Kemudian akan muncul endapan putih. Campuran endapan disaring dengan filter 0,8 µm kemudian dicuci dengan *aquadest*. Campuran dikeringkan dan dipanaskan pada temperatur 300°C.
- b. Proses Lithiation : Sumber Li yang digunakan adalah Li₂CO₃, Li₂S, LiOH.H₂O, CH₃COOLi.2H₂O, LiCl, LiH. Proses lithiation dilakukan dengan mencampur sumber Li dengan prekursor FePO₄ (perbandingan molar 1:1) di mortar. Campuran ditempatkan di krusibel kemudian dipanaskan di *tubular furnace* 550°C, dengan aliran gas Ar/H₂ (perbandingan 95/5) selama 0,5 jam.

Dari penelitian Prosini dkk.[23], diperoleh data karakterisasi elektrokimia setelah 10 siklus seperti pada (Tabel 1).

Tabel 1 Tabel Karakterisasi Elektrokimia Sampel Sumber Li [23]

Sampel	Sumber Li	Kapasitas (mAh/g)
А	LiOH	68
В	Li ₂ CO ₃	90

Sampel	Sumber Li	Kapasitas (mAh/g)
С	LiH	65
D	Li ₂ S	83
Е	LiCl	50
F	CH ₃ COOLi	120

Pada penelitian yang dilakukan oleh Yoon dkk. [24] ada dua proses metode presipitasi yaitu proses I adalah metode presipitasi dengan kontrol pH larutan menggunakan NH4OH untuk membentuk endapan FePO4 pada suhu kamar. Proses II adalah metode presipitasi konvensional, larutan H₃PO4 (85%) secara bertahap ditambahkan ke larutan FeCl₃ selama proses untuk mempertahankan rasio mol yang ditentukan. Larutan tesebut di*aging* dan dipanaskan pada 90°C dalam *water bath* sampai terbentuk endapan FePO4. Sintesis komposit LiFePO4/C dilakukan dengan mencampur FePO4 dengan lithium karbonat dan glukosa (8%berat) sebagai sumber karbon menggunakan *ball mill*. Sampel proses I (A) memiliki kapasitas awal *charge* dan *discharge* sebesar 157 dan 136 mAh/g. Untuk sampel proses II (B), kapasitas awal *charge* sebesar 110 mAh/g dan kapasitas *discharge* sebesar 88 mAh/g. Sampel A memiliki kapasitas *charge-discharge* yang relatif lebih tinggi dibandingkan dengan sampel B. Hal ini dikarenakan sampel A memiliki fase ortorombik tunggal tanpa ada fase kedua berupa Fe₂P₂O₇, meskipun ukuran partikel yang relatif lebih besar dan lapisan karbon yang buruk.

Jheng dkk.[25] melakukan penelitan sintesis LiFePO₄ dengan memvariasikan jenis surfaktan, yaitu Brij-30, Igepal-520, dan PPGBE. Dari hasil karakterisasi XRD diperoleh LiFePO₄ yang murni, kristal, dan struktur *olivine*. Tidak ada puncak karbon yang menunjukkan karbon terbentuk dari proses pirolisis non ionik surfaktan organik dan produk akhir berstruktur amorph. Dari data penelitian, tipe surfaktan yang berbeda berpengaruh pada residu karbon, ukuran partikel, dan luas permukaan BET yang tercantum pada Tabel 2.

