Assessing the Relationship Between Pre-Laying Morphometrics and Productivity Traits in Magelang Ducks for Sustainable Breeding
Abstract
Traditional selection of Magelang ducks relies on visual assessments despite a lack of scientific validation. This study evaluated the relationships among pre-laying morphometrics and productivity, an approach previously unexplored in this population. A total of 107 female ducks (70 days old) were recorded and monitored individually for 366 days under identical conditions. Data were analyzed using descriptive statistics, Spearman’s correlation, and principal component analysis (PCA) to determine the independence of pre-laying morphometric and productivity traits. Productivity traits exhibited higher variability than pre-laying morphometrics, indicating that relatively uniform physical measurements do not reflect the wide range of production performance. Post-peak, extreme variability was driven by reproductive tract measurements, despite low variation in body weight, reflecting a physiological divergence that was hidden from external assessments. Spearman correlation revealed no significant relationship between pre-laying morphometrics and productivity. The mean age at molting was 398.65±29.31 days, occurring in 28.97% of ducks, and showed a weak positive correlation with production duration (235.25±39.27 days) and a significant, weak negative correlation with egg production (139.28±65.93 eggs). PCA identified 3 independent components: skeletal morphometrics (PC1), productivity (PC2), and body mass (PC3), which together accounted for 64.78% of the total variance. These findings confirm that visual selection for body size is ineffective for improving productivity. Researchers propose a two-stage selection strategy integrating skeletal screening with early performance recording and molecular markers. This framework enables farmers to identify elite layers and improve feed efficiency by culling unproductive, oversized ducks, thereby supporting sustainable breeding.
Keywords
Full Text:
PDFReferences
Arifin, W. N., & Zahiruddin, W. M. (2017). Sample size calculation in animal studies using the resource equation approach. The Malaysian Journal of Medical Sciences: MJMS, 24(5), 101. https://doi.org/10.21315/mjms2017.24.5.11
Bai, H., Guo, Q., Yang, B., Dong, Z., Li, X., Song, Q., ... & Chen, G. (2022). Effects of residual feed intake divergence on growth performance, carcass traits, meat quality, and blood biochemical parameters in small-sized meat ducks. Poultry Science, 101(9), 101990. https://doi.org/10.1016/j.psj.2022.101990
Begli, H. E., Torshizi, R. V., Masoudi, A. A., Ehsani, A., & Jensen, J. (2018). Genomic dissection and prediction of feed intake and residual feed intake traits using a longitudinal model in F2 chickens. Animal, 12(9), 1792–1798. https://doi.org/10.1017/S1751731117003354
Chen, X., Shafer, D., Sifri, M., Lilburn, M., Karcher, D., Cherry, P., ... & Fraley, G. S. (2021). Centennial review: History and husbandry recommendations for raising Pekin ducks in research or commercial production. Poultry Science, 100(8), 101241. https://doi.org/10.1016/j.psj.2021.101241
Delabouglise, A., Nguyen-Van-Yen, B., Thanh, N. T. L., Xuyen, H. T. A., Tuyet, P. N., Lam, H. M., & Boni, M. F. (2019). Poultry population dynamics and mortality risks in smallholder farms of the Mekong river delta region. BMC Veterinary Research, 15(1), 205. https://doi.org/10.1186/s12917-019-1949-y
