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Abstract 

Precise and detailed land mapping is essential for sustainable land management, environmental 

conservation, and regional planning, especially in complex and diverse landscapes. This study aims  

to present an innovative framework for the development of Land Mapping Units (LMUs) at a detailed 

scale (1:20,000), through the integration of Random Forest (RF) analysis and high-resolution remote 

sensing data. This study was conducted in the South Malang Plateau, Indonesia (the area characterized 

by karst, tectonic, volcanic, and alluvial landforms) from June to December 2024. As part of the 

methodology, the study utilized a combination of geospatial data, including geological maps, DEM-

derived topographical indices, and remote sensing indices (Normalized Difference Soil Index/NDSI, 

Soil Adjusted Vegetation Index/SAVI, Normalized Difference Water Index/NDWI, Modified Soil 

Adjusted Vegetation Index/MSAVI). A total of 10,903 field observation points were analyzed, with 

70% used for model training and 30% for validation. The results show that RF-based LMUs achieved 

R2 of 0.93 and Root Mean Square Error (RMSE) of 0.645, which is reliable to use. The LMUs provide  

a comprehensive understanding of landform-specific characteristics, including soil fertility linked  

to parent material, erosion sensitivity, and slope variability. These insights support applications in 

precision agriculture, disaster mitigation, and environmental planning. Moreover, the result can guide 

informed decision-making to prioritize sustainable land management that effectively prevents land 

degradation in the South Malang Plateau region, as stated in the Sustainable Development Goals 

(SDGs). The study demonstrates the potential of combining machine learning and remote sensing  

to refine spatial analysis and address the limitations of manual mapping methods. The proposed 

framework is scalable and adaptable to other diverse landscapes, making it a valuable tool for advancing 

sustainable land management in a rapidly changing world. 
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INTRODUCTION 

Sustainable land management is the key to 

reduce the rates of land degradation and prevent 

desertification (Haregeweyn et al., 2023). 
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Furthermore, sustainable land management is 

pivotal to the achievement of numerous objectives 

outlined in the Sustainable Development Goals 
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(SDGs) including terrestrial ecosystem (SDG 15), 

food security (SDG 2) (Otekunrin et al., 2020), 

gender equality (SDG 5), and inclusive 

settlements and cities (SDG 11) (Zhan, 2023). 

However, effective and sustainable management 

requires accurate and detailed mapping of  

land resources to inform agricultural practices, 

environmental conservation, and regional 

development (Reddy and Singh, 2018; Mamo  

et al., 2022). 

Mapping of land resources can usually be 

developed through Land Mapping Units (LMUs). 

LMUs play a principal role in understanding how 

landforms and natural resources are distributed 

over an area, providing key information about 

geology, terrain, hydrology, and soil properties. 

LMUs are useful for researchers, mapping 

experts, and policymakers as LMUs serve as  

a foundation for decision-making processes, 

however, the variability or homogeneity depends 

on the analysis scale and intensity (Dan et al., 

2018; Zeraatpisheh et al., 2022). However, 

manual LMU mapping methods, specifically  

in Indonesia, frequently depend on manual 

digitization and coarse-resolution data (Mujiyo  

et al., 2018), such as soil maps at scales of 

1:250,000 for regional and 1:50,000 for  

sub-regional planning (Brungard et al., 2015). 

Thus, limiting the ability to capture complex 

topographies and spatial variability, particularly 

in diverse landscapes, and also the subjectivity of 

the cartographer (Dan et al., 2018). 

Advances in geospatial technologies, 

including Geographic Information Systems (GIS), 

remote sensing (Oyawale et al., 2020), and 

machine learning (Srivastava and Saxena, 2023), 

have significantly improved the accuracy and 

efficiency of land resource mapping (Bouguerra  

et al., 2023). These tools enable the integration  

of land elements derived from topographic and 

remote sensing data, enhancing the precision and 

scalability of LMU development (Bouguerra  

et al., 2023; Srivastava and Saxena, 2023).  

The integration of remote sensing and machine 

learning enhances environmental prediction by 

enabling large-scale, high-accuracy analyses 

(Ullah et al., 2024; 2025a). By offering finer 

spatial resolutions and integrating diverse data 

sources, it can address the limitations of manual 

LMUs (Wang et al., 2024), particularly in 

capturing the complexity of heterogeneous 

landscapes. Nikparvar and Thill (2021) 

emphasized the importance of handling spatial 

properties in machine learning, which aligns with 

this research integrating machine learning and 

high-resolution geospatial data for LMU 

classification in complex terrains. Trivedi et al. 

(2023) demonstrated the effectiveness of machine 

learning in land classification, particularly  

in heterogeneous landscapes. Their study 

highlighted the importance of feature selection 

and the integration of multisource remote sensing 

data to improve classification accuracy. 