Sampel	Residu Karbon	Ukuran Partikel	Luas Permukaan BET
	(% berat)	(nm)	(m^2/g)
Ko-presipitasi	2,1	306,7	10,2
Brij-30	4,2	272,7	90,7
Igepal-50	3,4	267,7	11,7
PPGBE	2,2	237,8	15,5

Tabel 2. Data Residu Karbon, Ukuran Partikel, dan Luas Permukaan dengan Variasi Surfaktan

Berdasarkan hasil karakterisasi TEM, daerah gelap menunjukkan LiFePO₄ dengan ukuran 200 nm. Partikel tersebut dikelilingi matriks karbon dengan warna abu-abu terang. Dari hasil karaterisasi TEM, distribusi karbon mengelilingi kristal LiFePO₄ membentuk "carbon web". Carbon web dapat sebagai penghubung elektronik antar partikel bagian dalam, tetapi tidak terjadi kontak langsung antara partikel aktif dan elektrolit. Hasil karakterisasi SEM, komposit LiFePO₄/C memiliki ukuran sekitar 0,2-0,3 µm, meskipun terdapat beberapa partikel beraglomerasi.

Penelitian dengan doping atau penambahan graphene pada LiFePO₄ dilakukan Ding dkk. [26] menunjukkan katoda dengan menggunakan karbon sebagai bahan additif mampu meningkatkan performa baterai. Komposisi karbon yaitu 1,5% berat katoda, mampu menghasilkan kapasitas 160 mAh/g pada 0,2C. Hasil ini dipengaruhi luas permukaan partikel dan nanopartikel graphene, serta peran graphene sebagai konduktor yang baik.

Pada penelitian Delacourt dkk.[27] sintesis LiFePO₄ dilakukan dengan proses presipitasi selama 16 jam. Analisa XRD menunjukkan struktur LiFePO₄. Sedangkan distribusi ukuran partikel sebesar 100-200 nm. Hasil karakterisasi elektrokimia menunjukkan bahwa LiFePO₄ memiliki performa yang baik bahkan di bawah laju arus tinggi C/2 selama *discharge*, menghasilkan kapasitas spesifik reversibel sebesar 145 mAh/g. Performa yang sangat baik ini disebabkan oleh penurunan ukuran partikel dan pada material ini pelapisan karbon tidak lagi diperlukan.

Penelitian oleh Liu dkk. [28] dilakukan dengan menambahkan pancaran iradiasi ultrasonik 250W, 40kHz yang digunakan untuk mengontrol ukuran dan homogenitas partikel LiFePO₄/C. Dengan proses ini, nanopartikel LiFePO₄/C memiliki ukuran partikel lebih kecil dengan distribusi ukuran seragam dibandingkan dengan metode konvensional. Kapasitas spesifik yang dihasilkan yaitu 159 mAh/g saat 0,1C.

Metode presipitasi tergolong mudah dilakukan untuk sintesis LiFePO₄ dengan karakteristik yang diinginkan, namun banyak faktor yang menentukan morfologi material [29] .Material katoda yang dihasilkan memiliki yield yang besar, namun sulit melakukan kontrol pada laju presipitasi bahan sehingga sulit mencapai ukuran, bentuk, dan kemurnian yang tinggi [30]

2.3. Metode Solid State

Metode *solid state* adalah metode yang digunakan untuk menghasilkan struktur kimia dengan reaksi yang terjadi tanpa adanya pelarut [8]. Keuntungan dari metode solid state meliputi kemudahan proses sintesis dan dapat diaplikasikan dalam skala besar. Kondisi operasi biasanya dilakukan pada temperatur dan tekanan tinggi. Prekursor yang biasa digunakan Li₂CO₃ atau LiOH.H₂O untuk sumber Li; Fe₂CO₄.2H₂O atau Fe(C₂O₄)₂ sebagai sumber Fe, dan NH₄PO₄ sebagai sumber P.

