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Abstract 

Chemical fertilizers provide an immediate nitrogen supply but require repeated application at critical 

growth stages; however, excessive chemical fertilizer application harms the environment. In contrast, 

organic fertilizers release nitrogen gradually for a long time, and microbial fertilizers enhance nutrient 
availability. This study investigated the effects of integrating chemical nitrogen (CN), poultry manure 

(PM), and microbial fertilizer (MBF) on soil nitrogen availability and microbial activity. Eight 

treatments were applied: T0 (control), T1 (100% CN), T2 (100% CN + MBF), T3 (75% CN + 25% PM + 
MBF), T4 (50% CN + 50% PM + MBF), T5 (25% CN + 75% PM + MBF), T6 (100% PM + MBF), and 

T7 (100% PM). Soil nitrogen fractions, microbial biomass, enzyme activities, and phospholipid fatty 

acid (PLFA) composition were analyzed. Integrated treatments improved nitrogen availability compared 
to sole CN application, with T4 showing the highest NO₃--N accumulation. Additionally, T4 increased 

total nitrogen, organic carbon, and microbial biomass, enhancing soil fertility. Enzymatic activities, 

including urease, catalase, invertase, and cellulase, responded positively to the integrated treatments, 

reflecting improved soil health. PLFA analysis revealed shifts in microbial community composition, 
highlighting the role of PM in promoting microbial diversity and biomass. These findings highlight that 

blending 50% CN and 50% PM with MBF balances immediate and sustained nitrogen release while 

stimulating microbial diversity and soil enzyme functions and improves overall soil health, making it  
a promising strategy for sustainable soil fertility management and reducing chemical fertilizer 

dependency. 
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INTRODUCTION 

The current advanced high-intensity crop 
production system has been characterized by  

the excessive use of chemicals such as herbicides, 

pesticides, and fertilizers to meet the increasing 

demand for agricultural and food commodities 
worldwide. This practice originated from the  

first Green Revolution (Hemathilake and 

Gunathilake, 2022). The positive relationship 
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between crop yield and the use of chemical 
fertilizers has been demonstrated by previous 

studies (Guo et al., 2022; Peng et al., 2023). 

Nitrogen (N) is a crucial macronutrient that plays 

a vital role in various biological processes.  
It is essential for the synthesis of chlorophyll, 

nucleic acids, amino acids, proteins, and certain 

organic acids (Peng et al., 2021; Tariq et al., 
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2023). The indispensability of this particular 

entity is readily apparent, as it plays a crucial role 

in a wide array of biological and physiological 
processes. These include photosynthesis, biomass 

production, hormonal accumulation, carbohydrate 

allocation, plant root architectural growth, and  
the development of reproductive organs in plants 

(Liu et al., 2022; Wang et al., 2024).  

In contrast, it should be noted that the 
excessive use of chemical nitrogenous fertilizer 

may not always yield the desired results in terms 

of enhancing crop productivity. This is primarily 

due to the heightened susceptibility to N losses 
through various mechanisms, including 

volatilization, denitrification, leaching, and 

eutrophication. These processes, which involve 
the emission of nitrogen oxides, contamination  

of underground water reserves, and pollution  

of surface water bodies, not only contribute to 
increased production costs but also pose 

significant environmental risks. These risks 

manifest in the form of soil degradation and 

compromised soil microbial diversity (Hoyt, 
2022; Mansour et al., 2023). 

To optimize crop productivity, mitigate 

environmental pollution, and achieve agricultural 
sustainability, it has become imperative to ensure 

the maintenance of soil fertility at a prescribed 

level or restore it when necessary (Sarkar et al., 

2021). In agricultural practices, the mitigation  
of chemical fertilizers and pesticides can be 

accomplished by utilizing organic amendments 

(Syamsiyah et al., 2023). On the one hand, it is 
imperative to acknowledge that the proliferation 

of intensive animal husbandry practices has 

resulted in a significant increase in animal 
wastage, thereby emerging as a prominent 

contributor to global environmental pollution.  

On the contrary, the utilization of animal waste  

as organic manure has demonstrated its efficacy 
as a soil amendment, thereby enhancing crop 

productivity. This is attributed to the substantial 

presence of N, P, and other essential plant macro 
and micronutrients within the animal waste 

(Sudhakar, 2025). Additionally, this practice 

serves as an efficient means of waste disposal. 
Organic amendments, besides providing available 

forms of essential plant nutrients, enhanced soil 

water holding capacity, improved physical, 

chemical, and biological properties of soil, 
increasing soil microbial activity by increasing 

soil organic matter content (Singh et al., 2020; 

Kumar et al., 2021; Das and Ghosh, 2024). 
The rapid expansion of the global poultry 

industry has resulted in the increased availability 

of poultry manure (Manogaran et al., 2022).  

The application of poultry manure and litter to soil 

has been shown to serve as a significant method 
for delivering vital plant nutrients, including N, P, 

K, Ca, and Mg, in significant quantities. This 

process facilitates the optimal growth of plants 
(Curtis et al., 2023). Additionally, the nutrient-

rich composition of poultry manure and litter, 

coupled with its rapid-release characteristics  
and elevated organic C content, contributes to the 

restoration of soil fertility. The mineralization 

potential of poultry manure, specifically in terms 

of N and C, has been observed to have  
a significant impact on the quantity of net N 

mineralization that plants can uptake from 

manures (Tóth et al., 2023). Additionally, it has 
been noted that the presence of poultry manure 

can induce alterations in soil physiochemical 

processes, primarily by stimulating microbial 
activity through organic matter decomposition 

and enzymatic activities (Aboutayeb et al., 2024).  

Microbial fertilizer, also known as 

biofertilizer, is of utmost importance in the 
intricate process of soil nutrient cycling by 

facilitating N fixation, P solubilization, and 

organic matter decomposition (Go Oco et al., 
2024; Ma et al., 2025). The process of soil organic 

matter decomposition and subsequent release  

of easily accessible mineralized N in the soil is 

primarily facilitated by bacteria and fungi  
(Raza et al., 2023). The cycling of N through 

microbial processes is known to be significantly 

impacted by the content of soil organic matter 
(Lin et al., 2023). To gain a more comprehensive 

understanding of the intricate dynamics of 

nutrient availability in soil, it is imperative to 
thoroughly investigate the impact of microbial 

biomass functions on this process.  

The study aimed to explore the enhanced 

mineralized N release capacity of poultry  
manure treated with microbial biofertilizer when 

applied to soil, addressing the knowledge gap  

in understanding how integrated applications  
of poultry manure, microbial biofertilizer, and 

chemical N influence N mineralization, microbial 

activity, and soil health. It sought to investigate 
the synchrony, N release ability, and fertilizer 

value of poultry manure across varying 

application rates, hypothesizing that combining 

these amendments would enhance N availability, 
improve soil microbial diversity, and promote 

enzymatic activities more effectively than 

individual applications. The primary objectives 
included assessing N mineralization and 

nitrification levels in poultry manure, both 
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individually and in combination with microbial 

biofertilizer. Additionally, the study aimed to 

evaluate the impact of integrated fertilizer 
application on the abundance and diversity of 

microbial communities pivotal in nutrient cycling 

processes, particularly through enzymatic 
activities, thereby ensuring N availability and 

continuous supply. 

