
52 

 Caraka Tani: Journal of Sustainable Agriculture, 40(1), 52-63, 2025 

 URL: https://jurnal.uns.ac.id/carakatani/article/view/92943 

 DOI: http://dx.doi.org/10.20961/carakatani.v40i1.92943 

ISSN 2613-9456 (Print) 2599-2570 (Online) 
 

 

Copyright © 2025 Universitas Sebelas Maret 

 

Decolorization and Bioelectricity Generation from Palm Oil Mill Effluent  

by a Photosynthetic Bacterial Consortium 
 

Pimprapa Chaijak and Alisa Kongthong 

Department of Biotechnology, Faculty of Science and Digital Innovation, Thaksin University,  

Songkhla, Thailand 

*Corresponding author: chaijak.pimprapa@gmail.com 

 

Abstract 

Palm oil mill effluent (POME) is the dark brown agricultural wastewater from palm oil extraction 

factories. It is difficult to decolorize using conventional methods. Melanoidin is a dark-colored  

polymer formed through the Maillard reaction which is the primary cause of the dark color in  
POME. This study investigated the potential of a photosynthetic bacterial consortium consisting of 

Blastochloris sulfoviridis and Lentimicrobium saccharophilum for POME treatment and bioenergy 

generation. The consortium effectively removed melanoidin content (68.89±0.84%) and color 
(60.87±1.22%) from POME without the addition of chemicals or culture medium. Additionally,  

a microbial fuel cell (MFC) integrated with the consortium generated a power output of up to  

5.70±1.06 W m-3. The degraded metabolites were analyzed by gas chromatography-mass spectrometry 

(GC-MS) after treatment. The results revealed that melanoidin was converted to 1-ethyl-2-
methylbenzene, 1,2,4-trimethylbenzene, decamethylcyclopentasiloxane, dodecamethylcyclohexane, 

butylated hydroxytoluene, and stigmasta-3,5-diene. Following treatment, the cell pellet was recovered 

and analyzed for valuable by-products. Carotenoid and astaxanthin pigments were extracted with  
yields of 0.32±0.01 and 0.02±0.00 mg g-1, respectively. These findings demonstrate the  

versatility of the photosynthetic bacterial consortium, which offers a sustainable solution for POME 

treatment while simultaneously POME decolorization and producing bioenergy and valuable 

compounds. 
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INTRODUCTION 

Palm oil is a high-value agricultural product 

that can be used as a raw material in various 

products such as daily, food, body care, and 
cosmetics products (Mutsaers, 2019). It is mainly 

produced in Equatorial Africa and Southeast  

Asia, especially Indonesia, Malaysia, Thailand, 
Colombia, and Nigeria (Mba et al., 2015; Jagaba 

et al., 2021; Sulaiman et al., 2024). Wastes 

include palm oil shells, palm oil fiber, empty fruit 

bunches, palm kernels, and palm oil mill effluent  
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(POME) produced during palm oil manufacture 

(Abdullah and Sulaim, 2013). The palm oil 

industry generates approximately 2.5 to 3.0 m3 of 
dark-brown POME from each ton of crude palm 

oil, which contains a high chemical oxygen 

demand (COD) of about 100 g l-1 (Saputera et al., 
2021). The discharge of dark-brown POME can 

cause damage to the ecosystem, especially to 

water resources and aquatic ecosystems (Abrams 

et al., 2015). A suitable wastewater treatment  
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system can help mitigate the negative effects 

caused by the pigment of POME on the 

environment (Rakhmania et al., 2023). 
Various processes have been used for POME 

treatment such as catalytic stream reforming 

(Valizadeh et al., 2021), anaerobic ponding 
system (Tamrin and Yaser, 2017), biological 

treatment (Chan et al., 2012), phytoremediation 

(Darajeh et al., 2014), microbial fuel cell (MFC) 
(Baranitharan et al., 2013) and microbial 

degradation (Ratnasari et al., 2021). Many 

different microbes are used in microbial 

degradation. In Said et al. (2021), an anaerobic 
bacterial consortium consisting of Bacillus 

toyonensis strain BCT-71120 and 

Stenotrophomonas rhizophila strain e-p10 was 
used to treat POME. The highest reduction of 

COD and total solids was achieved reaching  

86% and 80%, respectively. 
For color removal, the electrocoagulation 

process has been used for decolorization and 

mineralization of raw POME. The results showed 

that using 14 volts for 3 hours and an electrolyte 
concentration of 13.41 g l-1 achieved a 56% 

reduction in COD and a 65% reduction in color 

(Rakhmania et al., 2023). On the other hand, 
photodegradation utilizes light for the removal of 

color and phenolic compounds present in POME. 

