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Abstract

Accurate assessment of soil salinity is essential for managing salt-affected soils and sustaining
agricultural productivity. This study evaluated the potential of cokriging spatial interpolation for
estimating the electrical conductivity of saturated paste extract (EC.), using soil electrical conductivity
(EC) measured at 1:2.5 and 1:5 soil-to-water ratios. The objectives included identifying suitable scatter
plot and cross-variogram models and assessing mapping accuracy. A total of 300 topsoil samples
(0 to 30 cm) were collected from three salt-affected soil classes in Muang Pia Sub-district, Khon Kaen
Province, Northeastern Thailand. Spatial modelling and cross-variogram analyses were performed using
GS+ software to evaluate estimation accuracy across different sample sizes. The results showed that EC
measurements at a 1:5 ratio exhibited the strongest correlation with EC, across all soil classes, with
coefficient of determination (R?) values reaching 0.98 in Class 1 and Class 2, and 0.85 in Class 3, despite
a minimum sample size (n = 25). Gaussian and spherical models best described these relationships.
Higher R? values were consistently associated with lower mean error (ME) and root mean square error
(RMSE), in almost all sample sizes and classes, indicating the robustness and reliability of the model
across varying salinity conditions. Larger sample sizes (n = 100) yielded more consistent estimation
performance, while smaller sample sizes maintained acceptable accuracy, particularly for EC 1:5. This
study indicates that soil EC water ratios, especially 1:5, can serve as practical surrogates for EC.
estimation using cokriging spatial interpolation. The proposed approach offers a cost-effective solution
for salinity mapping in salt-affected soil areas, with implications for soil monitoring, land management,
and sustainable agriculture under limited sampling conditions.
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INTRODUCTION

The study of salt-affected soils is an important
topic that encompasses several detrimental effects
on arid and semi-arid environments, as many
crops are sensitive to high salt concentrations
in the soil solution (Qadir et al., 2006; Li et al.,
2014; Gozukara et al., 2022). The accumulation of
soluble salts in soil adversely affects plant growth,
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decreases crop yields, and can lead to total crop
failure (Sonmez et al., 2008; Corwin and Yemoto,
2020). Globally, salt-affected soils cover about
7% of the Earth’s land area, creating major
challenges for sustainable agriculture (Corwin
and Yemoto, 2020). The development of salt-
affected soils is influenced by natural factors,
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such as geological sedimentation and erosion,
as well as human activities, including poor
irrigation  practices, deforestation, shallow
groundwater levels, and salt production (Sonmez
et al., 2008; Abdelaal et al., 2021).

In  Thailand, salt-affected soils are
predominantly found in the northeastern region,
affecting approximately 2.8 million ha, or roughly
17 to 30% of the land area (Sukchan, 2005;
Leksungnoen et al., 2018; Phontusang et al.,
2018). These salt-affected soils are caused by
both natural factors, particularly the presence of
rock salt deposits from the Maha Sarakham
Formation (Mitsuchi et al., 1986; Phontusang
et al., 2018), and human activities such as
improper  irrigation,  road  construction,
deforestation, and poorly designed reservoirs
(Iwai et al., 2012). Deforestation, often resulting
from agricultural expansion, exacerbates salinity
by increasing evaporation and promoting the
upward movement of salts to the soil surface
(Leksungnoen et al., 2018).

The soil electrical conductivity of saturated
paste extract (EC,.) is widely regarded as the
standard indicator for assessing soil salinity
(United States Salinity Laboratory Staff, 1954;
Sonmez et al., 2008). However, measuring
soil EC, is labor-intensive, costly, and time-
consuming (Matthees et al., 2017; Kargas et al.,
2020). In contrast, using soil-to-water ratios,
such as 1:2.5 and 1:5, provides a simpler and more
economical alternative for estimating salinity
(Sonmez et al., 2008; He et al., 2013; Kargas
et al., 2020; Smagin et al., 2024). Studies have
shown a significant linear correlation between
soil EC, and soil electrical conductivity (EC)
measured from water suspensions, although
the latter generally underestimates EC, values
(Sonmez et al., 2008; Chi and Wang, 2009;
He et al., 2013; Shahid et al., 2018; Corwin and
Yemoto, 2020; Kargas et al., 2020).

Spatial variability analysis using geostatistical
techniques enables the estimation of soil
properties in unsampled locations. Kriging has
been frequently used to map EC,. variability;
however, it does not incorporate any information
about the correlation between different methods
(secondary  variables) as conducted by
Phontusang et al. (2018). Normally, the linear
regression is used with basic statistics to
establish the relationship between two variables;
nevertheless, there is no spatial correlation
between EC, and soil EC water ratios,
as conducted by Rukadi et al. (2025). Cokriging,
on the other hand, leverages the correlation

between primary (EC,) and secondary (EC water
ratios) variables, enhancing the spatial prediction
of EC, (Yang et al., 2021). It is advantageous in
large-scale mapping where laboratory analysis
is limited by time and laboratory resources
(Abdelaal et al., 2021; Hossen et al., 2022).

