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Abstract 

Accurate assessment of soil salinity is essential for managing salt-affected soils and sustaining 

agricultural productivity. This study evaluated the potential of cokriging spatial interpolation for 

estimating the electrical conductivity of saturated paste extract (ECₑ), using soil electrical conductivity 
(EC) measured at 1:2.5 and 1:5 soil-to-water ratios. The objectives included identifying suitable scatter 

plot and cross-variogram models and assessing mapping accuracy. A total of 300 topsoil samples  

(0 to 30 cm) were collected from three salt-affected soil classes in Muang Pia Sub-district, Khon Kaen 
Province, Northeastern Thailand. Spatial modelling and cross-variogram analyses were performed using 

GS+ software to evaluate estimation accuracy across different sample sizes. The results showed that EC 

measurements at a 1:5 ratio exhibited the strongest correlation with ECe across all soil classes, with 

coefficient of determination (R2) values reaching 0.98 in Class 1 and Class 2, and 0.85 in Class 3, despite 
a minimum sample size (n = 25). Gaussian and spherical models best described these relationships. 

Higher R2 values were consistently associated with lower mean error (ME) and root mean square error 

(RMSE), in almost all sample sizes and classes, indicating the robustness and reliability of the model 
across varying salinity conditions. Larger sample sizes (n = 100) yielded more consistent estimation 

performance, while smaller sample sizes maintained acceptable accuracy, particularly for EC 1:5. This 

study indicates that soil EC water ratios, especially 1:5, can serve as practical surrogates for ECₑ 

estimation using cokriging spatial interpolation. The proposed approach offers a cost-effective solution 
for salinity mapping in salt-affected soil areas, with implications for soil monitoring, land management, 

and sustainable agriculture under limited sampling conditions. 

Keywords: digital soil mapping; Northeast Thailand; salt-affected soils; soil water ratios; spatial 
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INTRODUCTION 

The study of salt-affected soils is an important 

topic that encompasses several detrimental effects 

on arid and semi-arid environments, as many 

crops are sensitive to high salt concentrations  
in the soil solution (Qadir et al., 2006; Li et al., 

2014; Gozukara et al., 2022). The accumulation of 

soluble salts in soil adversely affects plant growth, 
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decreases crop yields, and can lead to total crop 

failure (Sonmez et al., 2008; Corwin and Yemoto, 

2020). Globally, salt-affected soils cover about 

7% of the Earth’s land area, creating major 
challenges for sustainable agriculture (Corwin 

and Yemoto, 2020). The development of salt-

affected soils is influenced by natural factors,  
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such as geological sedimentation and erosion,  

as well as human activities, including poor 

irrigation practices, deforestation, shallow 
groundwater levels, and salt production (Sonmez 

et al., 2008; Abdelaal et al., 2021). 

In Thailand, salt-affected soils are 
predominantly found in the northeastern region, 

affecting approximately 2.8 million ha, or roughly 

17 to 30% of the land area (Sukchan, 2005; 
Leksungnoen et al., 2018; Phontusang et al., 

2018). These salt-affected soils are caused by  

both natural factors, particularly the presence of 

rock salt deposits from the Maha Sarakham 
Formation (Mitsuchi et al., 1986; Phontusang  

et al., 2018), and human activities such as 

improper irrigation, road construction, 
deforestation, and poorly designed reservoirs 

(Iwai et al., 2012). Deforestation, often resulting 

from agricultural expansion, exacerbates salinity 
by increasing evaporation and promoting the 

upward movement of salts to the soil surface 

(Leksungnoen et al., 2018). 

The soil electrical conductivity of saturated 

paste extract (ECe ) is widely regarded as the 

standard indicator for assessing soil salinity 

(United States Salinity Laboratory Staff, 1954; 
Sonmez et al., 2008). However, measuring  

soil ECe  is labor-intensive, costly, and time-

consuming (Matthees et al., 2017; Kargas et al., 

2020). In contrast, using soil-to-water ratios,  
such as 1:2.5 and 1:5, provides a simpler and more 

economical alternative for estimating salinity 

(Sonmez et al., 2008; He et al., 2013; Kargas  
et al., 2020; Smagin et al., 2024). Studies have 

shown a significant linear correlation between  

soil ECe  and soil electrical conductivity (EC) 

measured from water suspensions, although  

the latter generally underestimates ECe  values 

(Sonmez et al., 2008; Chi and Wang, 2009;  

He et al., 2013; Shahid et al., 2018; Corwin and 
Yemoto, 2020; Kargas et al., 2020). 