Hu dkk.[31] melakukan penelitian mengenai kombinasi xLiFePO₄.yLi₃V₂(PO₄)₃. Proses sintesis ini meliputi 3 tahap yaitu pembuatan LiFePO₄, pembuatan LiVPO₄F, dan tahap penggabungan.

a. Pembuatan LiFePO₄

FePO₄ dicampur Li₂CO₃ dan C₆H₁₂O₆ dengan perbandingan molae Fe : C₆H₁₂O₆ = 1:0.15 kemudian dilarutkan dengan *aquadest*. Campuran dimasukkan dalam *bead mill*. Pasta yang dihasilkan kemudian dimasukkan dalam desikator kemudian digranulasi dengan *spray dryer*b. Pembuatan LiVPO₄F

NH₄H₂PO₄ ditambahkan dengan LiF, V₂O₅, dan H₂C₂O₄.2H₂O dengan perbandingan molar V dan H₂C₂O₄.2H₂O sebanyak 1:1,8. Campuran diaduk dengan *ultrasonic vibration* dalam gelas beaker. Kemudian ditambahkan *anhydrous ethanol* sebagai media pendispersi.

c. Penggabungan

Prekursor LiFePO₄ dan cairan LiVPO₄F dipindah ke *ball mill tank* untuk proses aktivasi mekanis, kemudian campuran disintering pada temperatur 300°C selama 2 jam, dilanjutkan 650°C selama 6 jam di dalam lingkungan gas Argon. Temperatur sintering sangat menentukan struktur, ukuran partikel, dan kapasitas bahan katoda [7]

Pada penelitian Hu dkk.[31], analisa XRD menunjukkan adanya puncak difraksi yang sangat tajam. Hal ini menandakan prekursor mempunyai struktur kristal yang bagus. Ketika x kurang dari 0,4, ratarata puncak difraksi hampir sama dengan struktur *olivine* LiFePO₄, sedangkan ketika x lebih dari 0,4, puncak difraksi dari *triclinic* LiVPO₄F makin jelas. Dalam hasil anailisa XRD, tidak terlihat puncak difraksi dari impuritas, hal ini menandakan adanya perpaduan sifat antara LiFePO₄ dengan LiVPO₄F. Sedangkan karbon berstruktur amorf, mengindikasikan jumlah karbon sedikit pada kisaran 1,86% -2,78%. Morfologi permukaan semua sampel berbentuk irregular, yang terdiri dari partikel ukuran kecil dan besar dengan variasi derajat aglomerasi. Ukuran partikel pada komposit lebih kecil dibandingkan dengan LiFePO₄, khususnya ketika x < 0,6. Penambahan vanadium menurunkan aglomerasi LiFePO₄. Ukuran partikel yang kecil membuat luas permukaan spesifik besar, sehingga meningkatkan luas kontak antara elektrode dan elektrolit semakin besar serta meningkatkan reversibilitas material elektroda. Kapasitas *charge* dan *discharge* berbagai sampel dapat dilihat dari (Tabel 3).

(x=0; 0, 05; 0, 10; 0)	0,20; 0,40; (),60; 0,80;	I) pada b	erbagai ra	s10 <i>charge-a</i>	uscharge.			
Sampel	0,2C	0,5C	1C	3C	5C	7C	10C	15C	
$\mathbf{x}=0$	161,7	155,1	148,7	126,9	111,5	97,2	77,2	51,3	
	547,4	517,5	486,0	397,5	339,3	288,7	222,4	141,4	
x=0,05	156,6	154,7	250,8	136,7	122,8	109,5	90,2	59,0	
	533,9	523,3	503,8	439,9	382,2	331,1	262,3	161,5	
x=0,1	153,2	151,9	148,2	137,4	129,0	121,4	109,6	94,0	
	527,5	519,7	502,7	453,3	418,2	386,9	342,8	285,4	
x=0,2	150,4	145,7	136,9	116,7	102,0	90,0	74,3	54,1	
	523,1	503,3	466,6	384,6	329,4	286,2	232,3	167,5	
x=0,4	132,1	124,9	117,2	107,4	97,7	88,8	77,8	65,3	
	481,1	452,9	420,9	376,0	335,5	300,2	259,3	213, 2	
x=0,6	121,2	118,2	111,8	103,3	98,0	93,7	85,8	75,4	
	461,6	444,4	414,1	370,9	346,3	327,4	295,5	254,7	