FAO. (2012). Phenotypic characterization of animal genetic resources. Rome, Italy: Food and Agriculture Organization of the United Nations, 1(11). Retrieved from https://openknowledge.fao.org/handle/20.500.14283/i2686e
Field, A. (2024). Discovering statistics using IBM SPSS statistics. Thousand Oaks, California. USA: Sage Publications Limited. Retrieved from https://books.google.co.id/books?hl=id
&lr=&id=83L2EAAAQBAJ&oi=fnd&pg=PT8&dq=Discovering+statistics+using+IBM+SPSS+statistics&ots=UbOYApGGHG&sig=uiCphXaidS6n-33lpZ1vgeqS-Vs&redir_esc=y#v=onepage&q=Discovering statistics using IBM SPSS statistics&f=false
Flock, D. K., & Anderson, K. (2016). Moulting of laying hens: Test results from North Carolina and implications for US and German egg producers. LOHMANN Inform, 50, 12–17. Retrieved from https://lohmann-breeders.com/media/2020/08/VOL49-FLOCK-Moulting-hens.pdf
Gouda, G., & Ali, W. (2017). Useful repercussions on 10 and 12-week marketing body weights of laying ducks with early index selection on body weights and linear measurements. Journal of Animal and Poultry Production, 8(8), 233–236. https://doi.org/10.21608/jappmu.2017.45897
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis (7th ed.). London, England: Pearson Education. Retrieved from https://digitalcommons.kennesaw.edu/facpubs/2925/
Han, C., Zhu, L., Wang, M., Hu, J., Yang, Q., Liu, Z., ... & Cai, W. (2025). Genetic parameters and genomic prediction of egg production traits in ducks. Poultry Science, 104(10), 105510. https://doi.org/10.1016/j.psj.2025.105510
Henrik, H., & Marhayani, M. (2020). Egg production and quality of Magelang duck, Mojosari duck, and their reciprocal crosses. Jurnal Ilmu-Ilmu Peternakan, 30(3), 180–183. http://orcid.org/0000-0002-8958-1811
Hill, W. G. (2013). Genetic correlation. Brenner’s Encyclopedia of Genetics (2nd ed.), 3, 237–239. Elsevier. Retrieved from https://doi.org/10.1016/B978-0-12-374984-0.00611-2
Hossein-Zadeh, N. G. (2024). A meta-analysis of genetic estimates for economically important traits in ducks. Veterinary and Animal Science, 26, 100405. https://doi.org/10.1016/j.vas.2024.100405
Hubbard, J. K., Jenkins, B. R., & Safran, R. J. (2015). Quantitative genetics of plumage color: Lifetime effects of early nest environment on a colorful sexual signal. Ecology and Evolution, 5(16), 3436–3449. https://doi.org/10.1002/ece3.1602
Ismoyowati, I., & Purwantini, D. (2013). Produksi dan kualitas telur itik lokal di daerah sentra peternakan itik. Jurnal Pembangunan Pedesaan, 13(1), 119157. Retrieved from https://www.neliti.com/publications/119157/produksi-dan-kualitas-telur-itik-lokal-di-daerah-sentra-peternakan-itik-egg-prod
Kamal, R., Chandran, P. C., Dey, A., Sarma, K., Padhi, M. K., Giri, S. C., & Bhatt, B. P. (2023). Status of indigenous duck and duck production system of India—A review. Tropical Animal Health and Production, 55(1), 15. https://doi.org/10.1007/s11250-022-03401-6
Kuenzel, W. (2003). Neurobiology of molt in avian species. Poultry Science, 82(6), 981–991. https://doi.org/10.1093/ps/82.6.981
Linde, M., Wehrend, A., & Farshad, A. (2025). Estradiol-17ß, progesterone, and oviductal changes in muscovy ducks (Cairina moschata forma domestica) during reproductive phases. BMC Veterinary Research, 21(1), 274. https://doi.org/10.1186/s12917-025-04737-5
Lynch, M., & Walsh, B. (1998). Genetics and analysis of quantitative traits (Vol. 1, pp. 535–557). Sunderland, MA: Sinauer. Retrieved from https://www.invemar.org.co/redcostera1/invemar/docs/RinconLiterario/2011/febrero/AG_8.pdf