Sample size significantly influences the
reliability of predictive models in soil salinity
studies. Although larger sample sizes enhance
prediction accuracy, smaller samples may still
offer practical insights under constrained
conditions (Or, 2010; Phontusang et al., 2017).
Despite the potential of EC, estimation from EC
water ratios, no studies have applied cokriging to
map spatial variability in different salt-affected
soil class areas using varying sample sizes and soil
EC water ratios.

Therefore, this study aimed to evaluate the
spatial variability of EC, in salt-affected soils in
Northeast Thailand by applying the cokriging
method using soil EC water ratios of 1:2.5 and 1:5
data across different sample sizes. The specific
objectives were to identify suitable scatter plot
models and cross-variogram models for EC,
estimation and to assess the mapping accuracy of
EC, from EC water ratios data using the cokriging
method.

MATERIALS AND METHOD

Research location and soil sampling

The research location is situated in the inland
areas of Muang Pia Sub-district, covering
approximately 73.40 km? and consisting of
14 villages. The primary land use is agricultural,
with rice cultivation being the main crop (Muang
Pia Sub-district, 2022), as indicated in Figure 1.
In particular, the southern and western parts of the
sub-district are characterized by hills interspersed
with plains, which are used for agriculture
and horticulture. The eastern and southern regions
are dominated by lowland rice fields, while
the northern region is predominantly saline and
supports limited vegetation, mostly halophytes.
Historically, the saline areas in the north have
been used for small-scale salt production.

The climate in the region is tropical monsoon.
The rainy season occurs from May to September,
with average temperatures between 20 to 25 °C
and an annual precipitation of approximately
1,196 mm (Weather and climate, 2025). High
rainfall during this season may temporarily
improve soil quality by leaching salts beyond
the root zone. The summer season spans from
February to April, with peak temperatures of
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Figure 1. The geographic locations of the study area. (a) Khon Kaen Province, (b) Muang Pia
Sub-district with salt-affected soils class, (¢) study sites based on different degrees of salt-
affected soils classes, and (d) grid sampling points (n = 100) represent soil samples collected
based on the stratified systematic unaligned sampling using 50 m x 50 m of representative
area in an equivalent grid measuring5 m x 5m

35 to 37 °C, which enhance evaporation and
promote salt accumulation on the surface. The
winter season lasts from October to January, with
temperatures ranging from 14 to 15 °C. Although
lower temperatures may reduce evaporation,
limited rainfall during winter may contribute
to long-term salinity problems (Muang Pia Sub-
district, 2022).

Soil sampling was conducted during the dry
season based on the percentage of surface salt
crust, following the classification method of
Wichaidit (1995). The same sampling locations
and soil samples as reported by Phontusang et al.
(2017) were used. The study area was classified
into three salt-affected classes (Classes 1 to 3)
based on visible salt crust coverage and
vegetation. Specifically, Class 1 is categorized
as very severely salt-affected soils, where > 50%
of the soil surface exhibited salt crusts. This class
supports only highly salt-tolerant species such as
Puccinellia tenuiflora, Acacia salicina, Sporobolus
cryptandrus, and Azima sarmentosa (Blume)
Benth & Hook. F., which possesses the ability
to thrive under these conditions. The occurrence
of Azima sarmentosa (Blume) Benth & Hook. F.
serves as a bioindicator of saline soils (Sankla
et al.,, 2022). Furthermore, Class 1 is classified

as loam soil texture, with particle-size distribution
of 44.96% sand, 35.78% silt, and 19.26% clay.
Despite being loamy, which is generally favorable
for plant growth (Thanh et al., 2022; Khanh et al.,
2024), the high salinity in this class severely
restricts agricultural productivity.

Class 2 is classified as severely salt-affected
soils where 10 to 50% of the soil surface is covered
with salt crusts. This class supports a variety of
plant species, including Oryza sativa, Psidium
guajava, and Capsicum annuum. However, spatial
heterogeneity exists, with some areas unsuitable
for plant growth due to localized high salinity
(Figure 1). The soil texture is sandy loam, with
particle-size distribution of 53.38% sand, 31.06%
silt, and 15.56% clay. Although sandy loam
provides good fertility, structure, and water
retention (Daneshvar et al., 2024), salt stress
remains a limiting factor in parts of this class.

Class 3 is classified as moderately salt-affected
soils with 1 to 10% surface salt crusts. This class
is characterized by a clay loam soil texture, with
particle-size distribution of 40.88% sand, 29.11%
silt, and 30.01% clay. Moreover, the relatively
low salinity levels in this class support more
favorable conditions for cultivation. The high
sand content in clay loam enhances adsorption
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capacity and ease of tillage, making it suitable for
diverse crops (Qi et al., 2021). Note that the soil
texture measurements were obtained as general
representations of each salt-affected soil class
based on salt crust surface percentage.