Among these techniques, the Random  

Forest (RF) algorithm has emerged as a robust 

machine-learning approach (Kasahun and 

Legesse, 2024). RF outperforms other machine 

learning algorithms in remote sensing, 

particularly for large and complex datasets.  

It achieves higher accuracy than Support Vector 

Machines (SVM) and Artificial Neural Networks 

(ANN), efficiently handles large data and requires 

minimal parameter tuning (Cracknell and 

Reading, 2014; Adugna et al., 2022). Its built-in 

feature selection improves classification 

accuracy, making RF a reliable choice for 

geospatial analysis. The approach is capable of 

effectively handling nonlinear relationships and 

processing large datasets, including the data 

derived from Digital Elevation Models (DEMs), 

geological maps, and vegetation indices (Phan  

et al., 2021; Aryal et al., 2023). Despite  

the significant potential, the application of RF  

for high-resolution (1:5,000 scale) LMU mapping 

remains underexplored, particularly in regions 

with diverse and complex landform 

characteristics, such as the South Malang Plateau. 

The South Malang Plateau in East Java, 

Indonesia, is a distinguished area with geological 

and geomorphological diversity, including  

karst, old volcanic mountainous, tectonic, and 

alluvial landforms (Sahrina et al., 2022; Masruroh 

et al., 2024). Manual mapping techniques  

struggle to accurately delineate complex features, 

highlighting the need for innovative 

methodologies. This study aims to introduce  

a novel framework that integrates RF analysis 

with high-resolution remote sensing data to 

develop detailed LMU maps that are 

comprehensive, scalable, and application-

specific. By addressing the limitations of manual 

approaches, the study supports sustainable  

land management practices. Focusing on the 

South Malang Plateau, the study provides 

actionable insights for precision agriculture,  

soil conservation, and environmental planning. 

The outcomes seek to bridge the gap between 

manual mapping techniques and modern demands 

for high-resolution and sustainable land 

management solutions. 



Caraka Tani: Journal of Sustainable Agriculture, 40(3), 307-325, 2025 309 

 

Copyright © 2025 Universitas Sebelas Maret 

MATERIALS AND METHOD 

Study area  

The study area was located in the South 

Malang Plateau which was included in the 

Southern Mountains Zone of East Java. 

Administratively, the research area is located in 

Malang Regency in the East Java Province, 

Indonesia or 112°17’ to 112°57’ west longitude 

and 7°44’ to 8°26’ south latitude and covers 

99,642.01 ha. The average annual rainfall in the 

study area ranged from 0 to 314.60 mm and  

is included in type D climate based on the 

Schmidt-Ferguson classification system (Schmidt 

and Ferguson, 1951). The average annual air 

temperature ranged from 22.68 to 26.49 ℃  

(on average 24.40 ℃) and had an annual average 

air humidity ranging from 58 to 97%. 

Data collection 

This research utilized multiple spatial datasets, 

including geological maps (Turen and Blitar 

sheets, 1:50,000), the national digital elevation 

model (DEMNAS, 8.25 m), and Sentinel-2 

satellite imagery. The geological maps, published 

by the Geological Agency of Indonesia 

(https://geologi.esdm.go.id/geomap), provided 

lithological and structural information essential 

for landform classification (Bachri et al., 2023). 

DEMNAS, developed by Geospatial Information 

Agency (https://tanahair.indonesia.go.id/portal-

web), integrated Interferometric Synthetic 

Aperture Radar (IFSAR) (5 m resolution), 

TerraSAR-X (5 m resampling resolution from the 

original 5 to 10 m resolution) and ALOS 

PALSAR (11.25 m resolution), offered high-

accuracy elevation models (Patria and Putra, 

2020). Sentinel-2 Level-2A imagery from the 

European Space Agency (https://browser. 

dataspace.copernicus.eu/) provided surface 

reflectance data across 13 spectral bands, with 10 

m resolution for visible and near-infrared (NIR) 

bands, crucial for vegetation and terrain analysis 

(Wang et al., 2016). The integration of these 

datasets enhanced the precision of landform 

mapping, supporting high-resolution LMU 

classification. 

Mapping units 

This study tested two different mapping unit 

methods: 1) manually delineated LMUs and 2) 

units described using RF analysis. The overall 

workflow with analysis steps is illustrated in 

Figure 3. 

LMU classification 

The classification of LMUs adhered to 

established guidelines, incorporating both the 

sub-landform codes and their corresponding 

names. This process was conducted following  

the classification standards outlined by the Center 

for Soil and Agroclimate Research in 1997.  