Tabel 3. Kapasitas *discharge* (mAh/g) dan energi *discharge* (Wh/kg) dari (1-x) LiFePO₄.xLiVPOF/C (x=0; 0.05; 0.10; 0.20; 0.40; 0.60; 0.80; 1) pada berbagai rasio *charge-discharge*.

x=0,8	110,8	109,6	103,5	89,6	75,1	64,8	55,0	44,6
	435,7	424,8	392,4	322,9	261,6	220,6	183,7	143,6
x=1	132,6	129,3	120,9	107,4	93,8	83,3	72,7	61,8
	544,1	522,7	483,6	410,2	349,3	304,8	259,8	214,9

Pada penelitan Yang dkk.[32] dilakukan sintesis LiFePO4/C dan LiFePO4/C-Si (karbon-silikon). Dari hasil karakterisasi XRD dapat dilihat adanya puncak difraksi yang terletak pada 20 = 17,9° dan 30,7° dikategorikan sebagai fase FePO4. Puncak yang terletak pada 17,1°, 29,6°, dan 35,6° dikategorikan sebagai fase LiFePO4. Berdasarkan slope rasio tegangan charge dan discharge, elektroda LiFePO4/C-Si memiliki kecepatan charge dan discharge yang lebih tinggi daripada LiFePO4/C, yang berarti bahwa nano silicon pada permukaan menyebabkan rendahnya energi aktivasi dari difusi ion Li+. Selain itu, LiFePO4/C-Si memiliki koefisien difusi yang besar. Hal ini berarti bahwa modifikasi permukaan nano silcon menambah kecepatan migrasi ion Li+. Selain itu, performa siklus LiFePO4/C-Si juga lebih baik dibandingkan dengan $LiFePO_4/C$.

Kelemahan utama metode solid state terletak pada pengontrolan material berukuran nano. Hal ini disebabkan semua bahan atau reagent berwujud padat tidak selalu tercampur sempurna [30]. Membutuhkan energi yang tinggi dan ukuran partikel kurang seragam [15].

Prekusor	Prekusor	Prekusor	Sumber	Produk	Kapasitas	Ref
Li	Fe	Р	Karbon		Spesifik	
					(mAh/g)	
Metode Sol-	Gel					
Li ₂ CO ₃	FeCl ₂ ·4H ₂ O	H_3PO_4	Asam	LiFePO ₄ /C		[18]
			Sitrat			
			0,5 mol	Sampel A	127	
			1 mol	Sampel B	162,7	
			2 mol	Sampel C	158,1	
LiCH ₃ COO	Fe(CH ₃ COO) ₂	H_3PO_4	Asam	LiFePO ₄	150	[17]
			adipat			
$C_2H_3LiO_2$	C ₄ H ₆ FeO ₄	$H_9N_2O_4P$	Asam	LiFePO ₄ /C	133	[33]
			Sitrat			
Metode Pres	sipitasi					
LiOH	$(NH_4)_2Fe(SO_4)_2$	NH ₄ H ₂ PO ₄	Graphene	LiFePO ₄	113	[26]
	6H ₂ O			LiFePO ₄ /	160	
				graphene		
LiOH	FeSO ₄ ·7H ₂ O	LiH ₂ PO ₄	Glukosa	LiFePO ₄ /C		[28]
				Dengan ultrasonic	159	
				irradiation		
				Tanpa <i>ultrasonic</i>		
				irradiation	146	
Metode Soli	d-State					
Li_2CO_3	$Fe(NO_3)_3.9H_2O$	H_3PO_4	Glukosa	LiFePO ₄ /C		[34]
				Media etanol	118	
				Media air	150	
Li_2CO_3	FeSO ₄ .7H ₂ O	$\rm NH_4H_2PO_4$	Carbon	A(500°C,24 jam)	95	[35]
				B(560°C,12 jam)	152	
				C(600°C,12 jam)	126	
				D(560°C,2 jam)	156	
				E(560 °C,24 jam)	143	

Sintesis katoda LiFePO4 dengan metode sol-gel, presipitasi, dan solid-state dapat dilihat pada Tabel 4.