Ma, H., Lin, B., Yan, Z., Tong, Y., Liu, H., He, X., & Zhang, H. (2024). Phenotypic identification, genetic characterization, and selective signal detection of Huitang duck. Animals, 14(12), 1747. https://doi.org/10.3390/ani14121747
Maharani, D., Hariyono, D. N., Putra, D. D., Lee, J. H., & Sidadolog, J. H. (2019). Phenotypic characterization of local female duck populations in Indonesia. Journal of Asia-Pacific Biodiversity, 12(4), 508–514. https://doi.org/10.1016/j.japb.2019.07.004
Mohammadpour, A. A., Zamanimoghadam, A., & Heidari, M. (2012). Comparative histomorphometrical study of genital tract in adult laying hen and duck. Veterinary Research Forum: An International Quarterly Journal, 3(1), 27–30. Retrieved from https://pubmed.ncbi.nlm.nih.gov/25653742/
Nguyen, N. T., Le, T. L., Vo, T. K. N., Do, C. H., Hoang, T. T., Duong, N. K., & Luu, Q. M. (2023). Effect of a polymorphism in prolactin gene on some reproductive traits in TB crossbred ducks in Southern Vietnam. Advances in Animal and Veterinary Sciences, 11(6), 886–892. https://dx.doi.org/10.17582/journal.aavs/2023/11.6.886.892
Nozawa, Y., Okamura, A., Fukuchi, H., Shinohara, M., Aizawa, S., & Takeuchi, S. (2025). Crosstalk between prolactin, insulin-like growth factors, and thyroid hormones in feather growth regulation in neonatal chick wings. General and Comparative Endocrinology, 361, 114657. https://doi.org/10.1016/j.ygcen.2024.114657
Ogah, D., & Kabir, M. (2014). Variability in size and shape in Muscovy duck with age: Principal component analysis. Biotechnology in Animal Husbandry, 30(1), 125–136. https://doi.org/10.2298/BAH1401125O
Oyebanjo, M., Osaiyuwu, O., & Salako, A. (2023). Prolactin, genetics, and bioinformatics: The trinity for improving duck egg production in Nigeria–A review. Journal of Animal Science and Veterinary Medicine, 8(5), 235–246. https://doi.org/10.31248/JASVM2023.398
Prayogi, H. S., Nurgiartiningsih, V. M. A., & Sjofjan, O. (2024). Effects of body condition, anatomical measurement, and age on the cumulative number of individual egg production and laying pattern in first laying hens. Journal of World’s Poultry Research, 14(1), 23–29. https://dx.doi.org/10.36380/jwpr.2024.3
Purba, M., Hardjosworo, P., Prasetyo, L., & Ekastuti, D. (2005). Pola rontok bulu itik betina Alabio dan Mojosari serta hubungannya dengan kadar lemak darah (trigliserida), produksi dan kualitas telur. JITV, 10(2), 96–105. Retrieved from https://core.ac.uk/download/pdf/236131051.pdf
Quaresma, M., Dos Santos, F. A., Roseiro, L., Ribeiro, A., Ferreira, J., Alves, S., & Bessa, R. (2024). Nutritional value of meat lipid fraction obtained from mallard duck (Anas platyrhynchos) reared in semiextensive conditions for hunting purposes. Poultry Science, 103(2), 103290. https://doi.org/10.1016/j.psj.2023.103290
Rahayu, A., Ratnawati, S., Idayanti, R. W., Santoso, B., & Luthfiana, N. A. (2020). Pengaruh sistem pemeliharaan secara intensif dan semi intensif pada itik Magelang. Jurnal Sain Penternakan Indonesia, 15(4), 355–359. https://doi.org/10.31186/jspi.id.15.4.355-359
Rahmadhani, P., Badaruddin, R., & Aka, R. (2022). Keragaman fenotip dan pendugaan jarak genetik ayam kampung super menggunakan analisis morfometrik. Jurnal Ilmiah Peternakan Halu Oleo, 4(1), 13–18. https://doi.org/10.56625/jipho.v4i1.23536