For instance, in “V.1 Volcanic Intrusion of Plains,  

a” where V.1 represents the code, Volcanic 

Intrusion of Plains is the name, and “a” indicates 

the relief type. 

Manual LMU 

Creating a manual LMUs in the South Malang 

Plateau area, a map of land characteristics  

was integrated. This method was carried out by 

overlaying or superimposing the three maps and 

manual delineation. The manual LMU delineation 

process involved interpreting topographic maps, 

aerial photographs, geological maps, and climate 

maps to define the boundaries of LMU. In detailed 

mapping, boundary lines were drawn in the field 

based on soil properties, environmental factors, 

and changes in slope, land use, or vegetation.  

In semi-detailed mapping, delineation was 

conducted on topographic maps or aerial 

photographs supported by geological and climate 

maps (Sukarman and Ritung, 2013). 

The overlay method was carried out by 

grouping areas that show similar characteristics 

into the same land unit. This overlay method 

facilitated the combination of several thematic 

maps, such as geology, slope, and relief maps,  

in one unified coordinate system. This approach 

allowed the integration of diverse data sets, 

resulting in more comprehensive and accurate 

land classification. The LMUs produced by  

this manual method were used to determine  

the observation point. This observation point  

was used as material in running the next LMUs 

analysis model using the RF method. Observation 

points were spread across each boundary in 

various landforms with a total of 10,903 points, 

karst 41.35%, tectonic 18.03%, volcanic 39.42%, 

and alluvial 1.20% (Figure 1). 

LMU using RF analysis 

The next method for creating LMUs was 

through RF analysis. This method required a set 

of input layers for segmentation. Geological data, 

DEM-derived data (relief, slope, and curvature), 

remote sensing-derived data (Normalized 

Difference Soil Index/NDSI, Soil Adjusted  
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Vegetation Index/SAVI, Normalized Difference 

Water Index/NDWI, and Normalized Difference 

Vegetation Index/NDVI) as well as landform 

identification observation points in the field were 

subjected to multicollinearity analysis in RF 

algorithm. Topographic Position Index (TPI) or 

relief slope, and curvature (DEMNAS) data were 

derived from DEMNAS data, which were 

obtained using the TPI (Weiss, 2001) and Spatial 

Analyst method. Four transformation indices 

derived from satellite imagery in the form of 

NDSI, SAVI, Modified Soil Adjusted Vegetation 

Index (MSAVI), and NDWI were used in this 

research (Figure 2). This transformation indices 

analysis was carried out using ArcGIS 10.8 

software. The formulas for NDSI, SAVI, NDWI, 

and MSAVI are expressed by Equations 1, 2, 3, 

and 4, respectively. 

NDSI = 
G-R

G+R
                                               (1) 

SAVI = 
NIR-R

NIR+R
 (1+L)                              (2) 

NDWI = 
G-NIR

G+NIR
                                         (3) 

 

MSAVI =  

2NIR + 1 - √(2NIR+1)
2
-8 (NIR-R)

2
        (4) 

Where G is the reflectance in the green band, R is 

the reflectance in the red band, NIR is the 

reflectance in the near-infrared band, and L is  

the soil brightness correction factor, commonly 

set to 0.5 for moderate vegetation density. 

The identified points in the field were used to 

run the RF algorithm. As much as 70% of 

observation points were used for model 

development and 30% were used for model 

validation. This analysis was carried out using 

Forest-based Classification and Regression tools 

in ArcGIS Pro 3.4.0 software. 

Contribution analysis of variables composing 

LMUs 

To assess the relative contribution of each 

variable used in the delineation of LMUs, 

Principal Component Analysis (PCA) was done 

(Jolliffe and Cadima, 2016). PCA is a multivariate 

statistical technique commonly used to reduce 

data dimensionality while retaining most of  

the variation present in the dataset. The analysis  

 

 

 

 
Figure 1. The distribution of observation points for training the model 
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was conducted using RStudio, which provides 

robust statistical tools and visualization packages 

for exploratory data analysis. In this study, the 

variables considered for PCA include geology, 

relief, slope, curvature (DEMNAS), NDSI, 

NDWI, MSAVI, and SAVI. 

Accuracy assessment 

Two performance measures, including R²  

and Root Mean Square Error (RMSE), were 

considered to ensure the model’s stability and 

reliability. R² represents the percentage of 

variation explained by the model. Meanwhile, 

 
a. b. 

  

 
c. d. 

Figure 2. Transformation index of (a) NDSI, (b) SAVI, (c) NDWI, and (d) MSAVI 

 

 

Figure 3. Research flow for compiling LMUs using a machine learning algorithm 
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RMSE shows the overall accuracy of predictions. 

The formulas to calculate R2 and RMSE are 

presented as Equation 5 and Equation 6. 