Tabel 4	Metode Sintesis	Katoda LiFePO4
I aDCI T.	metoue sincesis.	Natoua Linti O4

Prekusor Li	Prekusor Fe	Prekusor P	Sumber Karbon	Produk	Kapasitas Spesifik (mAh/g)	Ref
LiOH	FeSO ₄ .7H ₂ O	NH ₄ H ₂ PO ₄	Carbon	LiFePO ₄ /C	-	[36]
Li ₂ CO ₃	FeC ₂ O ₄ .2H ₂ O	NH ₄ H ₂ PO ₄	Dietilen	LiFePO ₄ /C	58	[37]
			Glikol			
Commercial	-	-	Graphite	LiFePO ₄ /1LTOG-A	95,21	[38]
LiFePO4,			-	LiFePO ₄ /1LTOG-B	100,09	
Li ₂ CO ₃				LiFePO ₄ /G	127,77	
LiClO ₄	-	-	-	LiFePO ₄ /SPE/Li	138	[39]
LiTFSI						
LiFePO ₄						
ditambah						
PEG						
Li ₂ Co ₃	FeC ₆ H ₅ O.7H ₂ O	NH ₄ H ₂ PO ₄	Carbon	LiFePO ₄ /C	101	[40]

3. Kesimpulan

LiFePO₄ merupakan salah satu jenis katoda yang digunakan pada baterai *lithium-ion*. Sintesis LiFePO₄ dapat dilakukan dengan beberapa metode diantaranya *sol-gel*, presipitasi, dan *solid state*. *Sol gel* merupakan metode yang murah dengan temperatur proses yang rendah menghasilkan produk yang memiliki ketepatan stoikiometri, struktur seragam dengan ukuran partikel kecil, dan kemurnian yang tinggi. Namun pada kasus tertentu metode *sol gel* membutuhkan perlakuan lanjutan yang kompleks dan memakan waktu lama. Selain *sol gel* metode yang murah juga dapat dilakukan dengan presipitasi. Metode presipitasi sangat mempengaruhi sifat material yang terbentuk seperti fase, impuritas, dan aglomerasi. Metode lain yang dapat digunakan ialah *solid state*. *Solid state* merupakan metode yang sangat sederhana untuk menghasilkan reaksi kimia tanpa pelarut. Sintesis material katoda akan mempengaruhi performa elektrokimia pada baterai *lithium-ion* yang dihasilkan. Untuk mengatasi kekurangan dari katoda LiFePO₄ dapat dilakukan dengan berbagai cara diantaranya pelapisan dengan karbon, doping atom, kombinasi dengan jenis katoda lain. Sehingga, dengan modifikasi sintesis katoda dapat dihasilkan baterai *lithium-ion* yang memiliki kestabilan tinggi, performa siklus baik, dan mudah diproduksi.