A total of 300 topsoil samples (0 to 30 cm
depth) were collected, with 100 samples
representing each salt-affected class. Sampling
was conducted using a stratified systematic
unaligned method. For each class, a representative
50 m x 50 m (around 0.25 ha) area was delineated
and subdivided into a 5 m x 5 m grid (Figure 2),
from which one sample per grid was randomly
selected (n = 100). All samples were air-dried
at room temperature and stored in labeled ziploc
bags. The samples were subsequently transported
to the Soil Science and Environment Laboratory,
Faculty of Agriculture, Khon Kaen University, for
analysis of soil EC using different soil-to-water
ratios.

Soil EC water ratios analyses

Soil EC measurements at water ratios of
1:2.5 and 1:5 were conducted following the
methodology described by the United States
Salinity Laboratory Staff (1954). The soil samples
used in this study were derived from the dataset
previously collected by Phontusang et al. (2017).
A total of 300 air-dried soil samples were
analyzed for each water ratio. For the 1:2.5 ratio,
20 g of air-dried soil was mixed with 50 ml of
distilled water. The soil water suspension was
manually stirred for 10 minutes, and then allowed
to equilibrate for 30 minutes before EC
measurement using a calibrated EC meter. The
30-minute period was selected based on findings
by He et al. (2012), which indicated that this
duration is generally sufficient for most soils to
reach a stable EC value. The procedure for the EC
1.5 ratio followed the same method, with 20 g of

(a)

air-dried soil and 100 ml of distilled water under
identical conditions of beaker glass size, mixing
time, equilibrium duration, and temperature.
Furthermore, soil textural analysis for both soil
EC water ratios has been tested using the pipette
method (Gee and Or, 2002). The soil EC,,
considered the reference salinity parameter,
was also obtained from the data reported in
Phontusang et al. (2017).

Soil samples selection for EC, estimation

Soil samples selection for the estimation of
EC, was based on the comparison between
measured EC, values and corresponding soil EC
values determined from both soil-to-water ratios.
To evaluate the influence of sample sizes on
estimation accuracy, three sample sizes; 25, 50,
and 100, were selected using a systematic grid
sampling approach (Figure 2). The sample size of
25 was recommended by Phontusang et al. (2017)
who suggested that a minimum sampling density
of > 1 sample per 5 m X 5 m area is appropriate
for a field size of > 50 m % 50 m, corresponding
to 25 sampling points. For the 25-sample dataset,
samples were selected by systematically
removing 3 of every 4 sampling points from the
original 100-sample grid. For the 50-sample
dataset, 2 of every 4 sampling points were
removed. The 100-sample dataset represents
the full sampling grid with no points removed.
This stratified reduction method ensured
consistent spatial coverage across sample sizes
and allowed for comparison in evaluating the
impact of sampling density on EC, estimation.

To develop the cokriging model for estimating
EC,., cross-variogram analyses were conducted
between EC, and soil EC values obtained from
1:2.5 and 1:5 water ratios across varying sample
sizes (25, 50, and 100). A total of 18 datasets
were generated (Table 1) to assess the spatial

(b) (c)
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Figure 2. Soil samples selection, 25 samples (a), 50 samples (b), and 100 samples (c)
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Table 1. Soil samples selection of EC, and EC water ratios

Class Dataset number EC. x EC 1:2.5 Dataset number EC. x EC 15
1 1 25%25 10 25x25
2 50x50 11 50x50
3 100x100 12 100x100
2 4 25%25 13 25x25
5 50x50 14 50x50
6 100x100 15 100x100
3 7 25x25 16 25%25
8 50x50 17 50x50
9 100x100 18 100x100

correlation between EC, and each EC water ratio.
The most suitable cross-variogram model for each
combination was selected based on best-fit criteria
and used to validate the estimation performance
of EC, in limited sample sizes. This approach
demonstrates that reliable estimation is achievable
even under reduced sampling densities,
supporting the applicability of cokriging in salt-
affected soil mapping.

Soil EC, classification

In this study, salt-affected soils were classified
based on salt crust surface percentage following
the criteria of Wichaidit (1995) (Figure 1), while
salinity levels were categorized using the EC of
the EC, according to the classification proposed
by Plaster (2013) (Table 2).

Statistical and geostatistical analysis

In this study, an analysis of skewness was
conducted to determine the normality of the
original soil EC water ratios data. The skewed
(non-normal distribution) datasets characterized
by pronounced skewness (skewness > 1 or < -1)
were log-transformed prior to geostatistical
analysis to enhance the robustness and reliability
of the results (Webster and Oliver, 2007).
In general, datasets in Class 1 did not require
log-transforming, whereas those in Classes 2 and
3 did.

Geostatistical analysis refers to a spatial
statistical method based on basic statistics and the
concept of regionalized data. The coefficient of
variation (CV) is commonly used to assess the
degree of variation in soil properties (Lv et al.,
2013). The CV is calculated as the ratio of the
standard deviation (SD) to the mean (Equation 1).
According to the classification by Lv et al. (2013),
variation is considered weak, moderate, and
strong if the values of CV < 0.10, 0.10to 1.0, and
> 1, respectively.