Spatial variability analysis using geostatistical 

techniques enables the estimation of soil 

properties in unsampled locations. Kriging has 

been frequently used to map ECe  variability; 

however, it does not incorporate any information 

about the correlation between different methods 
(secondary variables) as conducted by 

Phontusang et al. (2018). Normally, the linear 

regression is used with basic statistics to  
establish the relationship between two variables; 

nevertheless, there is no spatial correlation 

between ECe  and soil EC water ratios,  

as conducted by Rukadi et al. (2025). Cokriging, 
on the other hand, leverages the correlation 

between primary (ECe) and secondary (EC water 

ratios) variables, enhancing the spatial prediction 

of ECe (Yang et al., 2021). It is advantageous in 
large-scale mapping where laboratory analysis  

is limited by time and laboratory resources 

(Abdelaal et al., 2021; Hossen et al., 2022). 
Sample size significantly influences the 

reliability of predictive models in soil salinity 

studies. Although larger sample sizes enhance 

prediction accuracy, smaller samples may still 
offer practical insights under constrained 

conditions (Or, 2010; Phontusang et al., 2017). 

Despite the potential of ECe estimation from EC 
water ratios, no studies have applied cokriging to 

map spatial variability in different salt-affected 

soil class areas using varying sample sizes and soil 
EC water ratios. 

Therefore, this study aimed to evaluate the 

spatial variability of ECe in salt-affected soils in 

Northeast Thailand by applying the cokriging 
method using soil EC water ratios of 1:2.5 and 1:5 

data across different sample sizes. The specific 

objectives were to identify suitable scatter plot 

models and cross-variogram models for ECe 

estimation and to assess the mapping accuracy of 

ECe from EC water ratios data using the cokriging 

method. 

MATERIALS AND METHOD 

Research location and soil sampling 

The research location is situated in the inland 
areas of Muang Pia Sub-district, covering 

approximately 73.40 km2 and consisting of  

14 villages. The primary land use is agricultural, 

with rice cultivation being the main crop (Muang 
Pia Sub-district, 2022), as indicated in Figure 1. 

In particular, the southern and western parts of the 

sub-district are characterized by hills interspersed 
with plains, which are used for agriculture  

and horticulture. The eastern and southern regions 

are dominated by lowland rice fields, while  
the northern region is predominantly saline and 

supports limited vegetation, mostly halophytes. 

Historically, the saline areas in the north have 

been used for small-scale salt production. 
The climate in the region is tropical monsoon. 

The rainy season occurs from May to September, 

with average temperatures between 20 to 25 °C 
and an annual precipitation of approximately 

1,196 mm (Weather and climate, 2025). High 

rainfall during this season may temporarily 
improve soil quality by leaching salts beyond  

the root zone. The summer season spans from 

February to April, with peak temperatures of  
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35 to 37 °C, which enhance evaporation and 

promote salt accumulation on the surface. The 

winter season lasts from October to January, with 
temperatures ranging from 14 to 15 °C. Although 

lower temperatures may reduce evaporation, 

limited rainfall during winter may contribute  

to long-term salinity problems (Muang Pia Sub-
district, 2022).  

Soil sampling was conducted during the dry 

season based on the percentage of surface salt 
crust, following the classification method of 

Wichaidit (1995). The same sampling locations 

and soil samples as reported by Phontusang et al. 
(2017) were used. The study area was classified 

into three salt-affected classes (Classes 1 to 3) 

based on visible salt crust coverage and 

vegetation. Specifically, Class 1 is categorized  
as very severely salt-affected soils, where > 50% 

of the soil surface exhibited salt crusts. This class 

supports only highly salt-tolerant species such as 
Puccinellia tenuiflora, Acacia salicina, Sporobolus 

cryptandrus, and Azima sarmentosa (Blume) 

Benth & Hook. F., which possesses the ability  
to thrive under these conditions. The occurrence  

of Azima sarmentosa (Blume) Benth & Hook. F. 

serves as a bioindicator of saline soils (Sankla  

et al., 2022). Furthermore, Class 1 is classified  

as loam soil texture, with particle-size distribution 

of 44.96% sand, 35.78% silt, and 19.26% clay. 

Despite being loamy, which is generally favorable 
for plant growth (Thanh et al., 2022; Khanh et al., 

2024), the high salinity in this class severely 

restricts agricultural productivity. 

Class 2 is classified as severely salt-affected 
soils where 10 to 50% of the soil surface is covered 

with salt crusts. This class supports a variety of 

plant species, including Oryza sativa, Psidium 
guajava, and Capsicum annuum. However, spatial 

heterogeneity exists, with some areas unsuitable 

for plant growth due to localized high salinity 
(Figure 1). The soil texture is sandy loam, with 

particle-size distribution of 53.38% sand, 31.06% 

silt, and 15.56% clay. Although sandy loam 

provides good fertility, structure, and water 
retention (Daneshvar et al., 2024), salt stress 

remains a limiting factor in parts of this class. 