The cyanobacteria Arthrospira platensis was 

integrated into this system, effectively removing 
color and phenolic compounds (Nur et al., 2021). 

Moreover, previous study by researchers 

demonstrated that the Citrobacter sp. rice-based 
facultative anaerobic bacterial consortium can 

successfully remove melanoidin and decolorize 

POME through its extracellular enzyme 
(Thipraksa et al., 2022). However, this process 

does not generate any value-added by-products 

from the bacterial biomass. 

Photosynthetic bacteria are a group of bacteria 
with a broad range of metabolic capacities, 

including aerobic and anaerobic cellular 

respiration, fermentation, and nitrogen fixation 
(Sasikala and Ramana, 1995). It has been used for 

various applications such as wastewater treatment 

and value-added substance recovery (Cao et al., 
2020). Furthermore, photosynthetic bacteria are 

effective in removing color, heavy metals, and 

micropollutants from wastewater (Talaiekhozani 

and Rezania, 2017). 
MFCs are bio-electrochemical technologies 

that convert organic materials into bioelectricity 

through microbial activity (Obileke et al., 2021). 
This technology can utilize various substrates, 

especially wastewater, providing two primary 

benefits, including wastewater treatment and 

electricity generation (Xu et al., 2017). MFCs  

are devices capable of producing sustainable 
bioelectricity by degrading organic matter. These 

devices have garnered significant interest 

worldwide due to their potential applications  
in various fields (Priya et al., 2022). 

Several studies have reported using MFCs 

integrated with effective microbial consortia for 
color removal from wastewater and electricity 

generation. In Xu et al. (2020), a two-chamber 

MFC with a sponge anode was utilized for azo  

dye wastewater treatment. The results showed  
a maximal color removal of 62.84% and  

a maximal power output of 2.82 W m-³. On the 

other hand, an H-type MFC integrated with  
the bacterium Pseudomonas gessardii was used  

to treat reactive dye wastewater. A maximal 

power output of 474 mW m-² was achieved 
(Agrahari et al., 2024). No previous study has 

been reported on using photosynthetic bacteria for 

POME decolorization and electricity generation 

in an MFC. 
This study comprehensively evaluated the 

color removal capabilities of a photosynthetic 

microbial consortium. Next-generation 
sequencing was employed to analyze the 

microbial community structure, while gas 

chromatography-mass spectrometry (GC-MS) 

was utilized to identify degraded metabolites. 
Additionally, a two-chamber MFC system was 

used to monitor bioelectricity generation (Figure 

1), and the production of carotenoid and 
astaxanthin by-products was assessed. 

MATERIALS AND METHOD 

Photosynthetic consortium 
The photosynthetic consortium was gained 

from the Department of Biotechnology, Faculty  

of Science and Digital Innovation, Thaksin 

University, Phatthalung Campus, Thailand. It was 
preserved in the modified Ormerod medium 

contains 0.6 g l-1 KH2PO4, 0.9 g l-1 K2HPO4,  

0.2 g l-1 MgSO4.7H2O, 0.075 g l-1 CaCl2.2H2O, 
0.0188 g l-1 FeSO4.7H2O, 0.02 g l-1 EDTA, 6 g l-1 

malic acid, and 15 µg l-1 biotin (Choi et al., 2022). 

A molasses-based medium (0.25 g l-1 
molasses, 6.4 g l-1 yeast extract, 0.5 g l-1 K2HPO4, 

0.5 g l-1 KH2PO4, 0.8 g l-1 (NH4)2HPO4, 0.2 g l-1 

MgSO4.7H2O and 0.05 g l-1 CaCl2.2H2O) was 

used to enrich a photosynthetic consortium for 
application in wastewater treatment (Saejung  

and Puensunnern, 2018). Briefly, a 10% (v/v) 

inoculum of the consortium was added to fresh  
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molasses medium (90% v/v) in a 250 ml 

erlenmeyer flask. The flask was incubated at  
30 °C for 10 days under anoxic conditions with  

a rubber stopper. An LED lamp with a light 

intensity of 500 lux was used as the light source 
for the growth of the photosynthetic consortium. 