Referensi

- L. Lu, X. Han, J. Li, J. Hua, and M. Ouyang, "A review on the key issues for lithium-ion battery management in electric vehicles," *J. Power Sources*, vol. 226, pp. 272–288, 2013, doi: 10.1016/j.jpowsour.2012.10.060.
- [2] M. Hcl, "Pengaruh Suhu Terhadap Korosi Baja SS 304 dalam Media 1 M HCL dengan Adanya Inhibitor Kinina," *Sains dan seni pomits*, vol. 2, no. 2, pp. 2–4, 2013.
- [3] E. Budiyanto, D. A. Setiawan, H. Supriadi, and K. Ridhuan, "Pengaruh Jarak Anoda-Katoda Pada Proses Elektroplating Tembaga Terhadap Ketebalan Lapisan Dan Efisiensi Katoda Baja Aisi 1020," *Turbo J. Progr. Stud. Tek. Mesin*, vol. 5, no. 1, pp. 21–29, 2017, doi: 10.24127/trb.v5i1.115.
- [4] A. Satriady, W. Alamsyah, A. H. I. Saad, and S. Hidayat, "Pengaruh Luas Elektroda Terhadap Kartakteristik Baterai LiFePO 4," *J. Mater. dan Energi Indonesa*, vol. 06, no. 02, pp. 43–48, 2016, [Online]. Available: http://jurnal.unpad.ac.id/jmei/article/view/10959/5163.
- [5] O. Toprakci, H. A. K. Toprakci, L. Ji, and X. Zhang, "28_2010008," vol. 28, no. 28, pp. 50– 73, 2010.
- [6] R. Angela, H. Islam, V. Sari, C. Latif, M. Zainuri, and S. Pratapa, "Synthesis of LiFePO4/C composites based on natural iron stone using a sol gel method," *AIP Conf. Proc.*, vol. 1788, no. January, pp. 4–8, 2017, doi: 10.1063/1.4968355.
- [7] T. V. S. L. Satyavani, A. Srinivas Kumar, and P. S. V. Subba Rao, "Methods of synthesis and performance improvement of lithium iron phosphate for high rate Li-ion batteries: A review," *Eng. Sci. Technol. an Int. J.*, vol. 19, no. 1, pp. 178–188, 2016, doi: 10.1016/j.jestch.2015.06.002.