Class 3 is classified as moderately salt-affected 
soils with 1 to 10% surface salt crusts. This class 

is characterized by a clay loam soil texture, with 

particle-size distribution of 40.88% sand, 29.11% 
silt, and 30.01% clay. Moreover, the relatively 

low salinity levels in this class support more 

favorable conditions for cultivation. The high 

sand content in clay loam enhances adsorption 

 

Figure 1.  The geographic locations of the study area. (a) Khon Kaen Province, (b) Muang Pia  

Sub-district with salt-affected soils class, (c) study sites based on different degrees of salt-
affected soils classes, and (d) grid sampling points (n = 100) represent soil samples collected 

based on the stratified systematic unaligned sampling using 50 m × 50 m of representative 

area in an equivalent grid measuring 5 m × 5 m 
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capacity and ease of tillage, making it suitable for 

diverse crops (Qi et al., 2021). Note that the soil 

texture measurements were obtained as general 
representations of each salt-affected soil class 

based on salt crust surface percentage.  

A total of 300 topsoil samples (0 to 30 cm 
depth) were collected, with 100 samples 

representing each salt-affected class. Sampling 

was conducted using a stratified systematic 
unaligned method. For each class, a representative 

50 m × 50 m (around 0.25 ha) area was delineated 

and subdivided into a 5 m × 5 m grid (Figure 2), 

from which one sample per grid was randomly 
selected (n = 100). All samples were air-dried  

at room temperature and stored in labeled ziploc 

bags. The samples were subsequently transported 
to the Soil Science and Environment Laboratory, 

Faculty of Agriculture, Khon Kaen University, for 

analysis of soil EC using different soil-to-water 
ratios. 

Soil EC water ratios analyses 
Soil EC measurements at water ratios of  

1:2.5 and 1:5 were conducted following the 
methodology described by the United States 

Salinity Laboratory Staff (1954). The soil samples 

used in this study were derived from the dataset 
previously collected by Phontusang et al. (2017). 

A total of 300 air-dried soil samples were 

analyzed for each water ratio. For the 1:2.5 ratio, 

20 g of air-dried soil was mixed with 50 ml of 
distilled water. The soil water suspension was 

manually stirred for 10 minutes, and then allowed 

to equilibrate for 30 minutes before EC 
measurement using a calibrated EC meter. The 

30-minute period was selected based on findings 

by He et al. (2012), which indicated that this 
duration is generally sufficient for most soils to 

reach a stable EC value. The procedure for the EC 

1:5 ratio followed the same method, with 20 g of 

air-dried soil and 100 ml of distilled water under 

identical conditions of beaker glass size, mixing 

time, equilibrium duration, and temperature. 
Furthermore, soil textural analysis for both soil 

EC water ratios has been tested using the pipette 

method (Gee and Or, 2002). The soil ECe, 
considered the reference salinity parameter,  

was also obtained from the data reported in 

Phontusang et al. (2017). 

Soil samples selection for ECe estimation 
Soil samples selection for the estimation of 

ECe  was based on the comparison between 

measured ECe values and corresponding soil EC 
values determined from both soil-to-water ratios. 

To evaluate the influence of sample sizes on 

estimation accuracy, three sample sizes; 25, 50, 
and 100, were selected using a systematic grid 

sampling approach (Figure 2). The sample size of 

25 was recommended by Phontusang et al. (2017) 

who suggested that a minimum sampling density 
of ≥ 1 sample per 5 m × 5 m area is appropriate 

for a field size of ≥ 50 m × 50 m, corresponding 

to 25 sampling points. For the 25-sample dataset, 
samples were selected by systematically 

removing 3 of every 4 sampling points from the 

original 100-sample grid. For the 50-sample 

dataset, 2 of every 4 sampling points were 
removed. The 100-sample dataset represents  

the full sampling grid with no points removed. 

This stratified reduction method ensured 
consistent spatial coverage across sample sizes 

and allowed for comparison in evaluating the 

impact of sampling density on ECe estimation. 
To develop the cokriging model for estimating 

ECe , cross-variogram analyses were conducted 

between ECe  and soil EC values obtained from 

1:2.5 and 1:5 water ratios across varying sample 
sizes (25, 50, and 100). A total of 18 datasets  

were generated (Table 1) to assess the spatial  
 

 
 

 

 
 

 

 
Figure 2. Soil samples selection, 25 samples (a), 50 samples (b), and 100 samples (c) 
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correlation between ECe and each EC water ratio. 