Synthetic wastewater 

The synthetic POME was prepared according 
to the previous study (Chaijak et al., 2024). 

Briefly, the melanoidin solution was prepared by 

mixing 22.5 g l-1 glucose (Himedia, India), 9.4  

g l-1 glycine (Himedia, India), and 2.1 g l-1 
NaHCO3 (Himedia, India) with 500 ml of distilled 

water and heating the mixture at 95 °C for 7 hours. 

Afterward, 500 ml of distilled water was added  
to the solution. To prepare synthetic wastewater, 

a 10% (v/v) melanoidin solution was mixed with 

a 90% (v/v) phosphate buffer (Himedia, India). 
The resulting mixture was sterilized at 121 °C for 

15 minutes. 

For color removal, the 10% (v/v) of the 

consortium (OD600 = 1.0) was added to synthetic 
POME (90% v/v) in a 250 ml erlenmeyer flask. 

The flask was incubated at 30 °C for 10 days 

under anoxic conditions with a rubber stopper.  
An LED lamp with a light intensity of 500 lux  

was used as the light source for the growth of  

the photosynthetic consortium. The samples were 

collected every 2 days, to track color removal at 
450 nm using a UV-Vis spectrophotometer 

(Shimadzu, Japan). 

POME 
POME was collected from the wastewater 

treatment plant of a palm oil extraction factory  

in Trang Province, Southern Thailand. The 

sample was obtained from the sedimentation  

tank following the biogas plant. The sample was 
preserved at -25 °C in a freezer (Haier, China) 

until further analysis. 

For the experiment, the frozen sample was 
thawed to a liquid state and filtered through sterile 

gauze 2 to 3 times. The 10 ml of the consortium 

were inoculated into 90 ml of filtered POME and 
incubated at 30 °C for 10 days under anoxic 

conditions with a light intensity of 500 lux. Color 

removal was monitored at 450 nm using a UV-Vis 

spectrophotometer. The degraded POME was 
collected for further analysis. 

Degraded metabolite 

The degraded melanoidin in the POME was 
extracted using ethanol as a solvent (Wang et al., 

2023). The 2 ml of extracted liquid was used for 

analysis in the GC-MS. A GC-MS analysis was 
performed using an Rtx-5MS column (30 m 

length, 0.25 mm inner diameter, 0.25 μm film 

thickness). Helium was employed as the carrier 

gas at a flow rate of 1 ml minute-1. The sample 
injection port temperature was set to 300 °C with 

a split ratio of 10. The initial temperature was at 

80 °C for 2 minutes, followed by a temperature 
increase to 315 °C at a rate of 5 °C per minute and 

held for 11 minutes. The ion source and interface 

temperatures were maintained at 200 and 220 °C, 

respectively. Data acquisition was conducted in 
scan mode over a mass-to-charge ratio range of  

35 to 1000 with a solvent delay of 3 minutes  

(Yu et al., 2023). 

Next-generation sequencing (NGS) 

The bacterial community of the photosynthetic 

consortium was analyzed using NGS 

 

Figure 1. The mechanism of the decolorization and bioelectricity generation processes 
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(BMKGENE, China). The V3-V4 region of the 

16S rRNA gene was amplified using specific 

primers (forward primer, 5'- 
ACTCCTACGGGAGGCAGCA-3'; reverse 

primer, 5'- GGACTACHVGGGTWTCTAAT-3') 

and sequenced. Taxonomic classification was 
performed using the Bayesian method and the 

Silva 138 database. 

Electricity generation 
An aluminum plate (4 cm²) served as the 

anodic electrode, while a copper-plated electrode 

(4 cm²) functioned as the cathodic electrode. The 

MFC chamber consisted of 240 ml glass cell 
culture bottles. A proton exchange membrane 

(PEM) was fabricated using a polyvinyl chloride 

tube (4.5 mm diameter) filled with 0.1% (w/v) 
KCl (KMLABS, Thailand) in 15 g l-1 agarose gel 

(Himedia, India). Alligator clips connected the 

anodic and cathodic electrodes. 