In addition, the cross-variogram was employed
as the principal geostatistical tool to characterize

Table 2. The soil EC, classification

Code Salinity class EC, (dS m™)
1 Very strongly saline > 16
2 Strongly saline > 8-16
3 Moderately >4-8
4 Slightly saline >2-4
5 Non-saline <2

the spatial dependence and variability of EC, in
relation to soil EC values derived from two water
ratios. The cross-variogram was calculated using
the formulation described by Yates and Warrick
(2002) (Equation 2).

The cross-variogram modeling revealed the
spatial correlation between the primary (EC,) and
secondary variables (EC), which can be either
positive or negative (Seo et al., 2022; Thanh et al.,
2022). A negative cross-variogram reflects
a negative spatial correlation between the two
variables (Spielvogel et al., 2016). It should be
noted that the coefficient of determination (R2)
remains a positive value, even when a negative
spatial correlation exists between variables.

A combined visual assessment and statistical
evaluation using the ordinary least squares
method was applied to test several standard
models, including spherical, exponential,
and Gaussian (Marchetti et al., 2012). The
effectiveness of the cross-variogram model was
evaluated using the R2 (Equation 3). The model
with the highest R2 value was considered the best
fit. This parameter was used to assess both
the cross-variogram fitting accuracy and the
interpolation performance of the cokriging
method (Wu et al., 2025). The performance of
R2 values is presented in Table 3 (Li et al., 2016).
Additionally, analysis of variance (ANOVA) was
conducted to compare the effects of sample size
on the relationship between EC, and EC values
across all salt-affected soil classes. Statistical
analyses were performed using IBM SPSS
Statistics version 28.0.
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The best-fit cross-variogram models were
characterized by key geostatistical parameters,
including the nugget, sill, and range. These
primary parameters were used to describe the
spatial structure of the variables. In addition,
the nugget:sill ratio was calculated to evaluate
the degree of spatial dependence, representing the
proportion of random variability relative to total
spatial variability (Wu et al., 2025). According to
Cambardella et al. (1994), nugget:sill ratio values
less than 0.25, between 0.25 and 0.75, and greater
than 0.75 were categorized as indicating strong,
moderate, and weak spatial dependence,
respectively. It should be noted that for Gaussian
and spherical models, a true range value is
not explicitly defined; instead, the “range of
influence” is used to describe the distance over
which spatial correlation persists (Clark and

o
CV=—
u

Harper, 2007). These models have been reported
to fit soil property data effectively in various
studies (Webster and Oliver, 2007; Wu et al.,
2025).

Cokriging analysis

Cokriging is a geostatistical interpolation
method used to estimate a primary variable by
incorporating one or more secondary variables
that are spatially correlated (Yang et al.,
2021). The cokriging estimator (Equation 4),
as described by Goovaerts (1997), can be applied
using various theoretical models, including
Gaussian, spherical, and exponential models
(Marchetti et al., 2012). In this study, cokriging
was employed due to the lack of spatial
correlation between EC. and EC water ratios
when analyzed using conventional linear

(1)

Where o is the SD and p is the average value of the data (mean).

N(h)

1
7, —m;[zl ()21 (0] [22 ()2 ()

@)

Where vy, ,(h) is the cross-variogram; N(h) is the point group number at distance h;

Z(X;) is the numerical value at position X;; Z(X;+h) is the numerical value at a distance
(X;+h); Z, (x;) is the primary variable; Z,(x;) is the secondary variable.

2
R2 = I_Z(yi'yi )2
Z(yi'yi)

3)

Where yi* is the representation of the estimates, y, is the mean of the measurements y..

n p
Z :Z NZy(x) +Z: A Zi(x;)
i= i=

(4)

Where Z, is the primary variable to be estimated, Z, is the primary variable measured, Z, is the
measured secondary variable, x; and x; are the known locations, ; and ; are the weights to be

determined.

n

1 .
ME = > [200)-Z(%)]

i=1

n

n (X, 2
RMSE JZ”[Z(XI) Z(xy)]

()

(6)

Where ME is mean prediction error, RMSE is root mean square prediction error, Z(X;) is
an observed value, Z(Xi) is an estimated value, Z(Xi) is the mean of observation values.
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Table 3. The performance of R?

Model performance

Statistic method Unacceptable

Acceptable Good

R? < 0.50

0.50-0.75 >0.75

regression. Cross-variogram construction and
spatial interpolation through cokriging were
performed using GS+ version 10.0 (Robertson,
2008). The modeling process involved cross-
validation to assess interpolation accuracy and
to generate EC, estimates for the development of
spatial distribution maps.

Mapping accuracy

Mapping accuracy refers to the degree of
correspondence between predicted values and
field-measured observations and is essential for
assessing the reliability of spatial interpolation
results. In this study, mapping accuracy was
evaluated using a cross-validation approach
within the cokriging framework. The optimal
model performance was determined by
minimizing the mean error (ME) and root mean
square error (RMSE), with ideal values close
to zero (Equations 5 and 6) (John et al., 2021). The
ME should be close to zero for unbiased
approaches, with positive and negative values
indicating underestimation and overestimation,
respectively (Yao et al.,, 2014). The RMSE
guantifies the accuracy of various prediction
methods and should be as small as possible for the
best prediction.