Seddon, N., Botero, C. A., Tobias, J. A., Dunn, P. O., MacGregor, H. E., Rubenstein, D. R., ... & Safran, R. J. (2013). Sexual selection accelerates signal evolution during speciation in birds. Proceedings of the Royal Society B: Biological Sciences, 280(1766), 20131065. https://doi.org/10.1098/rspb.2013.1065
Statistics Indonesia. (2024). Livestock in figures 2024. Retrieved from https://www.bps.go.id/id/publication/2024/12/20/522e07b24c7bbeb1c19b0a4e/peternakan-dalam-angka-2024.html
Sulaiman, A., Herliani, H., Langai, B., Parwanto, P., Surya, R., Iqbal, A., & Simanungkalit, G. (2023). The phenotypic diversity in the production performance of Alabio ducks (Anas platyrhynchos Borneo) in South Kalimantan, Indonesia. Journal of Advanced Veterinary and Animal Research, 10(2), 249. https://doi.org/10.5455/javar.2023.j676
Susanti, T., Noor, R. R., Hardjosworo, P. S., & Prasetyo, L. H. (2012). Relationship between prolactin hormone level, moulting and duck egg production. Journal of the Indonesian Tropical Animal Agriculture, 37(3), 161–167. https://doi.org/10.14710/jitaa.37.3.161-167
Susanti, T., & Prasetyo, L. (2015). Moulting characteristics of crossbreds between Alabio and Pekin ducks. JITV, 20(1), 18–22. http://dx.doi.org/10.14334/jitv.v20i1.1117
Tamzil, M. H., & Indarsih, B. (2024). Development of Indian runner ducks: Indonesia’s original germplasm superior laying duck. Livestock & Animal Research, 22(3), 199–209. https://doi.org/10.20961/lar.v22i3.65590
Ulfah, Z., Maharani, D., & Sasongko, H. (2025). Phenotypic traits variance and their impact on egg production in Magelang ducks: Implications for breeding programs. BIO Web of Conferences, 167, 06006. https://doi.org/10.1051/bioconf/202516706006
Underwood, W., & Anthony, R. (2020). AVMA guidelines for the euthanasia of animals: 2020 edition. American Veterinary Medical Association. Retrieved from https://www.spandidos-publications.com/var/AVMA_euthanasia_guidelines_2020.pdf
Wellmann, R. (2023). Selection index theory for populations under directional and stabilizing selection. Genetics Selection Evolution, 55(1), 10. https://doi.org/10.1186/s12711-023-00776-4
Xi, Y., Wu, Q., Zeng, Y., Qi, J., Li, J., He, H., ... & Li, L. (2023). Identification of the genetic basis of the duck growth rate in multiple growth stages using genome-wide association analysis. BMC Genomics, 24(1), 285. https://doi.org/10.1186/s12864-023-09302-8
Yang, W., Lang, X., Song, D., Xu, H., Zhang, C., Guo, L., & Chen, X. (2024). Comparative analysis of reproductive hormones, serum biochemical indexes and ovarian metabolites in Muscovy breeder duck at different laying stages. Poultry Science, 103(12), 104370. https://doi.org/10.1016/j.psj.2024.104370
Zhang, T., Ning, Z., Chen, Y., Wen, J., Jia, Y., Wang, L., ... & Qu, L. (2021). Understanding transcriptomic and serological differences between forced moulting and natural moulting in laying hens. Genes, 13(1), 89. https://doi.org/10.3390/genes13010089
Zhang, Y., Guo, Z. B., Xie, M., Zhang, Z., & Hou, S. (2016). Genetic parameters for residual feed intake in a random population of Pekin duck. Asian-Australasian Journal of Animal Sciences, 30(2), 167. https://doi.org/10.5713/ajas.15.0577
Zhu, F., Gao, Y., Lin, F., Hao, J., Yang, F., & Hou, Z. (2017). Systematic analysis of feeding behaviors and their effects on feed efficiency in Pekin ducks. Journal of Animal Science and Biotechnology, 8, 81. https://doi.org/10.1186/s40104-017-0212-2
Refbacks
- There are currently no refbacks.