The most suitable cross-variogram model for each 

combination was selected based on best-fit criteria 
and used to validate the estimation performance  

of ECe  in limited sample sizes. This approach 

demonstrates that reliable estimation is achievable 

even under reduced sampling densities, 
supporting the applicability of cokriging in salt-

affected soil mapping. 

Soil ECe classification 
In this study, salt-affected soils were classified 

based on salt crust surface percentage following 

the criteria of Wichaidit (1995) (Figure 1), while 
salinity levels were categorized using the EC of 

the ECe according to the classification proposed 

by Plaster (2013) (Table 2). 

Statistical and geostatistical analysis 
In this study, an analysis of skewness was 

conducted to determine the normality of the 

original soil EC water ratios data. The skewed 
(non-normal distribution) datasets characterized 

by pronounced skewness (skewness > 1 or < -1) 

were log-transformed prior to geostatistical 

analysis to enhance the robustness and reliability 
of the results (Webster and Oliver, 2007).  

In general, datasets in Class 1 did not require  

log-transforming, whereas those in Classes 2 and 
3 did. 

Geostatistical analysis refers to a spatial 

statistical method based on basic statistics and the 
concept of regionalized data. The coefficient of 

variation (CV) is commonly used to assess the 

degree of variation in soil properties (Lv et al., 

2013). The CV is calculated as the ratio of the 
standard deviation (SD) to the mean (Equation 1). 

According to the classification by Lv et al. (2013), 

variation is considered weak, moderate, and 
strong if the values of CV < 0.10, 0.10 to 1.0, and 

> 1, respectively. 

In addition, the cross-variogram was employed 

as the principal geostatistical tool to characterize   
 

Table 2. The soil ECe classification 

Code Salinity class ECe (dS m-1) 

1 Very strongly saline > 16 

2 Strongly saline > 8–16 
3 Moderately > 4–8 

4 Slightly saline ≥ 2–4 

5 Non-saline < 2 

   

the spatial dependence and variability of ECe in 

relation to soil EC values derived from two water 

ratios. The cross-variogram was calculated using 
the formulation described by Yates and Warrick 

(2002) (Equation 2). 

The cross-variogram modeling revealed the 

spatial correlation between the primary (ECe) and 

secondary variables (EC), which can be either 

positive or negative (Seo et al., 2022; Thanh et al., 

2022). A negative cross-variogram reflects  
a negative spatial correlation between the two 

variables (Spielvogel et al., 2016). It should be 

noted that the coefficient of determination (R²) 
remains a positive value, even when a negative 

spatial correlation exists between variables.  

A combined visual assessment and statistical 

evaluation using the ordinary least squares 
method was applied to test several standard 

models, including spherical, exponential,  

and Gaussian (Marchetti et al., 2012). The 
effectiveness of the cross-variogram model was 

evaluated using the R² (Equation 3). The model 

with the highest R² value was considered the best 
fit. This parameter was used to assess both  

the cross-variogram fitting accuracy and the 

interpolation performance of the cokriging 

method (Wu et al., 2025). The performance of  
R² values is presented in Table 3 (Li et al., 2016). 

Additionally, analysis of variance (ANOVA) was 

conducted to compare the effects of sample size 

on the relationship between ECe and EC values 

across all salt-affected soil classes. Statistical 

analyses were performed using IBM SPSS 

Statistics version 28.0. 

Table 1. Soil samples selection of ECe and EC water ratios 

Class Dataset number ECe × EC 1:2.5 Dataset number ECe × EC 1:5 

1 1 

2 
3 

25×25 10 25×25 

 50×50 11 50×50 
 100×100 12 100×100 

2 4 

5 

6 

25×25 13 25×25 

 50×50 14 50×50 

 100×100 15 100×100 

3 7 

8 

9 

25×25 16 25×25 

 50×50 17 50×50 

 100×100 18 100×100 
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The best-fit cross-variogram models were 

characterized by key geostatistical parameters, 

including the nugget, sill, and range. These 
primary parameters were used to describe the 

spatial structure of the variables. In addition,  

the nugget:sill ratio was calculated to evaluate  
the degree of spatial dependence, representing the 

proportion of random variability relative to total 

spatial variability (Wu et al., 2025). According to 
Cambardella et al. (1994), nugget:sill ratio values 

less than 0.25, between 0.25 and 0.75, and greater 

than 0.75 were categorized as indicating strong, 

moderate, and weak spatial dependence, 
respectively. It should be noted that for Gaussian 

and spherical models, a true range value is  

not explicitly defined; instead, the “range of 
influence” is used to describe the distance over 

which spatial correlation persists (Clark and 

Harper, 2007). These models have been reported 

to fit soil property data effectively in various 

studies (Webster and Oliver, 2007; Wu et al., 
2025). 