RESULTS AND DISCUSSION

Descriptive statistics of EC water ratios

The detailed descriptive statistics measuring
the soil electrical conductivity of EC, from the
soil EC water ratios across the three salt-affected
soil classes are presented in Table 4. A dilution
effect was observed, wherein EC values decreased
with increasing soil-to-water ratios. This trend
is consistent with earlier findings by Rhoades
(1982), Sonmez et al. (2008), and the United
States Salinity Laboratory Staff (1954), who
reported that greater dilution reduces the
measured EC due to lower ion concentrations
in the solution.

The CV was used to measure the spatial
heterogeneity of soil salinity across all classes.
According to Lv et al. (2013), CV is a reliable
indicator of wvariation, with higher values
indicating  greater regional heterogeneity.
In this study, CV values ranged from 0.02 to 3.81
(Table 4), indicating a wide spectrum of variation
from weak to strong. In Class 1 (very severely

salt-affected soils), both EC 1:2.5 and 1:5 showed
a strong variation, primarily due to the extremely
high EC, values characteristic of this class.
In Class 2, the EC 1:2.5 method displayed a weak
to moderate degree of variation, while EC 1.5
showed a strong degree of variation, reflecting
inconsistent salinity levels ranging from non-
saline to very strongly saline. This variation
corresponds with the heterogeneous nature of
salinity in this class. Conversely, Class 3 showed
the lowest degree of variation across both EC
methods, consistent with its classification as non-
saline soil. The reduced CV in Class 3 reflects
greater stability and more uniform salinity
distribution. Overall, the degree of variation in
EC measurements decreased progressively from
Classes 1 to 3. These findings provide valuable
insights into the spatial behaviour of salinity
within salt-affected soil classes and form the
basis for subsequent geostatistical modeling and
interpretation.

Performance EC, from EC water ratios of
cross-variogram

The performance of the cross-variogram
model for estimating EC. from soil EC water
ratios was evaluated using key geostatistical
parameters, including R2, nugget, sill, range, and
nugget:sill ratio (Table 5). Negative spatial
correlation between EC, and EC water ratios were
observed in most cases, indicated by negative
nugget and sill values (Table 5; Figures 3a to 3f,
3h to 3i, 3m to 3r), while positive correlations
were shown in Figures 3g and 3j to 3.

In Class 1, the Gaussian model provided
the best fit for both EC 1:2.5 and EC 1:5 across
all sample sizes. The relationships exhibited
moderate to strong negative spatial correlations.
The Gaussian model explained more than 73%
and 76% of the spatial relationship between EC,
and EC water ratios, respectively. The highest
estimation accuracy was achieved for EC 1.5
at a sample size of n = 25 (R2 = 0.98), suggesting
that smaller sample sizes can provide reliable
estimates of EC,. For EC 1:2.5, the optimal result
was found at n = 50, although the R2 was lower
than that for EC 1:5.

In Class 2, the Gaussian model was also
identified as the best-fit model for EC 1:2.5,
with strong negative correlations for sample sizes
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Table 4. Basic statistics from EC water ratios 1:2.5 and 1:5 in different study sites of saltaffected soil classes

EC 1.5 (dS m™)

Degree of

EC 1:2.5 (dS m?)

EC, (dS m™)?

Number

Degree of

Degree of

C\V°
Strong
Strong
Strong

cv

SD¢
9.96 25.19 253

Min

Max Mean

CcWw®
Strong
Strong
Strong
Weak
0.14 Moderate 0.01

Ccv

SD¢

Min

Max Mean

cV’

Ccv

Min
61.10
56.70
56.70

of

samples

Class

Mean

Max

14
16

5
4

36.10 2.59

14
12.76 47.97 3.76

19
20

9
1

190.98 0.44 Moderate
202.91 0.43 Moderate

397
410
433

25
50

9.98 2435 244

457 16.73 10.39 2455 2.49

205.69 0.42 Moderate 1.78 23.20 1354 49.68 3.81

100°
25
50

0.18 Moderate
0.18 Moderate
0.17 Moderate

0.24 0.04
0.25 0.05
0.24 0.04

0.66
0.75
0.75
0.24
0.15
0.24

0.05

0.06

0.29 0.02
0.33 0.05
0.31 0.03

0.42

0.10

Strong
Strong
Strong

1.05
1.14
1.15

0.79 17.88 4.74

0.16 21.20
0.16 24.90

1.14
1.14
0.32
0.26
0.32

0.13
0.10

5.01

0.11 Moderate 0.01

4.73

1001
25
50

Weak
Weak
Weak

0.08 0.003 0.04
0.08 0.001 0.02

0.01
0.01
0.01

Weak
Weak
Weak

0.13 0.003 0.02
0.12 0.005 0.04
0.12 0.005 0.04

0.46 Moderate 0.07

0.50
0.56
0.55

1.12
1.39
1.39

0.17
0.11
0.11

0.50 Moderate 0.07

0.08 0.002 0.03

0.49 Moderate 0.07

100°
Note: 2The EC, values are from Phontusang et al. (2017); "Degree of CV based on classification from Lv et al. (2013); The SD is the standard deviation;