MATERIALS AND METHOD 

Soil sampling/Collection 

The soil used in this experiment was  

collected from the Agronomy Field Laboratory  

at the University of Rajshahi, Bangladesh. 
Geographically, the field is located at 88°38’36” 

E longitude and 24°22’36” N latitude at  

an elevation of 20 m above the sea level belonging 
to the High Ganges River Floodplain Agro-

Ecological Zone (AEZ-11) of Bangladesh. 

Topsoil (0 to 15 cm) from five different points  
of the field was collected randomly using  

an auger and then mixed as a composite sample. 

The grasses and surface forest litter were removed 

from the sampling points before sample 
collection. The sample soil was collected in  

a zipper bag and carried to the laboratory, after 

that the natural field moist soil was sieved by  
a 4 mm strainer to eliminate coarse bricks, rocks, 

and other plant materials. The soil was first  

sieved and then thoroughly mixed to ensure 

uniformity before being promptly stored at 4 °C 
for subsequent use. Basic physical and chemical 

properties of the soil were assessed using a 500 g 

sub-sample, which was air-dried in the shade  
and subsequently passed through a 2-mm  

sieve. The soil type was identified as light 

Chernozem. Table 1 presents the fundamental 
physicochemical characteristics of the soil. 

Poultry manure and microbial fertilizer 

collection 

Poultry manure was gathered from the poultry 
farm in the Department of Veterinary and Animal 

Sciences at the University of Rajshahi, 

Bangladesh. The collected manure underwent  
a composting process, followed by crushing  

and sieving through a 1 mm mesh to ensure 

uniformity. Subsequently, the poultry manure  
was meticulously mixed to achieve optimal 

consistency. The physiochemical properties of 

poultry manure are shown in Table 2. 

Microbial fertilizer 
The microbial fertilizer utilized in this study 

was supplied by Beijing Liuhe Shenzhou 

Biotechnology Co. Ltd., with a guaranteed  

viable count of ≥ 2 million per gram, comprised 

of a blend of microorganisms, it was formulated 
using lignite as its primary component.  

High-throughput sequencing of the microbial 

biomass was conducted by Shanghai Meiji 
Biomedical Technology Company, employing 

the MiSeq sequencing platform. Following the 

manufacturer’s guidelines, DNA extraction from 
0.3 g of fresh soil was performed using the E.Z. 

N.A.® Soil DNA Kit provided by Omega Bio-

teck Inc., Norcross, GA, USA. Three replicates 

of each soil sample’s DNA were extracted and 
combined to generate a composite DNA sample. 

Subsequently, the concentration of the extracted 

DNA was determined using a NANO Quant 
(Tecan, Männedorf, Switzerland), followed by 

an examination of a 1% agarose gel. 

The bacterial consortia underwent further 
analysis through sequencing of the V3-V4 

hypervariable region of the 16S rRNA gene. 

Utilizing universal primers 338F (5’-

ACTCCTACGGGAGGCAGCA-3’) and 806R 
(5’-GGACTACHVGGGTWTCTAAT-3’), the 

V3-V4 region was amplified. Meanwhile, the 

hypervariable regions of the fungal 18S rRNA 
gene were amplified using primers 817F  

(5’-TTAGCATGGAATAATRRAATAGGA-3’) 

and 1196R (5’-TCTGGACCTGGTGAGTTTCC-

3’), employing a thermocycler PCR system 
(GeneAmp 9700, ABI, USA). The PCR 

experiment was conducted in triplicate, with  

a reaction mixture comprising 5X FastPfu Buffer, 
dNTPs (2.5 mM), forward and reverse primers  

  

Table 1. The basic physicochemical properties of 

the soil 

Soil properties Value 

Bulk density (g cm-3) 01.34±0.04 

Sand (%) 32.81±3.50 

Silt (%) 39.00±4.47 

Clay (%) 28.44±2.25 

Soil pH (1:2.5 H2O) 07.70±0.17 

Organic C (g kg-1) 06.59±0.78 

Total N (g kg-1) 00.54±0.06 

NH4
+-N (mg kg-1) 04.66±0.09 

NO3
--N (mg kg-1) 10.60±0.13 

Available P (mg kg-1) 14.17±1.27 

Available K (mg kg-1) 48.57±4.31 

Cation exchange capacity 
(CEC) (cmol(+) kg-1 soil) 

12.20±1.54 

Note: The textural classification of the soil was 

according to the USDA classification system. 

Standard errors (±) of the means are added with 

the values, n = 4 
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(5 μM), FastPfu Polymerase, and template DNA. 

The PCR reactions followed a specific schedule: 

initial denaturation at 95 °C for 3 minutes, 
followed by 35 cycles of denaturation at 95 °C for 

30 seconds, annealing at 55 °C for 30 seconds, 

elongation at 72 °C for 45 seconds, and a final 
extension step of 10 minutes at 72 °C. The results 

of the high-throughput sequencing of the 

beneficial functional flora within the microbial 
fertilizers utilized in this study are depicted in 

Figure 1a and 1b.  

Laboratory incubation 

The incubation experiment took place within 
the controlled environment of the Farming 

System Engineering Laboratory, housed within 

the Department of Agronomy and Agricultural 
Extension at the University of Rajshahi, 

Bangladesh, from November 2023 to January 

2024. Fresh soil samples, each weighing 250 g 
and stored refrigerated for no longer than  

15 days, were utilized for the experiment. These 

samples were transferred into 600 ml glass jars, 

the weights of which had been previously 
recorded. Deionized water was then added to 

each jar to adjust the soil moisture content to 60% 

of its water-holding capacity. Subsequently,  
the soil-filled jars underwent a pre-incubation 

phase lasting one week at 25 °C, aimed  

at stabilizing soil microbial activity. Throughout 

the incubation period, maintained at 25±2 °C,  
jars were arranged within the incubator according 

to a completely randomized design.  

The experimental design involved two 
primary factors: treatments and time intervals.  

A total of 8 treatment combinations were 

established, delineated as follows: T0 = Control 
(no chemical N and organic amendment),  

T1 = 100% chemical N, T2 = 100% CN + MBF, 

T3 = 75% CN + 25% PM + MBF, T4 = 50% CN 

+ 50% PM + MBF, T5 = 25% CN + 75% PM + 
MBF, T6 = 100% PM + MBF, and T7 = 100% 

PM, where CN was chemical nitrogen, MBF was 

microbial fertilizer, and PM was poultry manure. 
Throughout the incubation, which spanned  

120 days following treatment application, 

observations were made at 12 predetermined 
time intervals: 1, 7, 14, 21, 28, 42, 56, 63, 84, 98, 

and 120 days by collecting soil using a small 

auger-like material carefully to avoid disturbing 

the remaining soil in the jar. The collected soils 
were small in amount and taken from different 

layers. Each treatment combination was 

replicated four times, with the entire experiment 
repeated twice.  