Cokriging analysis 
Cokriging is a geostatistical interpolation 

method used to estimate a primary variable by 

incorporating one or more secondary variables 

that are spatially correlated (Yang et al.,  
2021). The cokriging estimator (Equation 4),  

as described by Goovaerts (1997), can be applied 

using various theoretical models, including 

Gaussian, spherical, and exponential models 
(Marchetti et al., 2012). In this study, cokriging 

was employed due to the lack of spatial 

correlation between ECe  and EC water ratios 
when analyzed using conventional linear  
 

 

 

 
 

 

 

 

  

CV =
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Where σ is the SD and μ is the average value of the data (mean). 
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(h)  is the cross-variogram; N(h)  is the point group number at distance h ; 

Z(Xi) is the numerical value at position Xi ; Z(Xi+h) is the numerical value at a distance 
(Xi+h); Z1(xi) is the primary variable; Z2(xi) is the secondary variable. 

(2) 

R
2
 = 1-

∑(y
i
-y

i
*)

2

∑(y
i
-y

i
)

2
 

Where y
i
* is the representation of the estimates, y

i
 is the mean of the measurements y

i
. 

(3) 

Ẑl = ∑ λiZl(xi)

n

i=1

+ ∑ λj

p

j=1

Zk(xj) 

Where Ẑl is the primary variable to be estimated, Zl is the primary variable measured, Zk is the 

measured secondary variable, xi and xj are the known locations, λi and λj are the weights to be 

determined. 

(4) 

ME = 
1

n
∑[Z(Xi)-Ẑ(Xi)],

n

i=1

 
(5) 

RMSE =√∑ [Z(Xi)-Ẑ(Xi)]n
i=1

2

n
 

Where ME is mean prediction error, RMSE is root mean square prediction error, Z(Xi) is  

an observed value, Ẑ(X
i
) is an estimated value, Z̅(X

i
) is the mean of observation values. 

(6) 
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regression. Cross-variogram construction and 
spatial interpolation through cokriging were 

performed using GS+ version 10.0 (Robertson, 

2008). The modeling process involved cross-

validation to assess interpolation accuracy and  

to generate ECe estimates for the development of 

spatial distribution maps. 

Mapping accuracy 
Mapping accuracy refers to the degree of 

correspondence between predicted values and 

field-measured observations and is essential for 
assessing the reliability of spatial interpolation 

results. In this study, mapping accuracy was 

evaluated using a cross-validation approach 

within the cokriging framework. The optimal 
model performance was determined by 

minimizing the mean error (ME) and root mean 

square error (RMSE), with ideal values close  
to zero (Equations 5 and 6) (John et al., 2021). The 

ME should be close to zero for unbiased 

approaches, with positive and negative values 

indicating underestimation and overestimation, 
respectively (Yao et al., 2014). The RMSE 

quantifies the accuracy of various prediction 

methods and should be as small as possible for the 
best prediction. 

RESULTS AND DISCUSSION 

Descriptive statistics of EC water ratios 
The detailed descriptive statistics measuring 

the soil electrical conductivity of ECe  from the 

soil EC water ratios across the three salt-affected 

soil classes are presented in Table 4. A dilution 
effect was observed, wherein EC values decreased 

with increasing soil-to-water ratios. This trend  

is consistent with earlier findings by Rhoades 
(1982), Sonmez et al. (2008), and the United 

States Salinity Laboratory Staff (1954), who 

reported that greater dilution reduces the 

measured EC due to lower ion concentrations  
in the solution. 

The CV was used to measure the spatial 

heterogeneity of soil salinity across all classes. 
According to Lv et al. (2013), CV is a reliable 

indicator of variation, with higher values 

indicating greater regional heterogeneity.  
In this study, CV values ranged from 0.02 to 3.81 

(Table 4), indicating a wide spectrum of variation 

from weak to strong. In Class 1 (very severely 

salt-affected soils), both EC 1:2.5 and 1:5 showed 
a strong variation, primarily due to the extremely 

high ECe  values characteristic of this class.  