For operation, 180 ml of POME was mixed 

with 20 ml of consortium and placed in the anodic 

chamber. The cathodic chamber was filled with 
sterile distilled water and oxygenated using an air 

pump. The open circuit voltage (OCV) was 

monitored every 24 hours for 10 days. The closed-

circuit voltage (CCV) was measured at an external 
resistance of 1,000 Ω. The electrochemical 

properties were calculated using Equation 1, 2, 3, 

and 4. 

I = 
V

R
                                                               (1) 

P = I × V                                                         (2) 

CD = 
I

A
                                                     (3) 

PD = 
P

A
                                                     (4) 

Where, I is the current (A), V is the CCV (V),  
R is the external resistance (Ω), P is the power 

(W), CD is the current density (A m-3), A is the 

working volume (m3), and PD is the power density 

(W m-3). 

By-products analysis 

The treated POME was centrifuged at 12,000 

rpm for 10 minutes. The supernatant was 
discarded, and the pellet was washed with sterile 

distilled water 2 to 3 times. One gram of wet cells 

was mixed with 1 ml of methanol-acetone  

(2:3 v/v) solution and vortexed. The liquid phase 
was collected, and the extraction process was 

repeated 3 times. The carotenoid content was 

determined by measuring absorbance at 480 and 

770 nm using a UV-Vis spectrophotometer. Total 

carotenoid content was calculated according to 
Equation 5 (Patthawaro et al., 2020). 

Total carotenoid (mg g-1) =  

(A480 – 0.1A770) × 0.385                         (5) 

Where, A480 and A770 are the absorbance at 480 

and 770 nm, respectively.  

For astaxanthin, 1 g of wet cells was mixed 
with 1 ml of ethanol and vortexed. The liquid 

phase was collected, and the extraction process 

was repeated 3 times. The astaxanthin was 
measured at a wavelength of 478 nm (Khoo et al., 

2019) and calculated using Equation 6. 

Astaxanthin (mg g-1) = 
(OD478 – 0.0035)

81.88
 (6) 

RESULTS AND DISCUSSION 

Melanoidin removal 
A photosynthetic consortium was investigated 

for its efficacy in degrading melanoidin within  

a synthetic POME solution. The consortium was 

introduced to the melanoidin-containing medium, 
and melanoidin removal was monitored over  

a 10-day incubation period. The results 

demonstrated that the consortium effectively 
degraded melanoidin, achieving a maximum 

removal rate of 68.89±0.84% (Figure 2). These 

findings suggest the potential application of this 

photosynthetic consortium as a promising strategy 
for treating melanoidin-contaminated wastewater 

in liquid environments. 

Activated carbon (AC) has emerged as  
a potential adsorbent for the removal of 

melanoidins from molasses effluent. Powdered 

activated carbon (PAC) is effective in removing 
melanoidins, but the resulting melanoidin-

immobilized PAC generates a secondary  

waste product (Liakos and Lazaridis, 2016).  

To overcome this limitation, Fe-impregnated 
activated carbon has been investigated as an 

alternative adsorbent. Studies have demonstrated 

its effectiveness in removing melanoidins from 
distillery wastewater achieving a maximum 

removal efficiency of 85.60% at an adsorbent 

dose of 62.50 mg l-1. The impregnation of Fe  
onto AC appears to enhance its adsorption 

capacity and selectivity for melanoidin removal 

(Rizvi et al., 2020). A previous study reported  

that a bacterial consortium dominated by 
Citrobacter sp. produced extracellular laccase,  
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which degraded 86.02% of the melanoidin present 

in POME after 48 hours of incubation (Thipraksa 
et al., 2022). 

Color removal 

The photosynthetic bacterial consortium 
exhibited significant color removal capabilities 

when inoculated into POME. As monitored by 

UV-Vis spectrophotometry over 10 days, the 

consortium achieved a maximum color removal of 
60.87±1.22% (Figure 3). In contrast, the control 

treatment using the POME indigenous bacteria 

demonstrated negligible color removal potential. 
These findings suggest that the photosynthetic 

bacterial consortium possesses specific metabolic 

pathways or enzymes that are particularly 
effective in degrading the chromophores present 

in POME. Figure 4 illustrates the relationship 

between color removal and melanoidin removal. 
Electrocoagulation and limestone treatment 

have emerged as alternative methods for color 

removal from POME. Electrocoagulation has 
demonstrated promising results, achieving  

a maximum color removal of 65.00% under 

optimized conditions of 14 volts and 3 hours of 

electrolysis time. However, the requirement  
for external energy poses a limitation for its 

practical application (Rakhmania et al., 2023).  