R2 = 1- 
∑ (Yactual-Ypredicted)

2n
i=1

∑ (Yactual-Yactual)
2n

i=1

               (5) 

RMSE =√
1

n
∑ (Yactual-Ypredicted)

2
n

i=1
     (6) 

Where Ypredicted and Yactual are the predicted and 

observed proportions of dye-stained areas, n is  

the number of samples, and Ypredicted and Yactual  

are the means for the predicted and observed 

proportion of dye-stained areas. A good model 

typically has an R2 close to 1 and an RMSE of 

almost 0 (Wang et al., 2018). 

RESULTS AND DISCUSSION 

Formation process of the South Malang 

Plateau and its effect on sustainable land 

management 
Land formation in the South Malang Plateau 

has undergone a series of uplift, erosion, and 

sedimentation over millions of years ago, 

resulting in a complex topography. The South 

Malang Plateau area is dominated and initiated  

by tectonic influences, which are marked by the 

presence of several faults. Tectonic activity is 

estimated to have started in the Late Oligocene 

when this area was still land or shallow sea. 

Followed by magmatic activity which is thought 

to have occurred due to the subduction between 

the Indian Ocean Plate under the Southeast Asian 

Continental Plate, so that the layers of 

sedimentary rock and tuff are composed of the 

Mandalika and Wuni Formations. 

The South Malang Plateau area continued  

to undergo sedimentation until the Late Miocene, 

accompanied by the formation of carbonate 

sediments forming the Wonosari Formation, 

which is composed of limestone, coral, and 

claystone. At the end of the Tertiary, tectonic 

uplift occurred, causing the entire surface area  

to be elevated, accompanied by faulting and mild 

folding. Erosion by river flow continued to occur 

on old rocks up to the Wonosari Formation, 

resulting in alluvium deposition. The river flow in 

the South Malang Plateau area is generally trellis-

type, with relatively wide valleys and cliffs that 

vary from steep to gentle. The trellis river flow 

pattern is typically found in areas with layers of 

folded mountain sediments with large slopes,  

 

characterized by channels that are parallel in 

pattern, flowing in the direction of the slope and 

perpendicular to the main river (Lihawa, 2017). 

The study highlighted that the South Malang 

Plateau has unique characteristics shaped by its 

formation process, including shallow soil depth, 

which makes it vulnerable to water scarcity.  

Few cash crops can thrive in this region, and  

the area faces a significant risk of desertification. 

As a result, many residents migrate to larger  

cities, leaving the South Malang Plateau as  

an underdeveloped area. Despite its low soil 

fertility due to its shallow depth, this karst region 

is strategically important as a coastal area and 

provides valuable ecosystem services. This is  

in line with a previous report by Soedwiwahjono 

and Pamardhi-Utomo (2020) that karst is  

a strategic area due to it has economic, scientific, 

and humanitarian values related to livelihoods  

for sustainable land management. Even though 

the karst ecosystem provides essential ecosystem 

services, including habitat for terrestrial and 

aquatic biodiversity (tree cover, ponds, and 

caves), it is increasingly threatened by limestone 

mining, agriculture, and large-scale infrastructure 

development. The rapid expansion of tourism 

infrastructure has intensified environmental 

pressures (Reinhart et al., 2023). Therefore, 

conducting detailed land mapping and obtaining 

accurate mapping data by understanding and 

considering the processes of landscape formation 

are essential. These efforts can guide informed 

decision-making, prioritize sustainable land 

management, and effectively prevent land 

degradation in the South Malang Plateau region. 

Geology of the South Malang Plateau and its 

effect on sustainable land management 
The geological distribution map in the South 

Malang Plateau was made based on the detailed 

1:100,000 scale geological sheets of Turen and 

Blitar (Table 1). The geological formations in  

the South Malang Plateau area consist of various 

types of rocks and formations that form in various 

landforms. The Wonosari Formation is the 

dominant geological formation in the Malang 

Plateau, covering an area of 33,572.85 ha 

(33.72%) and composed of rocks, namely 

limestone, sandy marl, and claystone inserts. The 

Wonosari Formation is found in karst landforms 

that are identical to limestone. Limestone is a rock 

that is easily dissolved, resulting in the presence 

of holes around the body of the rock (Figure 4). 

Soil geochemical and physical properties are 

strongly influenced by geological parent material,  
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making geology a crucial determinant of soil 

characteristics (Simon et al., 2021). Thus, 

geological maps are often utilized to infer soil 

properties. Similarly, previous studies such as 

Barré et al. (2017) highlighted the influence of 

geology on soil organic matter and nitrogen 

stocks, and Kirkpatrick et al. (2014) demonstrated 

the predictive value of geological data for  

regional soil chemical properties. These findings 

underscore the impact of geological conditions  

on soil variability, providing essential insights  

for integrating geological data into sustainable 

land management. Additionally, the relationship 

between geology and soil extends to water quality, 

as catchment geology often determines nutrient 

concentrations in headwaters, aiding in the 

identification of environmentally sensitive areas 

(Djodjic et al., 2021).  