Fertilizers were applied on an equivalent N 

basis at a rate of 200 mg N kg-1 soil. Phosphorus 

was sourced from Ca(H2PO4)2·H2O, while K 
was derived from K2SO4; both were applied to  

all experimental units, including the control,  

at rates of 90 mg P kg-1 and 60 mg K kg-1, 
respectively. Additionally, microbial fertilizer 

was incorporated into the soil at a rate of  

10 g kg-1. The treatments were applied to the  
soil following the experimental design and 

thoroughly mixed. Each jar was then covered 

with a perforated transparent lid to facilitate 

natural gas exchange, with the weight of each jar 
recorded after covering. Deionized water was 

added at 2-day intervals as necessary to maintain 

the field capacity, replenishing any weight loss 
exceeding 0.05 g. Importantly, soil disturbance 

such as shaking or stirring was avoided to 

maintain undisturbed conditions throughout the 
incubation period. 

Extraction of soil sample and analysis 

Samples were collected from each treatment 

replication unit and incubated over various time 
intervals to assess total mineral nitrogen (TMN), 

ammonium N (NH4
+-N), and nitrate N (NO3

--N) 

levels. Each fresh soil sample was divided into 
two portions. One portion was stored in a plastic 

bag at -4 °C to analyze mineral N, microbial 

biomass nitrogen (MBN), microbial biomass 

carbon (MBC), enzyme activities, and 
phospholipid fatty acids. The other portion was 

air-dried, stored in plastic bags, and kept at 4 °C 

in a refrigerator for the measurement of total N,  

 

  

Table 2. Chemical properties of poultry manure 
used in the study 

Chemical properties Concentration 

Total N (g kg-1) 00,18.68±3.100 

Total P (g kg-1) 00,8.17±1.40 
Total K (g kg-1) 00,5.41±1.60 

Total C (g kg-1) 0,324.20±23.50 

C:N 0,17.34±2.60 
Organic matter (g kg-1) 0,602.50±24.80 

Ca (g kg-1) 00,32.00±4.000 

Mg (g kg-1) 00,5.20±0.82 

Fe (mg kg-1) 1,087.00±106.8 
Zn (mg kg-1) 0,376.20±24.40 

Mn (mg kg-1) 0,564.50±19.60 

Cu (mg kg-1) 0,421.00±20.70 
Cellulose (g kg-1) 00,81.90±2.800 

Lignin (g kg-1) 00,63.40±3.300 

Polyphenol (mg kg-1) 0,256.70±2.500 
Note: Values presented after ± are standard error of 

the means (SEM), n = 4 
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organic C, and pH. Soil pH was determined by 

creating a 1:2.5 soil:water suspension. NH4
+-N 

and NO3
--N levels were measured using  

a continuous flow analyzer (AA3 type, company: 

Seal, Norderstedt, Germany). Soil organic carbon 
(SOC) was calculated using the Walkley-Black 

technique (Nelson and Sommers, 1982).  

Chloroform fumigation-extraction was 
employed to determine the C and N content  

of soil microbial biomass (Vance et al., 1987). 

For this, 20 g of thoroughly mixed soil was 

directly extracted with 80 ml of 0.5 M K2SO4  
by shaking for 30 minutes at 180 revolutions  

per minute. Another 20 g of soil was similarly 

extracted after chloroform fumigation for  
24 hours. The content of total C in the extracts 

was determined using a 2100 TOC/TIC analyzer 

(Analytik Jena, Germany). Biomass was 

determined based on the difference in K2SO4 
extract between fumigated and non-fumigated 

soil samples, using conversion factors of 0.54  

for MBN (kEN) and 0.45 for MBC (kEC)  
in Equation 1 and Equation 2, respectively 

(Smolander and Kitunen, 2002). 

MBN = 
EN

kEN

                                               (1) 

MBC = 
EC

kEC

                                                (2) 

The designations of “EC” and “EN” denote  

the discrepancies in organic C and total N levels 

between fumigated and non-fumigated 
treatments, respectively. The soil underwent  

a 7-day pre-incubation at 20 °C in darkness,  

with its moisture content set to 55% of its water-
holding capacity to determine soil respiration 

(SR). Carbon dioxide (CO₂) emissions from  

the moist soil were consistently measured 

throughout this period. Subsequently, over the 

subsequent 7-day period, CO2 was quantified 
utilizing a NaOH trap, after which hydrochloric 

acid (HCl) was employed to titrate the 

concentration (Jenkinson et al., 2004).  

Soil enzyme activity 

The urease activity was analyzed by the 

Phenol-sodium hypochlorite colorimetric 
method (Paul, 2014), which was determined by 

incubating 1 g soil for 24 hours and indicating the 

amount of NH3-N mass (mg) in it. The catalase 

activity was determined using the titration 
method, measured by the depletion (ml) of  

0.1 mol l-1 KMnO₄ during a 20-minute incubation 

of 1 g of soil. Invertase enzyme activity was 
assessed using a universal modified buffer, 

followed by a colorimetric technique involving 

3,5-dinitro salicylic acid monohydrate (Wu et al., 

2008). After a 24-hour soil incubation, the results 
were expressed as the mass (mg) of glucose  

per gram of soil. The 3,5-dinitro salicylate 

colorimetric method was used to detect cellulose 
enzyme activity, where the soil sample was 

incubated for 24 hours at 30 °C with acetate 

buffer (50m~, pH 5.5), carboxymethyl cellulose 
(CMC), and toluene to determine the produced 

rate of reducing sugars (mg glucose) generated 

by decomposition of cellulose in 1 g soil (Deng 

and Tabatabai, 1994). 

Phospholipid fatty acid (PLFA) analysis 

Every time just after sampling, the soil was 

preserved and freeze-dried at -20 °C till analysis. 
A total of 4 g soil was used to extract PLFAs.  