On the other hand, limestone offers a more 
energy-efficient approach. Studies have shown 

that limestone prepared at 800 °C can effectively 

remove color from POME, reaching a maximum 
removal of 61.00% at a filtration rate of  

  

Figure 2. Melanoidin removal of photosynthetic 

bacterial consortium in synthetic 
POME 

Figure 3. Color removal of photosynthetic 

bacterial consortium in synthetic 
POME 

    

 

 

Figure 4. The relationship between color removal and melanoidin removal 
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20 ml minute-1 and a retention time of 317 minutes 

(Dashti et al., 2021). 

Metabolite 
The degraded metabolites of the POME were 

analyzed using the GC-MS method. Methanol 

was used as the solvent for extracting the 
degraded metabolites. The chromatogram of  

the degraded metabolites is shown in Figure 5a. 

The degraded metabolites were mainly 
composed of 1-ethyl-2-methylbenzene (Figure 

5b), 1,2,4-trimethylbenzene (Figure 5c), 

decamethylcyclopentasiloxane (Figure 5d), 

dodecamethylcyclohexane (Figure 5e), butylated 
hydroxytoluene (BHT) (Figure 5f), and stigmasta-

3,5-diene. 

The 1-ethyl-2-methylbenzene is a volatile 
organic compound (VOC), identified as  

a significant pollutant in wastewater treatment 

plants. It is frequently detected in rubber 
wastewater, petrochemical wastewater, and  

other industrial effluents (James and Stack, 1997).  

 

 

 
a. 

 
b. 

 
c. 

 
d. 
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It is the colorless toluene that was used as  
a solvent in various reactions (Canneaux et al., 

2012). While decamethylcyclopentasiloxane  

has been identified in Canadian wastewater  

(Silva et al., 2021), there are no reported instances 
of human toxicity (Lee et al., 2023). Butylated 

hydroxytoluene has been studied as an antioxidant 

agent (Yehye et al., 2015) while stigmasta-3,5-
diene has not been reported in human toxicity. 

Microbial community  

The bacterial consortium was analyzed  
using NGS. Phylum-level diversity revealed 

Proteobacteria (21.90%), Bacteroidota (20.19%), 

unclassified bacteria (15.38%), Synergistota 

(9.18%), Firmicutes (8.96%), Spirochaetota 
(6.79%), Chloroflexi (3.98%), Cloacimonadota 

(3.83%), Patescibacteria (2.95%), Caldisericota 

(2.01%), and others (4.83%). 
The family level diversity revealed was 

composed of Xanthobacteraceae (17.68%), 

unclassified bacteria (15.38%), 

Lentimicrobiaceae (9.36%), Synergistaceae 
(9.18%), Spirochaetaceae (5.93%), Bacteroidetes 

(5.69%), Cloacimonadaceae (3.83%), 

Christensenellaceae (3.60%), Rhodospirillaceae 
(2.62%), unclassified SBR1031 (2.41%), and 

others (24.32%). 

The class level diversity revealed 
Alphaproteobacteria (20.64%), Bacteroidia  

 

(17.87%), unclassified bacteria (15.38%), 
Synergistia (9.18%), Spirochaetia (5.93%), 

Clostridia (5.34%), Anaerolineae (3.94%), 

Cloacimonadia (3.83%), Ignavibacteria (2.15%), 

Caldisericia (2.01%), and others (13.74%). 
The order level diversity revealed Rhizobiales 

(17.68%), unclassified bacteria (15.38%), 

Sphingobacteriales (9.39%), Synergistales 
(9.18%), Bacteroidales (8.39%), Spirochaetales 

(5.93%), Cloacimonadales (3.83%), 

Christensenellales (3.60%), SBR1031 (2.76%), 
Rhodospirillales (2.64%) and others (21.21%). 