- [8] R. Liu *et al.*, "Preparation of LiFePO4/C cathode materials via a green synthesis route for lithium-ion battery applications," *Materials (Basel).*, vol. 11, no. 11, pp. 1–13, 2018, doi: 10.3390/ma11112251.
- [9] N. Ravet, Y. Chouinard, J. F. Magnan, S. Besner, M. Gauthier, and M. Armand, "Electroactivity of natural and synthetic triphylite," *J. Power Sources*, vol. 97–98, pp. 503–507, 2001, doi: 10.1016/S0378-7753(01)00727-3.
- [10] M. Takahashi, S. ichi Tobishima, K. Takei, and Y. Sakurai, "Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries," *Solid State Ionics*, vol. 148, no. 3–4, pp. 283–289, 2002, doi: 10.1016/S0167-2738(02)00064-4.
- [11] Y. Lin, M. X. Gao, D. Zhu, Y. F. Liu, and H. G. Pan, "Effects of carbon coating and iron phosphides on the electrochemical properties of LiFePO4/C," *J. Power Sources*, vol. 184, no. 2, pp. 444–448, 2008, doi: 10.1016/j.jpowsour.2008.03.026.
- [12] G. Qin, Q. Ma, and C. Wang, "A porous C/LiFePO4/multiwalled carbon nanotubes cathode material for Lithium ion batteries," *Electrochim. Acta*, vol. 115, pp. 407–415, 2014, doi: 10.1016/j.electacta.2013.10.177.
- [13] C. S. Sun *et al.*, "Improved high-rate charge/discharge performances of LiFePO4/C via V-doping," *J. Power Sources*, vol. 193, no. 2, pp. 841–845, 2009, doi: 10.1016/j.jpowsour.2009.03.061.
- [14] J. Xu, G. Chen, Y. J. Teng, and B. Zhang, "Electrochemical properties of LiAlx Fe1-3x/2PO4/C prepared by a solution method," *Solid State Commun.*, vol. 147, no. 9–10, pp. 414–418, 2008, doi: 10.1016/j.ssc.2008.06.010.
- [15] H. El-Shinawi, E. J. Cussen, and S. A. Corr, "Morphology-Directed Synthesis of LiFePO4 and LiCoPO4 from Nanostructured Li1+2 xPO3+ x," *Inorg. Chem.*, vol. 58, no. 10, pp. 6946– 6949, 2019, doi: 10.1021/acs.inorgchem.9b00517.
- [16] S. Y. Chung, J. T. Bloking, and Y. M. Chiang, "Electronically conductive phospho-olivines as lithium storage electrodes," *Nat. Mater.*, vol. 1, no. 2, pp. 123–128, 2002, doi: 10.1038/nmat732.
- [17] S. B. Lee, I. C. Jang, H. H. Lim, V. Aravindan, H. S. Kim, and Y. S. Lee, "Preparation and electrochemical characterization of LiFePO4 nanoparticles with high rate capability by a solgel method," *J. Alloys Compd.*, vol. 491, no. 1–2, pp. 668–672, 2010, doi: 10.1016/j.jallcom.2009.11.037.
- [18] J. Ma, B. Li, H. Du, C. Xu, and F. Kang, "Inorganic-based sol-gel synthesis of nano-structured LiFePO 4/C composite materials for lithium ion batteries," *J. Solid State Electrochem.*, vol. 16, no. 4, pp. 1353–1362, 2012, doi: 10.1007/s10008-011-1491-8.
- [19] V. S. I. Negara, C. Latif, W. Wongtepa, and S. Pratapa, "EXAFS Study on LiFePO4 Powders Produced from Two Sol-Gel Routes," J. Phys. Conf. Ser., vol. 1011, no. 1, 2018, doi: 10.1088/1742-6596/1011/1/012010.
- [20] Z. Yang and S. Wang, "High cycling performance cathode material: Interconnected LiFePO 4/carbon nanoparticles fabricated by sol-gel method," J. Nanomater., vol. 2014, 2014, doi: 10.1155/2014/801562.
- [21] J. Triwibowo, E. Yuniarti, and E. Suharyadi, "The characteristic of carbon-coated LiFePO4 as cathode material for lithium ion battery synthesized by sol-gel process in one step heating and varied pH," *AIP Conf. Proc.*, vol. 1617, no. Ictap 2013, pp. 52–56, 2014, doi: 10.1063/1.4897102.
- [22] K. D. Septityana, T. P. Rahman, W. Nugroho, R. Ikono, N. N. Maulana, and N. T. Rochman, "Sintesis Dan Karakterisasi Pigmen Hematit (α-Fe2O3) Dari Bijih Besi Alam Melalui Metode Presipitasi," *Youngster Phys. J.*, vol. 2, no. 3, pp. 95–100, 2013.
- [23] P. P. Prosini, C. Cento, A. Masci, M. Carewska, and P. Gislon, "A synthesis of LiFePO4 starting from FePO4 under reducing atmosphere," *AIP Conf. Proc.*, vol. 1603, no. February 2015, pp. 109–118, 2014, doi: 10.1063/1.4883049.
- [24] M. S. Yoon, M. Islam, Y. M. Park, and S. C. Ur, "Effect of synthesizing method on the

properties of LiFePO4/C composite for rechargeable lithium-ion batteries," *Electron. Mater. Lett.*, vol. 9, no. 2, pp. 187–193, 2013, doi: 10.1007/s13391-012-2131-x.