Gas chromatography-mass spectrometry (GC-

MS) was used to analyze the extracted sample, 
and GC-MS was thermos focus GC and thermos 

dual stage quadrupole (DSQ) MS in electron 

ionization mode. The labeling of fatty acids  

was done as X: Y ω Z, where ‘X’ represents  

 

Figure 1. Available microbes in the microbial fertilizer, (a) genus level and (b) phylum level 

 

Euryarchaeota 0.38%
Planctomycetes 0.12% Verrucomicrobia 0.07%

Bacteria unclassified 0% Others 0.09%

Firmicutes 28.2%

Chloroflexi 6.06%

Gemmatimonadetes 3.81%

Bacteroidetes 6.06%

Acidobacteria 0.01%

Actinobacteria 39.34%

Proteobacteria 15.85%

Figure A Figure B
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Lysinibacillus 3.86%
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Sphaerobacter 4.08%

Cytophagaceae_unclassified 0.15%
Pseudomonas 0.52%

Candidate_division TM7_norank 0%S0134_terrestrial_group norank 3.31%

Flexibacter 0.01% Pseudonocardia 3.04%
Gammaproteobacteria_unclassified 0.02%

Streptomyces 1.13%
Bacteria unclassified 0.03%
Haliangium 0.02%
Ornithinococcus 2.61%
JG30-KF-CM45 norank 1.61%
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Actinobacteria_unclassified 1.85%
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Xanthomonadales_norank 0.11%

Subgroup_6_norank 0.01%
Pseudoxanthomonas 1.42%

Ureibacillus 1.91%
Thermasporomyces 1.88%

nonomuraea 1.43%
Parapedobacter 1.63%

Thermobifida 1.61%
Actinoalloteichus 1.58%

Promicromonospora 1.36%

Rubricoccus 1.45%

Others 21.66%

Clostridium 1.1%
Chelatococcus 1.44%Bordetella 1.04%

Cellulosimicrobium 1.17%

Phyllobacteriaceae_unclassified 1.04%

Actinomadura 1.06%

Sphingobacteriaceae uncultured 1.08%
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the C atom number of the chain, ‘Y’ shows the 

number of double bonds, and the C atom number 

starting from the end molecule of methyl to  
the 1st unsaturated bond was represented by ‘Z’ 

(Peacock et al., 2001; Fraterrigo et al., 2006).  

The adjuncts are defined as follows: a denotes 
anteiso, i represents iso, cy indicates cyclopropyl 

branching, and d refers to dicarboxylic fatty 

acids, while br signifies an unknown branching 
pattern, and ME denotes the position of the 

methyl group. 

The OH groups in the OH fatty acid located in 

the 2 and 3 positions were labeled by α and β, 
respectively, and the geometry of cis and trans 

was indicated by c and t. Various fatty acids 

imply different microbial groups: Gram-negative 
bacteria have cyclopropyl fatty acids, whereas 

Gram-positive bacteria have branched fatty acids 

(e.g., iso and anteiso) (Zelles, 1999; Balser and 
Firestone, 2005); fungi and bacteria were 

typically indicated by monounsaturated fatty 

acids (Zelles, 1999; Fraterrigo et al., 2006); and 

except for cyanobacteria, polyunsaturated fatty 
acids were characteristic of eukaryotes. 

Actinomycetes were represented by fatty acids 

with methyl branching on the tenth C atom 
(Zelles, 1999). The concentration of PLFA for 

different microbial groups, including the total 

PLFA, was calculated. For the Gram-positive 

bacteria, by the summation of iC15:0, aC15:0, 
iC16:0, aC16:0, iC17:0, and aC17:0 was 

calculated. The summation of cyC17:0 and 

cyC19:0 fatty acids represented the Gram-
negative bacteria. The summation of Gram-

positive bacteria, Gram-negative bacteria,  

C15:0, and C17:0 illustrated the total bacterial 
community. The sum of C18:2 ω 9, 12c, C18:1  

ω 9c, and C18:3 ω 9, 12, and 15c represented 

fungi, and C16:1 ω 11 represented arbuscular 

mycorrhizal fungi (AMF). By summing 
10Me16:0 and 10Me18:0, actinomycetes were 

determined. 

Statistical analysis 
Through the use of two-way analysis of 

variance (ANOVA) using the SPSS software 

version 17.0 for Windows (SPSS Inc., Chicago, 
IL, USA), the effects of various treatments on  

the different forms of N and C present in the  

soil, MBN, MBC, respiration, enzyme activity, 

and PLFA concentration were examined. The 
Pearson linear technique was used to model  

the connections between the SOC fractions and 

soil respiration as well as soil enzyme activity. 
The least significant difference at a 0.05 or 0.01 

level of probability was used to compare the 

means of various treatments. Sigma plot 13.0  

for Windows (Systat Software, San Jose, CA) 
was used for the graphic rendering. The entire 

data set was shown as means with standard errors 

(SE) of four replications. 

RESULTS AND DISCUSSION 

Alteration in the soil nitrification and 

mineralization 
The net cumulative NO3

--N concentration 

under different treatments significantly varied 

with the incubation time and N fertilization 

treatments (Figure 2a). Among the various 
treatments, T4 showed the highest NO3

--N 

accumulation, from day 42 (78 mg kg-1) to the end 

of the experiment (124 mg kg-1), which was 
significantly higher than the rest of the treatment 

(during most of the period of incubation). The 

NO3
--N accumulation in the combined treatments 

T3, T4, and T5 was 53%, 62%, and 43%, 

respectively, of the total applied N. On the other 

hand, till day 35, the NO3
--N accumulation in  

the treatments T1 and T2 was the highest, but after 
day 35, the increasing rate of NO3

--N in these 

treatments became slow and at the end (day 120) 

the NO3
--N was 89 and 99 mg kg-1 soil, 

respectively (Figure 2a).  

On the other hand, soil amended with only 

organic N source in treatments T6 and T7 from the 

beginning to the end the NO3
--N accumulation 

rate slowly increased and showed the lowest 

concentration compared to other treatments 

except control over the incubation period which 
finally was 80 and 65.5 mg kg-1, respectively 

(Figure 2a). Treatment T4 showed the highest 

nitrification rate of 1.04 mg kg-1 soil day-1, which 
was 78% higher than the T1, and T3 > T2 was the 

following lower order. Among the amended soil, 

the lowest nitrification was found in the treatment 

T7, which was 49% lower than the T4. 
A similar trend was also found in the case of  

N mineralization, and soil amended with different 

types and proportions of organic and inorganic  
N sources displayed distinguishable rates of 

mineralized N over different days of incubation. 

Although during the initial stage, the highest 
concentration of mineralized N 157 and 172 mg 

kg-1 was observed on day 14 in the soil amended 

with 100% CN under the treatments T1 and T2, 

respectively, thenceforward, the mineralized N 
concentration (Figure 2b) in this treatment was 

declining day by day to the end and finally 

decreased almost 50% about the peak point  
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(Figure 2b). Contrarily, at the earlier phase,  

the N mineralization process was comparably 
negligible in the treatments with no CN and only 

amended with 100% PM and 100% PM + MBF 

(Figure 2b). The mineralization slowly increased 

on day 63 and thereafter remained almost stable to 
the end day, also showing comparably the lowest 

mineralized N concentration over the incubation 

period.  
In the sole 100% PM treatment, the highest 

concentration of 87 mg kg-1 mineralized N was 

observed on day 63, which remained statistically 
unchanged on day 84 and later declined a little  

bit with time. This result indicated that applied N 

in the form of PM released 43.5% N to the total 

mineralized N pool in treatment T7 (Figure 2b). 
Interestingly, a higher concentration of net 

cumulative mineralized N was observed in the 

combination treatments of T3 and T4 on the end 
day, which was significantly higher than in the 

individual application of the CN and PM. Just 

after day 42 to the end day, treatment T4 revealed 
the highest cumulative net mineralized N reached 

its peak point on day 63 with a mineralized N 

concentration of 160 mg kg-1, which finally was 

148 mg kg-1 at the end, and that was significantly 
higher than the all-other treatments (Figure 2b). 