The genus level diversity revealed unclassified 

bacteria (15.38%), Blastochloris (8.38%), 

unclassified Xanthobacteraceae (7.66%), 
uncultured prokaryote (6.61%), Lactivibrio 

(6.29%), unclassified Bacteroidetes (5.69%), 

unclassified Spirochaetaceae (4.76%), 
unclassified Cloacimonadaceae (3.83%), 

Christensenellaceae (2.92%), Lentimicrobium 

(2.87%) and others (35.61%).  

The species level diversity (Figure 6) revealed 
unclassified bacteria (15.38%), Blastochloris 

sulfoviridis (8.37%), unclassified 

Xanthobacteraceae (7.66%), uncultured 
prokaryote (6.71%), unclassified Lactivibrio 

(6.29%), unclassified Bacteroidetes (5.69%), 

unclassified Cloacimonadaceae (3.83%), 
unclassified Pararhodospirillum (2.62%),  

 

 
e. 

 
f. 

Figure 5. Chromatograms of degraded POME 
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Lentimicrobium saccharophilum (2.57%), 

unclassified SBR1031 (2.41%), and others 

(38.46%). 
Heras et al. (2020) utilized the nonsulfur 

anoxygenic phototroph Blastochloris sp. for 

nitrogen-deficient wastewater treatment. 
Conversely, Lentimicrobium sp. has been 

employed for high-sulfate wastewater treatment 

(Li et al., 2020). There are no published reports  

of its application for POME treatment. 

Electrochemical properties  

The OCV of the dual-chamber MFC  

was monitored every 24 hours for 10 days.  

A maximum OCV of 546.67±5.77 mV was 

achieved during operation (Figure 7). Meanwhile, 

the maximum CD and PD of the dual-chamber 
MFC integrated with the photosynthetic bacterial 

consortium were 16.83±1.61 A m-³ and 5.70±1.06 

W m-³, respectively. Conversely, the MFC was 
utilized to generate electricity from POME.  

A maximum power density of 0.50 W m-3 was 

achieved at a hydraulic retention time of 12 days 

(Ng et al., 2024). In Albarracin-Arias et al. (2021), 
the bio-electricity generation was provided by 

MFCs integrated with pure electrogenic culture 

Shewanella sp. and POME sludge. The results 

 
Figure 6. The species-level diversity of bacterial consortium 

 

  

  

Figure 7. The OCV of dual chamber MFC 

integrated with photosynthetic bacterial 
consortium 

Figure 8. The pigment content of the by-

product 
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found that the maximal power generation was 

3.30 W m-3.  

By-products 
The cell pellet was recovered from the 

treatment system after the MFC operation.  

The cells were disrupted by an organic solvent, 
and then the pigment by-product was determined. 

The carotenoid content was 0.32±0.01 mg g-1, and 

the astaxanthin content was 0.02±0.00 mg g-1 
(Figure 8). On the other hand, carotenoids  

were produced using pure photosynthetic  

bacteria Rhodopseudomonas faecalis PA2 with 

agricultural wastes such as soybean, coconut,  
and cassava meal without additional nutrients 

proposed. The maximal carotenoid production of 

0.08 to 96.43 mg g-1 was achieved, but astaxanthin 
was not found. However, none of these methods 

produced electricity or other green energy 

(Patthawaro et al., 2020). 

CONCLUSIONS 

The photosynthetic bacterial consortium 

composed of B. sulfoviridis and L. 

saccharophilum demonstrated significant 
potential for sustainable wastewater treatment  

and bioenergy production. This study found that 

the consortium effectively removed melanoidin 
content (68.89±0.84%) from synthetic wastewater 

and color (60.87±1.22%) from POME without  

the need for additional chemicals or culture 

medium. Moreover, the integrated MFC system 
generated a notable maximum power output of 

5.70±1.06 W m-³. Following the treatment 

process, valuable by-products were recovered 
from the cell pellet. Carotenoid and astaxanthin 

pigments were extracted with yields of  

0.32±0.01 and 0.02±0.00 mg g-1, respectively. 
These findings highlight the versatility of the 

photosynthetic bacterial consortium, which can 

contribute to both environmental remediation  

and bioresource recovery. The consortium  
could be integrated with other wastewater 

treatment processes such as anaerobic digestion, 

to improve overall treatment efficiency and 
recover additional valuable by-products. 

Moreover, an economic analysis should be 

conducted to evaluate the cost-effectiveness  
of the consortium for wastewater treatment and 

bioenergy production. 
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