This study highlights that LMUs at a detailed 

scale can provide a comprehensive representation 

of the geological characteristics of the South 

Malang Plateau. This enables in-depth analysis of 

the geology and supports planning efforts by 

providing critical information on soil fertility  

and its relationship to parent material, as well as 

assisting in disaster mitigation and identification 

of safe zones for disaster preparedness on the 

South Malang Plateau. For example, Mandalika 

Formation covers 16.19% of the South Malang 

Plateau, an area vulnerable to water scarcity and 

Table 1. Geological data of the South Malang Plateau 

Geology Abbreviation 
Area coverage 

ha % 

Alluvium and Beach Sediment Qal 486.60 0.48 

Swamp and River Sediment Qas 1,377.65 1.38 

Campurdarat Formation Tmcl 3,817.17 3.83 

Nampol Formation Tmn 29,013.87 29.14 

Wuni Formation Tmw 6,365.65 6.39 

Wonosari Formation Tmwl 33,572.85 33.72 

Intrusive Rock Tomi 2,087.37 2.09 

Mandalika Formation Tomm 16,120.04 16.19 

Mandalika Formation Tuff Member Tomt 6,713.39 6.74 

Total  99,554.59 100.00 

    

 

Figure 4. Geological map of the South Malang Plateau 
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erosion, low soil depth, and high soil fertility.  

In addition, Wonosari Formation covers 33.72% 

of the area, which is predominantly a high-slope 

area with high erosion sensitivity. These special 

areas required special management. The detailed-

scale LMU provides crucial data for sustainable 

soil and land management, supporting multiple 

SDGs. With rising demands on land resources, 

integrating LMU data into a systemic research 

framework enables targeted management, 

innovation, and policy support. This approach 

promotes sustainable land use while balancing 

trade-offs and synergies (Löbmann et al., 2022). 

Relief of the South Malang Plateau and its 

effect on sustainable land management 
The relief conditions in the South Malang 

Plateau area exhibit unique characteristics ranging 

from flat to hilly. The relief map displays graphics 

and features of the earth’s surface including 

curvature, slope, and landform. Relief mapping 

and classification in the South Malang Plateau 

were carried out using TPI (Table 2 and Figure 5). 

The most extensive relief category is class c 

(plains), covering an area of 56,807.8 ha across 

the region. The valleys in this area were formed 

by erosion processes and karst activity with steep 

scarp slopes and relatively flat bases. These 

valleys often serve as drainage pathways during 

the rainy season. The surrounding slopes, which 

are typically found along valley edges and 

ridgelines, are steep and sparsely vegetated, 

making them highly susceptible to erosion, 

particularly during periods of heavy rainfall. 

Plains in this area are relatively flat with little 

variation in height, often used for agricultural and 

residential activities due to easy access and lower 

 

Table 2. Relief data of the South Malang Plateau 

Class Relief 
Area coverage 

ha % 

a Valley 02,899.76 02.91 

b Slope 17,802.73 17.88 

c Plains 56,807.80 57.06 

d Hills/Mountains 17,078.22 17.15 

e Small ridges 04,966.08 04.98 

Total 99,554.59 100.000 

   

 
Figure 5. Relief map of the South Malang Plateau; a) valley; b) slope; c) plains; d) hills/mountains;  

e) small ridges 
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risk of erosion. Hills/mountains have moderate  

to high slopes and are usually covered with denser 

vegetation. Small ridges in this area have varying 

slopes and are often covered with dense 

vegetation. Ridges serve as water flow dividing 

lines in this area. 

Relief is a key factor in defining soil properties 

and in shaping sustainable land management 

strategies. Variations in terrain, such as steep 

slopes and mountain relief, often lead to soil 

erosion, reducing soil depth, compromising 

structure, and diminishing fertility, thereby 

hindering vegetation growth and land productivity 

(Fidelus-Orzechowska et al., 2021). On flatter 

terrains, relief affects water and sediment flow, 

influencing soil horizon development and soil 

quality (Woś and Pietrzykowski, 2021). This 

study revealed that even though the South  

Malang Plateau is mainly a plain area (57.06%), 

improper land management in the upper 

watershed area leads to degradation. For example, 

the expansion of oil palm plantations in the area 

can exacerbate water scarcity, as oil palms require 

substantial amounts of water for their growth  

and development. Previous studies present both 

advantages and disadvantages regarding the 

expansion of oil palm plantations in the area 

(Sumarmi et al., 2022; Wicaksono et al., 2023). 