Compared to the control, treatment T4 showed 

58% and 41% more mineralized N on days 63 and 
120, respectively (Figure 2b).  

The concentrations of total N in the soil,  

as well as its various fractions, were observed to 
increase when the addition of MBF accompanied 

the integrated application of PM and CN. 

Additionally, the impact of PM on these N 

parameters was found to be significantly greater 
as the proportion of PM in the mixture increased, 

reaching its peak at a ratio of 50% PM and  

50% CN when supplemented with MBF. These 
phenomena may be associated with the slow 

 

Figure 2. Changes in net cumulative nitrification and mineralization of N in response to the addition 

of sole application of chemical N, poultry manure, and microbial fertilizer and their 
integrated application with various combinations (equivalent to 200 mg N kg-1) which was 

incubated at 25 °C for 120 days. (a) Total nitrification during the incubation period, (b) 

Total mineralization during incubation 
Note: Bars indicate standard errors (n = 4). T0 = Control, T1 = 100% CN, T2 = 100% CN + MBF, T3 = 

75% CN + 25% PM + MBF, T4 = 50% CN + 50% PM + MBF, T5 = 25% CN + 75% PM + MBF, 

T6 = 100% PM + MBF and T7 = 100% PM 
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release of organic N inputs in PM, which 

enhances microbial activity (Liu and Zhang, 

2023). Poultry manure provides N in organic 
form, while chemical fertilizers supply N 

primarily as ammonium nitrate (NH₄NO₃) or urea. 

The application of both sources enhances soil N 
levels by directly adding their respective N 

contributions (Iqbal et al., 2022). 

The T1 and T2 showed a significant increase  
in NO3

--N accumulation. This increase was 

observed mainly during the initial stage, with 

approximately 60 to 66% of total nitrification 

occurring within the first 28 days. However, the 
rate of NO3

--N increased in these two treatments 

slowed down afterward. By the end of the 

incubation period, approximately 40% and 44% 
of the applied urea N had been nitrified in 

treatments T1 and T2, respectively (Figure 2a). 

Similarly, during the early phase, the 
concentration of mineralized N in the soil treated 

with 100% CN (T1 and T2) was the highest (Figure 

2b). This increase was due to the excessive 

addition of NH4
+-N given by the NH2-CO-NH2 

fertilizer, which is CN, as shown in Figure 2b.  

As a result, the concentration of mineralized N  

in these two treatments decreased over time, 
possibly due to the ongoing process of 

nitrification-denitrification (Daly et al., 2023), 

which includes changes in the immobilization 

process (He et al., 2023).  
The levels of MBN content in treatments  

T1 and T2 were consistently the lowest during  

the incubation period. This can be attributed to  
the fact that only CN was administered in these 

treatments, which resulted in stronger 

acidification effects due to the CN fertilizer 
(Souza et al., 2023). On the other hand, the soil’s 

total N content in both treatments was also found 

to be the lowest after the incubation period. This 

could be attributed to the fact that a significant 
amount of N was converted into minerals during 

the initial phases due to the CN fertilizer (Wang  

et al., 2023). In contrast, the concentration of  
NO3

--N in treatments T6 and T7 consistently 

decreased during the incubation time. In the end, 

it was found that 35% and 32% of the applied PM 
was nitrified in treatments T6 and T7, respectively 

(Figure 2a). 

The soil, which had been treated with T7 and 

T6, underwent gradual mineralization during  
the initial phase. However, starting from day 42, 

the mineralization process accelerated and 

reached its peak at day 63. After that, there were 
no significant changes in the mineralization rate 

over the latter days. In treatments T6 and T7, the 

mineral N content peaked at 87 and 94 mg kg-1, 

respectively. This indicates that 43% and 47% of 

N was released from PM through mineralization 
by day 63 (Figure 2b). Earlier studies reported  

that the highest N mineralization rate from poultry 

manure was in different ranges, e.g., 25 to 61% 
(Grijalva et al., 2010), 51% and 53% (Qafoku  

et al., 2001), 44% (Moore et al., 2010), 61% 

(Alizadeh et al., 2012) and 42% (Shah et al., 
2013). The differential mineralization rate of PM 

could be due to feed type, chemical composition 

of PM, type and proportion of litter dropping, 

handling of the manure, soil pH, microbial 
activity, temperature, soil aeration, and moisture 

content. The rate at which poultry manure 

mineralized was controlled by soil characteristics 
and moisture content. Lower mineralization rates 

resulted from the immobilization of C from 

poultry manure in soil with a greater organic C 
content (SOC) and clay loam soil texture. 

Conversely, in soils with sandy and loamy sand 

textures, just 2% of the C in the poultry manure 

was mineralized (Kaur et al., 2023).  
A negative correlation was found between the 

total N mineralization and the total N in the soil. 

This correlation showed that the total N in the soil 
was related to the applied materials’ capacity for 

mineralization, which is another way of saying 

that higher soil total N values are typically 

associated with lower mineralization rates. It is 
interesting to note that applying CN, PM, and 

MBF together can improve the release of N into 

the soil’s mineralized N pool compared to 
applying CN and PM alone. In addition to 

improving soil health and supporting sustainable 

N management, the combining strategy gives 
plants both readily available and sustained sources 

of N (Prado et al., 2023). This could be a result of 

all the CN being hydrolyzed at the beginning and 

most of the PM being mineralized as enzyme 
activity increased. 

In contrast to the solitary application of CN  

or PM, the study found that the use of integrated 
fertilizers, such as 75% CN + 25% PM + MBF, 

50% CN + 50% PM + MBF, and 25% CN +  

75% PM + MBF, considerably boosted the 
accumulation of NO3

--N in the soil mineralized N 

pool. This could be due to massive nitrification 

from organic and inorganic N sources. Moreover, 

adding MBF to the soil increases its MBN and 
MBC levels, which in turn stimulates microbial 

activity and accelerates the process of nitrification 

and mineralization, which are two ways that N is 
transformed in the soil (Li et al., 2023). A prior 

study found that the buildup of NO3
--N under PM 
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when mixed with residues from white clover 

plants was 38% and under PM when combined 

with urea N, 69% (Abbasi and Khizar, 2012).  
This outcome demonstrated how, under field 

conditions, a single application of synthetic 

mineral N in various forms releases an available 
form of N quickly in the beginning stage, which is 

typically vulnerable to losses through runoff, 

eutrophication, volatilization, denitrification, and 
leaching. Because bacteria immobilize soil’s 

mineral N during the breakdown of organic 

matter, this sort of N loss can be reduced by 

utilizing organic N in conjunction with mineral  
N and MBF supplementation. Thus, net N 

mineralization slows down in organic matter, 

resulting in long-term stability of NH4
+-N in  

the soil and postponed nitrification, which 

eventually reduce N loss through denitrification 

and leaching. Furthermore, compared to the 
application of CN alone, a beneficial rise in MBN 

and total N was also noted in the combined 

treatment (Vanlauwe et al., 2015). 