In Class 2, the EC 1:2.5 method displayed a weak 

to moderate degree of variation, while EC 1:5 
showed a strong degree of variation, reflecting 

inconsistent salinity levels ranging from non-

saline to very strongly saline. This variation 
corresponds with the heterogeneous nature of 

salinity in this class. Conversely, Class 3 showed 

the lowest degree of variation across both EC 
methods, consistent with its classification as non-

saline soil. The reduced CV in Class 3 reflects 

greater stability and more uniform salinity 

distribution. Overall, the degree of variation in  
EC measurements decreased progressively from 

Classes 1 to 3. These findings provide valuable 

insights into the spatial behaviour of salinity 
within salt-affected soil classes and form the  

basis for subsequent geostatistical modeling and 

interpretation. 

Performance ECe  from EC water ratios of 

cross-variogram  
The performance of the cross-variogram 

model for estimating ECe  from soil EC water 
ratios was evaluated using key geostatistical 

parameters, including R², nugget, sill, range, and 

nugget:sill ratio (Table 5). Negative spatial 

correlation between ECe and EC water ratios were 
observed in most cases, indicated by negative 

nugget and sill values (Table 5; Figures 3a to 3f, 

3h to 3i, 3m to 3r), while positive correlations 
were shown in Figures 3g and 3j to 3l.  

In Class 1, the Gaussian model provided  

the best fit for both EC 1:2.5 and EC 1:5 across  
all sample sizes. The relationships exhibited 

moderate to strong negative spatial correlations. 

The Gaussian model explained more than 73% 

and 76% of the spatial relationship between ECe 
and EC water ratios, respectively. The highest 

estimation accuracy was achieved for EC 1:5  

at a sample size of n = 25 (R² = 0.98), suggesting 
that smaller sample sizes can provide reliable 

estimates of ECe. For EC 1:2.5, the optimal result 

was found at n = 50, although the R² was lower 

than that for EC 1:5. 
In Class 2, the Gaussian model was also 

identified as the best-fit model for EC 1:2.5,  

with strong negative correlations for sample sizes  
 

 

 

 

 
 

Table 3. The performance of R2 

Statistic method 
Model performance 

Unacceptable Acceptable Good 

R2 < 0.50 0.50-0.75 > 0.75 
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n = 50 and 100, while a strong positive correlation 

was observed for n = 25. For EC 1:5, the Gaussian 

model was the best fit for n = 50 and 100,  
while the spherical model was optimal for n = 25. 

These models explained more than 77% and 85% 

of the variance in ECe for EC ratios, respectively. 
The sample size of n = 25 provided the most 

accurate estimation in both EC ratios, with EC 1:5 

showing slightly higher estimation performance. 
Class 3 exhibited high variability in R² values 

for EC 1:2.5 across different sample sizes, ranging 

from weak to strong correlations. The highest  

R² (0.81) was observed at n = 50. For EC 1:5, 
acceptable to strong negative correlations were 

found, with n = 100 yielding the highest 

estimation accuracy. Gaussian models were the 
best fit for both EC water ratios. These models 

explained more than 76% (EC 1:2.5 at n = 50 and 

100) and 65% (EC 1:5) of the spatial variability  

of ECe. The relatively weaker correlation in EC 

1:2.5 at n = 25 was attributed to lower ECe values 

in this class, classified as non-saline. 

Analysis of the cross-variogram slopes showed 
that the slope increased as the EC water ratio 

decreased, consistent with the dilution effect 

described by Sonmez et al. (2008). Additionally, 

cross-variogram slopes decreased from Class 1 to 

Class 3, reflecting lower ECe values in less saline 

soils (Figure 3). Despite stronger correlations in 

Class 3, the shallow slope indicated limited spatial 

variability due to low ECe levels. The results also 

support previous findings by Phontusang et al. 

(2017), demonstrating that small sample sizes  

can provide reliable estimates of ECe. However, 
greater consistency and accuracy were observed 

in larger sample sizes, with sample sizes of 50  

and 100 producing stronger and more stable 
correlations across both EC water ratios (Figure 3; 

Table 5). This suggests that increased sampling 

density enhances the reliability of spatial 
prediction in salt-affected soils. 

Additionally, the R2 values aligned with results 

from the one-way ANOVA, which evaluated the 

relationship between soil ECe and soil EC water 
ratios across different sample sizes. The results 

revealed statistically significant differences  

(p ≤ 0.05) across all classes and sample sizes.  
In Class 1, highly significant differences were 

observed at sample sizes of 100 and 50 compared 

to 25 for the 1:2.5 ratio, while for the 1:5 ratio,  

a sample size of 50 differed significantly from  
100 and 25. In Class 2, the sample size of 25 

showed a highly significant difference compared 

to 100 and 50 for the 1:2.5 ratio. For the 1:5 ratio, 
the sample size of 25 differed significantly from  
 

 

T
a
b
le

 4
. 