Thus, providing LMUs at a detailed scale  

at the South Malang Plateau by integrating  

RF analysis and remote sensing techniques  

can map the area that should be developed or 

maintained as a conservation area according to  

its relief, particularly in a rapidly changing world. 

This study aligns with a previous study by Mersha 

et al. (2024) who emphasized that effective  

land use planning and conservation strategies are 

crucial for ensuring the long-term sustainability of 

ecosystems.  

Slopes of the South Malang Plateau area and 

its effect on sustainable land management 
The South Malang Plateau area has various 

slope conditions ranging from flat to hilly slopes 

(Table 3 and Figure 6). The slope of the South 

Malang Plateau has different levels in each 

landform. However, it can be seen that the 

dominant slope is relatively flat. Tectonic and 

alluvial landforms are dominated by flat slopes  

(0 to 3%) to gentle slopes (8 to 15%) with  

an area of 2,556.39, 13,089.78, and 25,299.36 ha, 

respectively, so quite a lot of these areas are used 

as optimal land use, for agricultural activities, 

settlements, and infrastructure development.  

 

In contrast, volcanic landforms, which are 

dominated by slightly steep slopes (15 to 25%)  

to steep (25 to 40%) with an area of 28,184.85  

and 20,390.05 ha, reflect the presence of active 

geomorphological processes, such as uplift and 

volcanic activity in the past. For agricultural 

development, the area requires thorough 

exploration to assess and enhance its agricultural 

resilience, ensuring sustainable and adaptive 

practices for future challenges (Rozaki et al., 

2023). This condition generally produces a more 

dynamic topography with a higher potential for 

disasters and land management that needs to be 

considered. The slope is stated as one of the 

factors that influence the variation of landforms  

in various regions, with a value of 38.46% 

recorded throughout the Malang Plateau region. 

The slope of the land in this area is often not too 

steep, but its wavy and hollow surface makes  

the karst area require proper management to be 

optimally utilized, especially for agriculture and 

infrastructure development. 

Accurate LMUs developed through the 

integration of RF analysis and remote sensing,  

as demonstrated in this study, offer significant 

potential for future advances. With the methods 

used here, scientists can further develop 

predictive models to simulate the movement of 

soil materials, including the transport of organic 

carbon. Such models will improve understanding 

of soil dynamics, particularly how the 

redistribution of organic carbon affects soil 

fertility. This approach can serve as a critical  

tool for improving soil management practices  

and ensuring long-term agricultural productivity 

and ecosystem sustainability. For example,  

in Southeast China, the integration of RF and 

Deep Learning successfully provides accurate  

soil type maps that are an important basis  

for agricultural decision-making and land 

degradation control (Bao et al., 2024). 

 

Table 3. Slope data of the South Malang Plateau 

Class Slope 
Area coverage 

ha % 

0–3 Flat 02,556.39 02.56 

3–8 Slightly gentle 13,089.78 13.14 

08–15 Gentle 25,299.36 25.41 

15–25 Slightly steep 28,184.85 28.31 

25–40 Steep 20,390.05 20.48 

40–60 Very steep 08,223.25 08.26 

> 60 Rough 01,808.94 01.81 

Total 99,554.59 100.00 
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Manual LMU and its limitation for sustainable 

land management  
LMUs of the Malang Plateau were divided into 

four different landforms, namely alluvial, karst, 

tectonic, and volcanic (Figure 7). Manual LMUs 

based on factors such as climate, topography, 

parent material, geology, soil, and vegetation, 

often operate at coarse scales, typically at 

1:1,000,000 for national mapping. Conversely, 

the integration of RF and remote sensing  

can develop LMUs at a detailed scale, 1:20,000  

in this study. In the manual method, the map  

only provides broad geographic coverage and 

consistent data representation, and this is unable 

to reflect detailed spatial variability, particularly 

regarding soil parent material and related 

attributes in regions with complex landscapes.  

In Indonesia, where diverse topography and  

high soil heterogeneity prevail, such coarse-scale 

mapping proves inadequate for addressing 

localized land management challenges. This lack 

of precision limits the implementation of 

sustainable, data-driven land-use strategies, 

emphasizing the need for more detailed and 

region-specific mapping approaches (Heung  

et al., 2014).  

LMU using RF analysis and its pivotal benefit 

for sustainable land management  
The result of this study emphasized that  

in karst landforms, RF can detect complex 

boundaries and inconsistencies in manual 

delineation, identify small hills (conical hills)  

and sinkholes, and detect errors when data 

information is lost (Figure 8) faster and more 

accurately than the manual method. The LMUs 

developed in this study demonstrated high 

accuracy, with an R2 of 0.93 and an RMSE of 

0.645.  