Alteration in soil total N and organic C 
Different N sources significantly altered the 

total N concentration and organic C content in  

the soil. The change patterns of soil total N and 
SOC were similar during the whole incubation 

period, decreasing trend over time. The highest 

concentration of soil total N was observed in the 

treatment where 100% PM was added in T6 and 
T7, which was 26% and 19% higher, respectively, 

compared to T1. The following sequential order of 

lower concentrations was T5 > T4 > T3 (Table 3). 
The lowest total N concentration was exhibited in 

the soil amended with sole 100% CN. Similarly, 

at the beginning of the incubation, significant  
(p ≤ 0.05) variations in SOC were exhibited 

among the different treatments, and the soil 

amended with poultry manure and microbial 

fertilizer sole or integrated with CN displayed 
higher SOC compared to the treatment which is 

amended with 100% CN (Table 4).  

Treatment T6 showed the highest SOC over  
the incubation period, which was 14.06 and 11.16 

g kg-1 at the beginning and end, respectively 

(Table 4). A statistically non-significant variation 
was observed between treatments T6 and T7.  

The lowest SOC was found in treatment T1,  

which was 8.52 g kg-1 at the initial phase of  

the incubation and almost remained constant 
(having no significant changes) but slightly 

decreased at the end (Table 4). Interestingly,  

SOC in the different amended soils continuously 
decreased over time, and at one day (day 120),  

a 19 to 25% reduction in the SOC was observed 

among the treatments.  

Applying PM can act as a direct supply of  
C for the soil’s organic matter (Cardarelli et al., 

2023). According to this study, the amount of  

total organic C in the soil rose as the applied  
PM rate increased (Table 3). The organic material 

present in poultry manure acts as a readily 

accessible nourishment for soil microorganisms. 
As the microorganisms break down the manure, 

they secrete enzymes that further degrade organic 

substances and release extra C into the soil.  

The heightened microbial activity also results  
in the creation of humic compounds, which are 

enduring forms of organic C that can endure in the 

soil for generations (Amorim et al., 2022; Mindari 
et al., 2025). 

Again, the quantity of total organic carbon 

(TOC) in the soil exhibited alterations as time 
progressed. The study observed a decrease  

in TOC, which may be attributed to the 

mineralization of soil organic matter. This occurs 

when bacteria utilize C as energy for the 
decomposition of organic matter. The soil’s 

organic C saw a considerable loss within the first 

63 days. However, after that period, it either 
stayed stable or decreased without reaching 

statistical significance (Table 3). The increased 

accumulation of organic C in treatments T6 and T7 

may be attributed to a decrease in the 
mineralization of organic manure. Regularly 

incorporating organic matter into the soil can 

increase its organic C content (Canisares et al., 
2023). The initial stage of the incubation period 

exhibited the lowest concentration of organic C  

in soil treated with either CN or CN + MBF,  
and this level remained statistically constant 

throughout. The decline in organic C content can 

be attributed to the inadequate quantity of basic 

organic C and the absence of particulate matter 
throughout these treatments. 

Alteration in the soil microbial biomass and 

respiration  
Soil MBN and MBC almost displayed similar 

trends, and significant differences were reflected 

among different treatments. Throughout the 
incubation period, MBN varied from 10 to 123.3 

mg kg-1, consistently reaching its highest level in 

treatment T6, followed by T4 and T7 in decreasing 

order (Figure 3a). MBN reached its peak point 
(123 mg kg-1) on day 56 in treatment T6, which 

was 4 times higher than the control on a similar 

day. A significantly decreased level of MBN was 
observed in treatments T1 and T2 from the initial  
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Table 3. Changes in the total N of the soil (g kg-1) were amended with the sole application of chemical N, poultry manure, and microbial fertilizer and their 

integrated application with various combinations (equivalent to 200 mg N kg-1), which was incubated at 25 °C for 120 days 

Treatment 
Incubation time (Day) 

1 7 14 21 28 42 56 63 84 98 120 

T0 0.53b 0.53b 0.52d 0.52ee 0.51ee 0.49de 0.48c 0.47ee 0.46ee 0.46ee 0.45ee 

T1 0.73a 0.73a e0.70ab 0.66cd 0.65cd 0.63ce 0.61b 0.60de 0.52de 0.51de 0.51de 

T2 0.74a 0.71a 0.64c 0.61de 0.60de 0.61ce 0.59b 0.59de 0.57cd 0.56cd 0.56cd 
T3 0.76a 0.73a c0.66bc 0.65cd 0.63cd 0.62ce 0.61b 0.61cd 0.60ce 0.60bc 0.59bc 

T4 0.75a 0.75a 0.74a 0.73ab 0.72ab 0.71ab 0.70a 0.66bc 0.62ce 0.61bc 0.60bc 

T5 0.76a 0.76a 0.72a 0.69bc 0.66bc 0.65bc 0.64b e0.64bcd 0.63bc 0.63be 0.62be 
T6 0.75a 0.75a 0.75a 0.74ae 0.74ae 0.73ae 0.74a 0.73ae 0.72ae 0.71ae 0.69ae 

T7 0.74a 0.74a 0.74a 0.73ae 0.72ae 0.72ae 0.70a 0.69ab 0.68ab 0.64be 0.63be 
Note: Lowercase lettering is used to show the significant differences between different types of treatments at p < 0.05 level. T0 = Control, T1 = 100% CN, T2 = 100% CN + 

MBF, T3 = 75% CN + 25% PM + MBF, T4 = 50% CN + 50% PM + MBF, T5 = 25% CN+ 75% PM + MBF, T6 = 100% PM + MBF, T7 = 100% PM 

  
Table 4. Changes in the organic C content of the soil (g kg-1) were amended with the sole application of chemical N, poultry manure, and microbial fertilizer 

and their integrated application with various combinations (equivalent to 200 mg N kg-1), which was incubated at 25 °C for 120 days 

Treatment 
Incubation time (Day) 

1 7 14 21 28 42 56 63 84 98 120 

T0 06.59f 06.58f 06.56e 06.54f 06.51f 06.49e 06.47f 06.45f 06.43g 06.42g 06.41g 

T1 06.61f 06.61f 06.60e 06.59f 06.57f 06.53e 06.53e 06.52e 06.50f 0e6.48fg e06.45fg 