B
a
si

c 
st

a
ti

st
ic

s 
fr

o
m

 E
C

 w
a
te

r 
ra

ti
o
s 

1
:2

.5
 a

n
d
 1

:5
 i

n
 d

if
fe

re
n
t 

st
u
d

y
 s

it
es

 o
f 

sa
lt-

a
ff

ec
te

d
 s

o
il

 c
la

ss
es

 

C
la

ss
 

N
u

m
b

er
 

o
f 

sa
m

p
le

s 

E
C

e
 (

d
S

 m
-1

)a  
D

eg
re

e 
o
f 

C
V

b
 

E
C

 1
:2

.5
 (

d
S

 m
-1

) 
D

eg
re

e 
o
f 

C
V

b
 

E
C

 1
:5

 (
d
S

 m
-1

) 
D

eg
re

e 
o
f 

C
V

b
 

M
in

 
M

a
x
 

M
ea

n
 

C
V

 
M

in
 

M
a
x
 

M
ea

n
 

S
D

c  
C

V
 

M
in

 
M

a
x
 

M
ea

n
 

S
D

c  
C

V
 

1
 

2
5

 
6

1
.1

0
 

3
9

7
 

1
9

0
.9

8
 

0
.4

4
 

M
o
d
er

a
te

 
9
 

1
9

 
1
4
 

3
6
.1

0
 

2
.5

9
 

S
tr

o
n

g
 

5
 

1
4
 

0
9

.9
6
 

2
5

.1
9
 

2
.5

3
 

S
tr

o
n

g
 

5
0

 
5

6
.7

0
 

4
1

0
 

2
0

2
.9

1
 

0
.4

3
 

M
o
d
er

a
te

 
1
 

2
0

 
1
2
.7

6
 

4
7
.9

7
 

3
.7

6
 

S
tr

o
n

g
 

4
 

1
6
 

0
9

.9
8
 

2
4

.3
5
 

2
.4

4
 

S
tr

o
n

g
 

1
0
0

d
 

5
6

.7
0
 

4
3

3
 

2
0

5
.6

9
 

0
.4

2
 

M
o
d
er

a
te

 
1
.7

8
 

2
3
.2

0
 

1
3
.5

4
 

4
9
.6

8
 

3
.8

1
 

S
tr

o
n

g
 

4
.5

7
 

1
6

.7
3
 

1
0

.3
9
 

2
4

.5
5
 

2
.4

9
 

S
tr

o
n

g
 

2
 

2
5
 

00
.7

9
 

1
7
.8

8
 

4
.7

4
 

1
.0

5
 

S
tr

o
n

g
 

0
.1

0
 

00
.4

2
 

00
.2

9
 

0
.0

2
0 

0
.0

6
 

W
ea

k
 

0
.0

5
 

00
.6

6
 

00
.2

4
 

0
.0

4
0 

0
.1

8
 

M
o
d
er

a
te

 

5
0

 
00

.1
6
 

2
1

.2
0
 

5
.0

1
 

1
.1

4
 

S
tr

o
n
g

 
0
.1

3
 

01
.1

4
 

00
.3

3
 

0
.0

5
0 

0
.1

4
 

M
o

d
er

a
te

 
0

.0
1
 

0
0

.7
5
 

0
0

.2
5
 

0
.0

5
0 

0
.1

8
 

M
o

d
er

a
te

 

1
0
0

d
 

00
.1

6
 

2
4

.9
0
 

4
.7

3
 

1
.1

5
 

S
tr

o
n
g

 
0
.1

0
 

01
.1

4
 

00
.3

1
 

0
.0

3
0 

0
.1

1
 

M
o

d
er

a
te

 
0

.0
1
 

0
0

.7
5
 

0
0

.2
4
 

0
.0

4
0 

0
.1

7
 

M
o

d
er

a
te

 

3
 

2
5

 
00

.1
7
 

01
.1

2
 

0
.5

0
 

0
.4

6
 

M
o
d
er

a
te

 
0
.0

7
 

00
.3

2
 

00
.1

3
 

0
.0

0
3
 

0
.0

2
 

W
ea

k
 

0
.0

1
 

0
0

.2
4
 

0
0

.0
8
 

0
.0

0
3
 

0
.0

4
 

W
ea

k
 

5
0
 

00
.1

1
 

01
.3

9
 

0
.5

6
 

0
.5

0
 

M
o

d
er

a
te

 
0

.0
7
 

00
.2

6
 

00
.1

2
 

0
.0

0
5
 

0
.0

4
 

W
ea

k
 

0
.0

1
 

00
.1

5
 

00
.0

8
 

0
.0

0
1
 

0
.0

2
 

W
ea

k
 

1
0
0

d
 

00
.1

1
 

01
.3

9
 

0
.5

5
 

0
.4

9
 

M
o
d
er

a
te

 
0
.0

7
 

00
.3

2
 

00
.1

2
 

0
.0

0
5
 

0
.0

4
 

W
ea

k
 

0
.0

1
 

0
0

.2
4
 

0
0

.0
8
 

0
.0

0
2
 

0
.0

3
 

W
ea

k
 

N
o
te

: 
a T

h
e 

E
C

e
 v

al
u
es

 
ar

e 
fr

o
m

 
P

h
o
n

tu
sa

n
g
 

et
 

al
. 