9The 100-number of samples of CV values from each class are from Phontusang et al. (2018)

n =50 and 100, while a strong positive correlation
was observed for n = 25. For EC 1:5, the Gaussian
model was the best fit for n = 50 and 100,
while the spherical model was optimal for n = 25.
These models explained more than 77% and 85%
of the variance in EC,, for EC ratios, respectively.
The sample size of n = 25 provided the most
accurate estimation in both EC ratios, with EC 1:5
showing slightly higher estimation performance.

Class 3 exhibited high variability in R? values
for EC 1:2.5 across different sample sizes, ranging
from weak to strong correlations. The highest
R2 (0.81) was observed at n = 50. For EC 1:5,
acceptable to strong negative correlations were
found, with n = 100 vyielding the highest
estimation accuracy. Gaussian models were the
best fit for both EC water ratios. These models
explained more than 76% (EC 1:2.5 at n = 50 and
100) and 65% (EC 1:5) of the spatial variability
of EC.. The relatively weaker correlation in EC
1:2.5 at n = 25 was attributed to lower EC, values
in this class, classified as non-saline.

Analysis of the cross-variogram slopes showed
that the slope increased as the EC water ratio
decreased, consistent with the dilution effect
described by Sonmez et al. (2008). Additionally,
cross-variogram slopes decreased from Class 1 to
Class 3, reflecting lower EC,, values in less saline
soils (Figure 3). Despite stronger correlations in
Class 3, the shallow slope indicated limited spatial
variability due to low EC, levels. The results also
support previous findings by Phontusang et al.
(2017), demonstrating that small sample sizes
can provide reliable estimates of EC.. However,
greater consistency and accuracy were observed
in larger sample sizes, with sample sizes of 50
and 100 producing stronger and more stable
correlations across both EC water ratios (Figure 3;
Table 5). This suggests that increased sampling
density enhances the reliability of spatial
prediction in salt-affected soils.

Additionally, the R? values aligned with results
from the one-way ANOVA, which evaluated the
relationship between soil EC, and soil EC water
ratios across different sample sizes. The results
revealed statistically significant differences
(p < 0.05) across all classes and sample sizes.
In Class 1, highly significant differences were
observed at sample sizes of 100 and 50 compared
to 25 for the 1:2.5 ratio, while for the 1:5 ratio,
a sample size of 50 differed significantly from
100 and 25. In Class 2, the sample size of 25
showed a highly significant difference compared
to 100 and 50 for the 1:2.5 ratio. For the 1:5 ratio,
the sample size of 25 differed significantly from
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Table 5. Cross-variogram of EC, from EC 1:2.5 and 1.5 in different salt-affected soil classes

EC 15

EC1:25

Sample size
Class of EC.xEC Model

Range/Range

Range/Range
of influence
(m)

RZ

Nugget:
sill

of influence
(m)

Model  Nugget Sill
(dS mh?  (dS m?)?

R2

Nugget:
sill

Sill
(dS mY)?

Nugget
(dS m?)?

water ratios

0.98
0.89
0.76
0.98
0.96
0.85
0.85
0.65
0.86

-201.1 90.41 4.9x10*

-0.1

Gu

0.73
0.94

31x10°
0.3x10°3

136.83

-224.9
-311.1

7.0
-0.1

25x%25 Gu?

50x50
100x100

1

-201.1 133.19 4.9x10*

-0.1

Gu

111.54

Gu

4.9x10*

145.83
107.70

-201.1

-0.1

Gu

0.85
0.96
0.80
0.77
0.39
0.81

0.76

140.81 2.4x10°°

-412.9

-1.0

10°°
-10°°
-10°°

Gu

1.9x10°

5.02

0.87

0.
-7.7x1073
-1.1x1072
-1.1x10%

10
103
103

Sp°

Gu

219.79 4.9x10*

2.01
-2.01
-2.01

2.3x10°

Gu

25%25
50x50
100x100

2

1.1x10%

42.08
36.19

4.9x10*

170.43

Gu

1.4x10°

70

Gu

4.9x10*

322.50

Gu

1.2x10°

365.28

-10°
-10°
-10°

Gu

4.3x10*

12.81
363.90

10°®
-10°
-10°

25x%25 Gu

50x50
100x100

3

0.9x10°

365.28

Gu

5.0x10*
13.3x10*

-2x107?

-7.5x10°

Gu

0.9x10°

365.28

Gu

342.59

Gu

Note: *Gu” is Gaussian; *’Sp” is Spherical

50, with both showing greater significance than
the sample size of 100. In Class 3, the sample size
of 100 showed a highly significant difference
compared to 50, which in turn was more
significant than 25 for both EC ratios. These
comparisons were further validated using
Duncan’s post hoc test.