In the tectonic landforms, located on the 

central and northern South Malang Plateau,  

the RF algorithm used in this study effectively 

identified various landform features, refined 

inaccurate boundaries, and enhanced the 

distinction of sequential landforms and 

generalized relief features, resulting in smoother 

and clearer representations compared to manual 

methods (Figure 9). Also, the results closely 

aligned with manual delineations for river 

sections, with minimal discrepancies, confirming 

the reliability of mapping fluvial features.  

In alluvial landforms located on the southern 

part of the South Malang Plateau, the RF used  

 

 

 
 

 

Figure 6. Slope map of the South Malang Plateau 
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Figure 7. LMU result from manual analysis 

 

 

Figure 8. LMU result from RF analysis 
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in this study found high similarities in the division 

of river parts with manual digitization results.  

In addition, complex and unclear boundaries  

that result from manual delineation of slope 

differences are significantly refined using the RF 

system, improving mapping precision.  

In old volcanic landforms on the eastern  

part of the South Malang Plateau, the RF 

algorithm used in this study demonstrated 

excellent capability in distinguishing topo-

sequences, which is essential for further 

applications requiring detailed topographic data. 

In addition, RF can distinguish topo sequences  

in volcanic landforms, especially old volcanic 

areas, which are very much needed for further 

analysis. The ability to differentiate among upper, 

middle, and lower slopes, as well as plains,  

is particularly valuable for subsequent analyses. 

Moreover, RF-derived boundaries align closely 

with manually delineated contours, confirming 

the ability to enhance spatial accuracy and 

consistency. 

The RF algorithm used in this study also 

corrects poorly defined or overly intricate 

boundaries often produced by manual delineation 

methods. This study aligns with a previous study 

by Kuhn and Johnson (2013), who reported that 

RF has a high level of sensitivity to uninformative 

data so that errors in the data can be reduced. Also, 

this study revealed that in regions like sloping 

plains, distinctions in slope and slope positions are 

often overlooked when using manual delineation 

techniques. However, the RF algorithm may 

produce slightly different boundaries because  

it clusters objects with similar characteristics into 

a single unit. 

This study proved that RF classifier provides 

significant advantages for mapping applications, 

which is in line with a previous study by Heung  

et al. (2014), especially when dealing with 

complex and heterogeneous datasets, thus, 

improving the precision and reliability of spatial 

predictions, such as soil taxonomic units and 

parent materials. The scalable application of  

this study is not limited to mapping karst 

landforms with their unique features such as 

conical and sinkholes, but also to vegetation 

mapping such as plant invasive species 

(Matyukira and Mhangara, 2024; Zaka and Samat, 

2024). The advances of this study need to be 

further extended, particularly in the context of  

soil properties, to develop accurate soil mapping. 

Such mapping is crucial for improving 

agricultural productivity, land use planning, 

ecosystem conservation, and environmental 

management, especially in complex karst 

landscapes where soil properties significantly 

influence land management practices. 

Contribution of geology, slope, and relief 

indexes to the development of LMUs  
PCA analysis revealed important insights  

into the contribution of different variables to the 

principal components and their potential impact 

on LMU prediction using RF analysis (Figure 10). 

The first principal component (PC1) accounted 

for 99.97% of the variance, highlighting that most 

of the data variability was captured along this 

axis. DEMNAS (curvature) and slope were highly 

aligned with PC1, making them the most 

influential variables in explaining the overall 

variance. This underscores their important role  

in LMU prediction, as topographic features  

such as curvature and slope are known to 

determine water distribution, soil characteristics, 

and vegetation suitability, which are important in 

land management.  

In contrast, NDSI and geology contributed 

predominantly to PC2, explaining only 0.02%  

of the variance. Although their overall effects  

are smaller than those of PC1, these variables 

likely capture local or context-specific variation 

that is relevant to LMU delineation. For example, 

geological features have a significant impact on 

soil composition and fertility, while soil indices 

such as NDSI are particularly important in regions 

where soil affects vegetation and water 

availability. Vegetation indices such as MSAVI, 

SAVI, and NDWI, on the other hand, negatively 

affected PC1, suggesting that they may have  

a smaller impact on broad patterns of variability. 

However, these indices are critical in small-scale 

predictions, particularly for understanding 

vegetation health, biomass, and water content, 

which are often important in agricultural and 

ecological assessments. 