- [25] S. C. Jheng and J. S. Chen, "The synthesis of LiFePO4/C composite by the precipitation between two water/oil emulsions," *Int. J. Electrochem. Sci.*, vol. 8, no. 4, pp. 4901–4913, 2013.
- [26] Y. Ding *et al.*, "Preparation of nano-structured LiFePO4/graphene composites by coprecipitation method," *Electrochem. commun.*, vol. 12, no. 1, pp. 10–13, 2010, doi: 10.1016/j.elecom.2009.10.023.
- [27] C. Delacourt, P. Poizot, S. Levasseur, and C. Masquelier, "Size effects on carbon-free LiFePO4 powders," *Electrochem. Solid-State Lett.*, vol. 9, no. 7, 2006, doi: 10.1149/1.2201987.
- [28] Y. Liu and C. Cao, "Enhanced electrochemical performance of nano-sized LiFePO4/C synthesized by an ultrasonic-assisted co-precipitation method," *Electrochim. Acta*, vol. 55, no. 16, pp. 4694–4699, 2010, doi: 10.1016/j.electacta.2010.03.033.
- [29] W. Hua et al., "An approach towards synthesis of nanoarchitectured LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries," *Chinese J. Chem.*, vol. 33, no. 2, pp. 261–267, 2015, doi: 10.1002/cjoc.201400551.
- [30] M. J. Uddin, P. K. Alaboina, and S. J. Cho, "Nanostructured cathode materials synthesis for lithium-ion batteries," *Mater. Today Energy*, vol. 5, pp. 138–157, 2017, doi: 10.1016/j.mtener.2017.06.008.
- [31] G. Hu, Z. Gan, Z. Peng, K. Du, W. Wang, and Y. Cao, "Enhancing the high rate performance of synergistic hybrid LiFePO 4 'LiVPO 4 F/C cathode for lithium ion battery," *Solid State Ionics*, vol. 335, no. March, pp. 142–150, 2019, doi: 10.1016/j.ssi.2019.03.009.
- [32] W. Yang *et al.*, "Raman and XRD studies on the influence of nano silicon surface modification on Li+ dynamics processes of LiFePO4," *Solid State Ionics*, vol. 292, pp. 103–109, 2016, doi: 10.1016/j.ssi.2016.05.017.
- [33] A. Mat, K. S. Sulaiman, and A. K. Arof, "Effect of citric acid on the performance of LiFePO4 as a cathode material for lithium batteries," *Ionics (Kiel).*, vol. 22, no. 1, pp. 135–142, 2016, doi: 10.1007/s11581-015-1607-8.
- [34] M. Islam, M. S. Yoon, Y. M. Park, and S. C. Ur, "Solid state synthesis of LiFePO4/C: Using low cost materials," *J. Ceram. Process. Res.*, vol. 16, no. 2, pp. 218–222, 2015.
- [35] B. Q. Zhu, X. H. Li, Z. X. Wang, and H. J. Guo, "Novel synthesis of LiFePO4 by aqueous precipitation and carbothermal reduction," *Mater. Chem. Phys.*, vol. 98, no. 2–3, pp. 373–376, 2006, doi: 10.1016/j.matchemphys.2005.09.046.
- [36] O. S. Paper, "Solid state synthesis and characterization of LiFePO 4 / C as cathode material for Li-ion batteries," vol. 1, pp. 2–5, 2014.
- [37] M. Singh, B. Singh, and M. Willert-Porada, "Reaction mechanism and morphology of the LiFePO4 materials synthesized by chemical solution deposition and solid-state reaction," *J. Electroanal. Chem.*, vol. 790, no. December, pp. 11–19, 2017, doi: 10.1016/j.jelechem.2017.02.043.
- [38] V. Natalia, A. P. Gustami, F. Rahmawati, W. W. Lestari, and A. Purwanto, "Lithium titanate (LTO) synthesis through solid state reaction and its performance for LiFePO4/LTO battery," *J. Math. Fundam. Sci.*, vol. 50, no. 3, pp. 290–302, 2018, doi: 10.5614/j.math.fund.sci.2018.50.3.5.
- [39] H. Zeng *et al.*, "Enhanced cycling performance for all-solid-state lithium ion battery with LiFePO4 composite cathode encapsulated by poly (ethylene glycol) (PEG) based polymer electrolyte," *Solid State Ionics*, vol. 320, no. October 2017, pp. 92–99, 2018, doi: 10.1016/j.ssi.2018.02.040.
- [40] J. Gim et al., "A two-step solid state synthesis of LiFePO4/C cathode with varying carbon contents for Li-ion batteries," *Ceram. Int.*, vol. 40, no. 1 PART B, pp. 1561–1567, 2014, doi: 10.1016/j.ceramint.2013.07.043.