The nugget variance (Co) represents micro-
scale variability or measurement error (Lv et al.,
2013), was generally low and close to zero across
most classes and sample sizes, indicating minimal
unexplained variability. For the 1:2.5 ratio, nugget
values in Classes 1, 2, and 3 were mostly negative
and near zero, except for positive, low values at
n = 25 in Classes 2 and 3. Similarly, for the 1:5
ratio, nugget values were negative and low in
Classes 1 and 3, and positive but low in Class 2.
These results suggest strong spatial dependence
at short distances, indicating a high spatial
correlation between EC, and the EC water ratios.

The sill parameter measures the level of
variability in the structure (the maximum
variation observed) (Lv et al., 2013). In Class 1,
both EC ratios yielded high negative sill values,
indicating strong heterogeneity of EC, derived
from EC water ratios. In Class 2, the highest sill
values occurred at n = 25 for both EC ratios,
possibly due to a high variation in EC. within this
class (Phontusang et al., 2018). Sill values close
to zero indicate minimal spatial variability,
suggesting that EC water ratios can serve as
reliable secondary variables for interpolating EC..
In Class 3, sill values remained low across
all sample sizes for both EC ratios, reflecting
a relatively homogeneous salinity distribution.

The range parameter corresponds to the
maximum  distance over  which spatial
autocorrelation occurs, indicating the extent of
spatial dependence for a given variable (Yang
et al., 2011; Lv et al., 2013). In this study, high
range values were observed across all classes and
for both soil EC water ratios, ranging from 12.81
to 365.28 m, suggesting the presence of a spatial
structure (Figure 3). These findings are consistent
with previous studies. For instance, Phontusang
etal. (2018) reported EC. range values from 54.70
to 118.20 m using the kriging method in similar
study areas, while Yang et al. (2011) reported
ranges between 124.2 and 211.8 m. Other studies
by Miyamoto et al. (2005) and Yang et al. (2011)
also found that salinity distributions exhibited
spatial dependence at distances exceeding 100 m.
In Class 3, although the range values were high,
the relatively low EC,. levels reduced the
significance of these ranges, resulting in indistinct
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Figure 3. Best-fit cross-variogram of EC, from different EC water ratios 1:2.5 (a-c, g-i, m-0) and 1:5
(d-f, j-1, p-r) in different salt-affected soil classes
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spatial patterns in the respective maps (Figures
4m to 4r).

The nugget:sill ratio measures the level of
variability caused by random variables and
encompasses the overall spatial heterogeneity
(Lv et al., 2013). It serves as a criterion for
categorizing the spatial correlation of soil
properties in geostatistics. Lower ratios indicate
stronger spatial dependence and greater spatial
continuity (Cambardella et al., 1994). Across
all classes and sample sizes, the nugget:sill ratios
for both EC water ratios were low, indicating
strong spatial dependence and supporting the use
of EC 1:2.5 and EC 1.5 as secondary variables
in the interpolation of EC.. In Class 1, the low
ratios for both EC water ratios suggest strongly
structured, patchy distributions of EC, (Figures
4a to 4f), as described by Lopez-Granados et al.
(2002). Similarly, Class 2 also exhibited low
ratios, indicating strong spatial dependence with
moderately patchy distributions (Figures 4g to 4I).
In Class 3, despite low nugget:sill ratios indicating
strong spatial dependence, the low EC, values
limited the interpretability of spatial variation
(Figures 4m to 4r). Overall, the results align with
Phontusang et al. (2018), which confirming that
spatial variation in salt-affected soils is mainly
influenced by structural factors such as
topography, hydrological patterns, and climate
(Zheng et al., 2009). The spatial dependence of
EC, across study sites is clearly depicted in
Figures 3a to 3l. Although Class 3 exhibited the
highest range values, particularly for EC 1:5 (up
to 365.28 m), the consistently low EC. values in
this class limit the practical relevance of observed
spatial structure (Figures 3m to 3r).

Mapping accuracies

The mapping accuracies derived from
cokriging are presented in Table 6. Prediction
errors were used to evaluate the accuracy of
spatial interpolation of soil EC, using EC
measurements at 1:2.5 and 1:5 soil-to-water ratios
(Figure 4). According to John et al. (2021),
reliable model predictions are indicated by lower
ME and RMSE values, ideally close to zero.
In this study, the ME values for all classes
and sample sizes were generally close to zero for
both EC water ratios, indicating that the cross-
variogram models were nearly unbiased,
with minimal systematic overestimation or
underestimation of EC..