Interestingly, the relief showed minimal 

influence on PC1 and PC2, indicating its limited 

contribution to variance in this dataset. This may 

indicate that while it plays a role in certain 

contexts, relief is not the primary driver of  

LMU prediction here. This PCA insight aligns 

closely with the RF variable importance metrics, 

where DEMNAS (curvature) and slope are 

expected to emerge as top predictors due to their 

dominant variance contributions. In contrast, 

variables such as relief may play a smaller role, 

and vegetation indices, despite their lower PCA 

contributions, may improve LMU prediction in 

areas with dynamic vegetation patterns.
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Figure 9. Advantages and limitations of the RF analysis for LMU 
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The implication of study and recommendation 

for future sustainable land management in 

diverse and complex landforms 
Landforms delineate spatial units that provide 

critical insights into ecological environments, 

natural resource distribution, and soil formation 

processes (Fang et al., 2019). Their importance  

in broader environmental systems and 

sustainability efforts is well-established. Modern 

studies have advanced landform identification 

using geomorphic attributes such as altitude, 

slope, aspect, and curvature, combined with 

artificial intelligence technologies. Machine 

learning models, including RF, have significantly 

improved the accuracy of landform mapping 

(Zhao et al., 2017; Du et al., 2019), with the  

RF method’s ability to automatically select 

relevant features underscoring its utility in such 

studies. 

This study successfully developed detailed 

LMUs at a scale of 1:20,000 for the South Malang 

Plateau, achieving over 93% accuracy by 

integrating RF analysis with high-resolution 

remote sensing data. The use of geospatial data, 

including geological and topographical features, 

enabled precise delineation of landforms such as 

karst, tectonic, volcanic, and alluvial landscapes. 

Karst landforms exhibited the highest mapping 

accuracy, while tectonic landforms were less 

precise due to DEM limitations. This study is 

supported by previous findings that using the 

combination of remote sensing and machine 

learning has proven to be a powerful approach  

for analyzing environmental prediction across 

different regions. For example, this approach  

has been successfully applied in Pakistan’s  

Buner and Shangla Districts (Ullah et al., 2025b), 

Multan and Sargodha Cities (Zhang et al., 2025), 

and the Manchar Lake wetland complex 

(Chaoyong et al., 2024). These studies 

demonstrated how integrating satellite imagery 

with advanced computational models enables 

accurate monitoring of spatial and temporal 

patterns, which reinforces the effectiveness of 

remote sensing and machine learning in large-

scale environmental assessments, providing 

valuable insights for sustainable land and resource 

management in various geographical settings. 

Moreover, this study’s findings underscore  

the critical role of accurate and detailed  

mapping for sustainable land management.  

LMUs provide essential information on soil 

 

 

Figure 10. PCA of LMU using RF algorithm 
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fertility, erosion vulnerability, and landform-

specific challenges, supporting applications  

such as precision agriculture, disaster mitigation, 

and environmental planning. For instance, karst 

regions with high slopes and erosion sensitivity 

require specialized conservation strategies, while 

tectonic areas need improved mapping techniques 

to ensure sustainable practices. Similar studies 

emphasized the importance of integrating 

geospatial technologies into land management. 

For instance, Reddy et al. (2018) demonstrated 

how RF and GIS analysis improved land resource 

mapping and agricultural land use planning,  

while Binte Mostafiz et al. (2021) highlighted  

the effectiveness of integrating topographic  

and vegetation indices for land suitability 

assessments. These studies also align with the 

findings of the present study, which suggested  

that incorporating geology, topography, and 

vegetation indices enhances decision-making  

in land management. To strengthen policy 

implications, this study recommends adopting 

LMU-based zoning regulations, incorporating 

LMU mapping into national land-use policies, 

investing in advanced mapping technologies,  

and strengthening land rehabilitation guidelines. 

Future research should incorporate additional 

environmental variables and advanced algorithms 

to improve the scalability and applicability of 

LMU mapping for diverse landscapes. This 

study’s findings also highlighted the importance 

of advanced mapping techniques for post-mining 

rehabilitation, soil conservation, and water 

resource management, contributing to global 

sustainability goals and ecosystem restoration 

efforts. 

CONCLUSIONS 

The results of LMUs at a scale of 1:20,000 in 

the South Malang Plateau using the RF machine 

learning algorithm achieved a good accuracy, 

which is 0.93 for R2 and 0.645 for RMSE. 

Curvature and slope are the variables with the 

highest contribution to the preparation of the 

LMUs map. This result could be a breakthrough 

in objectively compiling LMUs to replace  

the manual digitization that had been done  

less objectively. The result can guide informed 

decision-making to prioritize sustainable  

land management and effectively prevent land 

degradation in the South Malang Plateau region, 

as stated in the SDGs. Future research could 

incorporate a broader range of continuous and 

categorical covariates to further enhance mapping 

accuracy and efficacy. The limitation of this study 

was the inability to develop landform classes  

that were not captured by the available data, 

highlighting the need for additional data to 

improve model quality in future research. 
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