T2 06.64f 06.63f 06.62e 06.60f 06.57f 06.56e 06.54e 06.53e 06.51f 06.50f 06.48f 

T3 09.73e 09.68e 09.61d 09.58e 09.54e 09.38d 09.21d 08.89d 08.08e 07.43e 07.27e 
T4 10.18d 10.08d 09.99c 09.86d 09.68d 09.43d 09.23d 08.90d 08.54d 08.30d 08.17d 

T5 11.59c 11.52c 11.50b 11.48c 10.99c 10.56c 10.18c 09.92c 09.65c 09.39c 09.22c 

T6 14.06a 13.88a 13.76a 13.69a 13.53a 13.19a 12.34a 12.01a 11.88a 11.39a 11.16a 
T7 13.84b 13.80b 13.73a 13.35b 13.14b 12.88b 12.17b 11.26b 11.15b 11.05b 10.79b 

Note: Lowercase lettering is used to show the significant differences between different types of treatments at p < 0.05 level. T0 = Control, T1 = 100% CN, T2 = 100% CN + 

MBF, T3 = 75% CN + 25% PM + MBF, T4 = 50% CN + 50% PM + MBF, T5 = 25% CN+ 75% PM + MBF, T6 = 100% PM + MBF, T7 = 100% PM 
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phase to the end of the incubation. A clear 

variation was observed for MBC among the 

treatments during the study period. Soil MBC 
ranged from 51 to 183 mg kg-1, with the highest 

values consistently observed in treatment T6, 

peaking on day 63. Treatment T7 followed in 
decreasing order throughout the incubation period 

(Figure 3b). Until day 56, MBC in treatment  

T4 was higher than in T5; however, MBC in T4 
declined afterward. Similar to the MBN, 

treatments T1 and T2 always exhibited a lower 

MBC content, which showed little increasing 

trend on day 28, before declining toward the end 

of the incubation period. 

Soil with different fertilization treatments 
showed diverse respiration rates and higher 

cumulative CO2 production compared to those in 

the control treatment (Figure 3c). A significantly 
higher respiration rate was observed in treatment 

T6, followed by T7 > T5 > T4 in decreasing order 

compared to the other treatments. The respiration 
rate in T6 was 4.1 and 3.7 times higher than  

in control at days 63 and 120, respectively. 

Similarly, compared to treatment T1 (only CN), 

 

Figure 3. Soil microbial biomass and respiration rate. (a) Soil MBN, (b) Soil MBC, and (c) Soil 

respiration rate in different treatments over the incubation period at different days’ interval 
Note: Bars indicate standard errors (n = 4). T0 = Control, T1 = 100% CN, T2 = 100% CN + MBF, T3 = 

75% CN + 25% PM + MBF, T4 = 50% CN + 50% PM + MBF, T5 = 25% CN+ 75% PM + MBF,  

T6 = 100% PM + MBF, T7 = 100% PM 
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3.8 and 3.4 times more respiration rate was 

observed in treatment T7 (only PM) at day 63 and 

end day, respectively (Figure 3c). Like MBC, 
until day 63, the respiration rate in treatment T4 

was higher than that in T5, but in the later phase, 

it declined compared to the respiration rate in T5. 

Enzyme activities in soil  

Different sources of N significantly affected 

the enzyme activities in the soil over time. All four 
enzymatic activities, including urease, catalase, 

invertase, and cellulase, showed similar changing 

patterns over the experiment. During the initial 

stage at day 7, there were no significant 
differences observed among the treatments except 

for invertase enzyme activities; later phase 

differences were found among the treatments 
significantly. Treatment T6 always showed the 

highest in enzymatic activities over the incubation 

time for all four enzymes, and T4 > T7 > T5 > T3 > 
T2 > T1 was in the following order (Figure 4 a-d). 

From the beginning of the incubation to day 63, 

an increasing pattern was observed, and the 

highest enzymatic activity was detected at day 63. 

After day 63, a decreasing orientation was found. 

Treatments T1 and T2 always showed the lowest 
enzymatic activities in the experiment. Soil MBN, 

MBC, SOC, and respiration rates were strongly 

correlated with the enzymatic activities at day 63 
and at the end of the incubation (Table 5). 

Alteration in the PLFA concentration 

The changes in PLFA concentrations on day 
63 and day 120 were analyzed. The total PLFA 

concentration peaked on day 63 and gradually 

decreased over the incubation period. The control 

treatment illustrated the lowest total PLFA 
concentration over the incubation period. In all the 

treatments, T6 represents the highest total PLFA 

concentration (19.87 nmol g-1 soil), which was 
135.99% higher than the control at day 63 (Figure 

5 a-e). The incubation period and experimental 

treatments both have significant effects on the 
total PLFA concentration.  

According to the fatty acid biomarker, the 

concentration of bacterial biomass was dominant  
 

Figure 4. Soil enzyme activity in different treatments over the incubation period at different day 

intervals. (a) Urease, (b) Catalase, (c) Cellulase, and (d) Invertase 
Note: Bars indicate standard errors (n = 4). Treatments with different letters are significantly different 

according to the LSD test (p < 0.05). T0 = Control, T1 = 100% CN, T2 = 100% CN + MBF, T3 = 75% 

CN + 25% PM + MBF, T4 = 50% CN + 50% PM + MBF, T5 = 25% CN+ 75% PM + MBF, T6 = 100% 

PM + MBF, T7 = 100% PM 
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in all treatments, whereas other groups made up  
a small proportion in the contribution of total 

PLFA concentration. That means, on the one 

hand, the bacterial biomass was significantly 

higher in total PLFA concentration than the  
other groups among the treatments and over the 

incubation period. On the other hand, although  

the proportional concentrations of actinomycetes 
biomass, fungi biomass, and AMF biomass  

were low, they were significantly higher in the 

treatment where organic N was applied with 
microbial fertilizer. These concentrations 

increased with higher amounts of organic N.  

On day 63, the highest concentrations of 

actinomycetes, fungi, and AMF biomass were 
observed in treatment T6, reaching 1.62, 1.86,  

and 0.60 nmol g-1, respectively. Compared to  

the control treatment, these values were 2.00, 
2.56, and 1.71 times higher, respectively (Figure 

5 a-e).  

PLFA concentration was shown to be  

a measure of microbial biomass (Pingree et al., 
2022) and was used to examine the various  

soil communities of microbes fractions following 

the addition of various amendments to the soil. 
PLFAs are essential to the structure of any living 

organism’s cell wall (Wen et al., 2023). 

Microorganisms that aid in the production  
of several microbiological biomarkers create 

diverse PLFAs. PLFA extraction provides general 

information on the soil microbial community 

(Zhang, 2023). According to some research, 
applying various fertilizers changed the microbial 

community’s composition in the soil, which  

can be identified through PLFA patterns (Kaur  
et al., 2023; Li et al., 2023). 