This study observed that almost all the ME
and RMSE values were generally aligned with
the corresponding R? values across all classes

and sample sizes (Tables 5 and 6). In Class 1, both
positive and negative ME values were observed
for EC water ratio 1:2.5 at sample sizes of 25
and 100, respectively, while a negative ME
was found at n = 50. A positive ME indicates
a slight underestimation of EC, (i.e., observed
> estimated) and a negative ME indicates a slight
overestimation of EC, (i.e., observed < estimated)
(Yao et al.,, 2014). For EC 1.5, negative ME
values, indicating a slight overestimation, were
observed at sample sizes of 50 and 100, while the
smaller sample size of 25 showed a much higher
negative ME (-41.29 dS m™), reflecting severe
overestimation. The RMSE values for both EC
water ratios in Class 1 ranged from 65.13 to
191.79 dS m', indicating considerable prediction
errors, which reflect the elevated and highly
variable EC, values observed in this class (0 to
345 dS m; Figure 4). According to Rhoades
(1982), EC, values exceeding 12 dS m™* classify
the soil as strongly saline, suggesting that parts of
the Muang Pia Sub-district, particularly Class 1,
are at high risk of salinity, potentially impacting
the productivity of rice and other crops.

In Class 2, ME values for both EC ratios
were close to zero, indicating minimal bias in the
estimation models. The RMSE values were low
(£ 230 dS m™), suggesting high predictive
accuracy. In Class 3, ME values were also close
to zero, with slight overestimation observed
only at sample sizes of 100 (for EC 1:2.5) and 25
(for EC 1:5). RMSE values for both EC ratios
were very low (< 0.33 dS m™), reflecting high
estimation accuracy. However, in Class 3, the low
ME and RMSE values for EC 1:2.5 at n = 25 were
not aligned with the low R?, likely because the low
EC. values in this non-saline zone.

A comparison of RMSE values across the three
classes showed that Class 1 consistently produced
higher RMSE than Classes 2 and 3, a result that
aligns with Phontusang et al. (2018). This is
attributed to higher EC, values and a greater CV
(> 2) in Class 1 (Table 4). The elevated RMSE
may also be influenced by limited EC, contrast,
where a narrow range of EC, values (e.g., CV =
0.03 in Table 4) reduce spatial differentiation,
thereby reducing model accuracy.

Cokriging interpolation using EC water ratios
of 1:2.5 and 1:5 as secondary variables yielded
the highest estimation performance for EC,. This
improvement is attributable to the strong
correlation between EC, and the EC water ratios,
as reflected in the fitted cross-variogram models
(Bogunovic et al., 2017; Wu et al., 2025).
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Figure 4. Maps of cokriging estimations from different EC water ratios 1:2.5 (a-c, g-i, m o) and 1:5
(d-f, j-I, p-r) in different salt-affected soil classes

Cokriging has been shown to outperform ordinary
kriging when a strong relationship exists between
primary and secondary variables, especially when
the primary variable is difficult or costly to
measure. In such cases, cokriging enables the use
of readily obtainable secondary data to enhance

spatial prediction accuracy (Wu et al., 2025).
This approach also reduces sampling effort and
cost (Xie and Li, 2016). However, cokriging
inherently smooths spatial variability, which
may obscure local heterogeneity. Furthermore,
incorporating multiple secondary variables
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Table 6. Accuracies of cokriging maps generated from EC water ratios to estimate EC,

Class Sample size of ME 1:2.5 RMSE 1:2.5 ME 1:5 RMSE 1:5
EC.xEC water ratios (dS m?) (dS m?) (dS m?) (dS m?)

1 25%25 3.06 72.25 -41.29 191.79
50x50 -0.41 65.17 -0.46 65.13

100x100 2.68 69.70 -0.14 68.30

2 25%25 0.03 2.25 0.01 2.30
50%x50 0.00 0.78 0.01 0.78

100x100 0.02 1.16 0.02 1.31

3 25%25 0.00 0.17 -0.05 0.16
50x50 0.00 0.33 0.01 0.24

100x100 -0.02 0.11 0.06 0.23

increases model complexity and uncertainty REFERENCES

due to the need to estimate more parameters
(Knotters et al., 1995; Wang et al., 2012).

In terms of estimated EC, ranges, Phontusang
et al. (2018) ranging between 65 to 368, 0 to 25,
and 0 to 3.7 dS m* for Classes 1, 2, and 3,
respectively. In this study, the estimated EC,
values ranged between 0 to 345 (Class 1), 0 to
22.5 (Class 2), and 0 to 1.99 dS m™* (Class 3)
(Figure 4). These results demonstrate that EC,
predictions based on EC water ratios of 1:2.5 and
1:5 are in close agreement with field-measured
values reported by Phontusang et al. (2018).
This confirms the suitability of EC water ratios as
effective secondary variables for cokriging-based
estimation of soil EC..

CONCLUSIONS

This study demonstrates that EC, can be
accurately estimated using EC 1:2.5 and 1:5 ratios
with cokriging spatial interpolation, supported by
strong correlations (R2 up to 0.98) and generally
low ME and RMSE values. While the EC 1:5 ratio
with Gaussian models performed well for most
classes, Class 1 (n = 25) exhibited higher errors.
The approach provides an effective spatial
interpolation method for the study area, reflecting
the strong site-specific co-dependence between
EC water ratios and EC.. While its applicability
to other regions requires external validation,
this approach complements, rather than replaces,
traditional saturated paste extraction, and support
precision agriculture and sustainable management
of salt-affected soils.
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