Soil microbial biomass decreases when CN is 

applied (Liu et al., 2023). A similar outcome was 
also observed in the present study, wherein the 

addition of CN (from a moderate to a high N 

proportion) reduced the total biomass of bacteria, 

actinomycetes, fungi, and AMF in the soil due to 
nutrient imbalances, soil acidification, and shifts 

in microbial competition, ultimately leading to  

a decrease in the total PLFA concentration. 

Notably, the control group had the lowest 
concentration of total PLFAs. However, increased 

application of PM promoted microbial population 

growth, likely due to the greater availability of 
substrates for microbial activity. Similar findings 

have been reported in previous studies, 

demonstrating that higher organic N application 
boosts the biomass of soil microorganisms (Pan  

et al., 2023). 

The duration of incubation had a major impact 

on the soil’s microbial community structure  
as well. As opposed to the latter stage, higher 

PLFA concentrations of microbial communities 

were seen on day 63 (Figure 5). The organic 
matter content of the soil may be connected  

with these fluctuations in PLFA biomass (Cheng 

et al., 2023). The mineralization of organic 

manure caused a drop in the soil’s organic matter 
content during the incubation period, which also 

changed the makeup of the microbial community 

(Sun et al., 2023; Tan et al., 2023). Soil microbes 
primarily use microbial enzymes for metabolic 

processes, and various N sources significantly 

impact soil enzyme activities (Iqbal et al., 2023). 
Increasing CN content decreases enzyme activity, 

while moderate to higher organic N rates increase 

enzyme activity (Tong et al., 2023). PM addition 

increases microbial biomass and organic C 
deposition, enhancing urease enzyme activity. 

Increased clay content, higher organic matter,  

and microbial biomass also enhance soil urease 
enzyme activity. Overall, microbial activity  

and biochemical reaction intensity in soil are 

influenced by various N sources (Shen et al., 
2022). 

The soil’s microbial community and enzyme 

activity are the basis of increased nutrient 

Table 5. Correlation between the enzyme activities with SOC, MBN, MBC, and soil respiration rate  

at day 63 and day 120 

Physiochemical and 

metabolic process of soil 

Urease Catalase Invertase Cellulase 

63 120 63 120 63 120 63 120 

SOC at day 63 0.758** 0.731** 0.882** 0.874** 0.898** 0.915** 0.916** 0.887** 

SOC at day 120 0.722** 0.717** 0.829** 0.825** 0.875** 0.906** 0.841** 0.804** 

MBN at day 63 0.711** 0.649** 0.848** 0.834** 0.866** 0.864** 0.793** 0.808** 

MBN at day 120 0.640** 0.560** 0.784** 0.770** 0.838** 0.835** 0.746** 0.748** 
MBC at day 63 0.792** 0.737** 0.914** 0.895** 0.941** 0.919** 0.917** 0.904** 

MBC at day 120 0.885** 0.844** 0.955** 0.944** 0.986** 0.956** 0.948** 0.937** 

Respiration at day 63 0.793** 0.752** 0.917** 0.906** 0.963** 0.962** 0.903** 0.888** 
Respiration at day 120 0.773** 0.725** 0.887** 0.873** 0.952** 0.937** 0.895** 0.867** 

Note: **Correlation is significant at the 0.01 level (2-tailed) 
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availability and organic matter decomposition 

processes that support the establishment of 

environmentally friendly, sustainable agriculture. 
This experiment evaluated the availability of N  

in the soil, the microbial biomass with community 

structure responses, and the enzyme activity in 
response to various N sources and microbial 

fertilizer. The C pools, the composition of the 

microbial population, and the enzyme activity of 
the soil were all strongly impacted by the sources 

and amounts of N. The complete results showed 

that, in comparison to low PM rates, increasing 

PM rates enhanced the biological characteristics 
of soil and eventually changed the composition 

and community structure of soil microbial 

biomass. The makeup of the microbial population 

and the activity of soil enzymes are declining due 
to the application of higher levels of CN. 

The highest level of N availability was found 

in treatment T4, which concentrated on adding  
a medium level of organic and chemical N 

combination supplemented with MBF to create  

a more favorable environment for the 
development of microbes in the soil. Although the 

concentration of PLFAs and soil enzyme activities 

were found to be higher in treatment T6, treatment 

T4 had the highest level of N availability.  
The primary source of enzymes in the soil is the  
 

 

 
 

 

 

Figure 5. Phospholipid fatty acids concentration in soil under different treatments over the incubation 
period. (a) Total PLFA (total microbial biomass), (b) Bacterial biomass, (c) Actinomycetes 

biomass, (d) Total fungi biomass, (e) AMF biomass 
Note: Bars indicate standard errors (n = 4). Treatments with different letters are significantly different 

according to the LSD test (p < 0.05). T0 = Control, T1 = 100% CN, T2 = 100% CN + MBF, T3 = 

75% CN + 25% PM + MBF, T4 = 50% CN + 50% PM + MBF, T5 = 25% CN+ 75% PM + MBF, T6 

= 100% PM + MBF, T7 = 100% PM 
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microbial biomass, which was increased by PM 

and microbial fertilizer. These factors also created 

a favorable environment for more microbial 
development in the soil. The large number of 

microorganisms in the soil is thought to increase 

the enzymatic activity of the soil, which is 
necessary for the metabolization of organic acids, 

amino acids, sugar, and other chemicals derived 

from soil organic matter. Thus, the application of 

50% CN + 50% PM + MBF can improve the 
microbial structure and enzymatic activity in the 

soil, which is the main indicator of the good 

biological health of the soil.  

Correlation between microbial biomass and 

physiochemical properties of soil 

The correlation between microbial biomass 

and the soil’s physicochemical and metabolic 
environment was analyzed to figure out how 

different treatments influence changes in 

microbial community structures. Strong positive 
correlations were found between MBC and SOC, 

soil respiration rate and SOC, MBN and soil 

respiration, and finally, the MBC and soil  
 

respiration rate at day 63 and day 120 (Figure 6). 

Additionally, four different enzyme activities  

with SOC, MBN, MBC, and soil respiration rate 
at day 63 and day 120 illustrated positively 

correlated at p < 0.01 (Table 5). 

CONCLUSIONS 

Applying PM alone or with CN improved  

soil properties by increasing organic matter and 

enhancing total and available N concentrations. 

PM can release significant mineral N, but its slow 
mineralization and low nutrient content limit  

its effectiveness as the primary nutrient source. 

This limitation can be overcome by combining 
PM with minimal CN and MBF. CN released N 

steadily but declined after 14 days, whereas 

treatment T4 ensured continuous N release. The 

study suggests integrating organic and inorganic 
sources with MBF to enhance soil N availability 

and stability. Future studies should assess long-

term field-scale applications to optimize fertilizer 
management for sustainable soil fertility and crop 

productivity. 

 

Figure 6. The relationship between (a) SOC and MBC, (b) SOC and soil respiration rate, (c) soil 

respiration rate and MBN, and (d) soil respiration rate and MBC 
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