(2
0

1
7

);
 

b
D

eg
re

e 
o

f 
C

V
 

b
as

ed
 

o
n

 
cl

as
si

fi
ca

ti
o
n

 
fr

o
m

 
L

v
 

et
 

al
. 

(2
0
1
3
);

 
c T

h
e 

S
D

 
is

 
th

e 
st

an
d
ar

d
 

d
ev

ia
ti

on
;  

d
T

h
e 

1
0
0

-n
u
m

b
er

 o
f 

sa
m

p
le

s 
o
f 

C
V

 v
al

u
es

 f
ro

m
 e

ac
h

 c
la

ss
 a

re
 f

ro
m

 P
h

o
n

tu
sa

n
g
 e

t 
al

. 
(2

0
1

8
) 

 



Caraka Tani: Journal of Sustainable Agriculture, 40(4), 575-591, 2025 583 

 

Copyright © 2025 Universitas Sebelas Maret 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

50, with both showing greater significance than 

the sample size of 100. In Class 3, the sample size 

of 100 showed a highly significant difference 
compared to 50, which in turn was more 

significant than 25 for both EC ratios. These 

comparisons were further validated using 
Duncan’s post hoc test. 

The nugget variance (C0) represents micro-

scale variability or measurement error (Lv et al., 
2013), was generally low and close to zero across 

most classes and sample sizes, indicating minimal 

unexplained variability. For the 1:2.5 ratio, nugget 

values in Classes 1, 2, and 3 were mostly negative 
and near zero, except for positive, low values at  

n = 25 in Classes 2 and 3. Similarly, for the 1:5 

ratio, nugget values were negative and low in 
Classes 1 and 3, and positive but low in Class 2. 

These results suggest strong spatial dependence  

at short distances, indicating a high spatial 

correlation between ECe and the EC water ratios. 
The sill parameter measures the level of 

variability in the structure (the maximum 

variation observed) (Lv et al., 2013). In Class 1, 
both EC ratios yielded high negative sill values, 

indicating strong heterogeneity of ECe  derived 

from EC water ratios. In Class 2, the highest sill 
values occurred at n = 25 for both EC ratios, 

possibly due to a high variation in ECₑ within this 

class (Phontusang et al., 2018). Sill values close 

to zero indicate minimal spatial variability, 
suggesting that EC water ratios can serve as 

reliable secondary variables for interpolating ECe. 

In Class 3, sill values remained low across  
all sample sizes for both EC ratios, reflecting  

a relatively homogeneous salinity distribution. 

The range parameter corresponds to the 

maximum distance over which spatial 
autocorrelation occurs, indicating the extent of 

spatial dependence for a given variable (Yang  

et al., 2011; Lv et al., 2013). In this study, high 
range values were observed across all classes and 

for both soil EC water ratios, ranging from 12.81 

to 365.28 m, suggesting the presence of a spatial 
structure (Figure 3). These findings are consistent 

with previous studies. For instance, Phontusang  

et al. (2018) reported ECₑ range values from 54.70 

to 118.20 m using the kriging method in similar 
study areas, while Yang et al. (2011) reported 

ranges between 124.2 and 211.8 m. Other studies 

by Miyamoto et al. (2005) and Yang et al. (2011) 
also found that salinity distributions exhibited 

spatial dependence at distances exceeding 100 m. 

In Class 3, although the range values were high, 

the relatively low ECe  levels reduced the 
significance of these ranges, resulting in indistinct  
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Figure 3. Best-fit cross-variogram of ECe from different EC water ratios 1:2.5 (a-c, g-i, m-o) and 1:5 

(d-f, j-l, p-r) in different salt-affected soil classes 
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spatial patterns in the respective maps (Figures 

4m to 4r). 

The nugget:sill ratio measures the level of 
variability caused by random variables and 

encompasses the overall spatial heterogeneity  

(Lv et al., 2013). It serves as a criterion for 
categorizing the spatial correlation of soil 

properties in geostatistics. Lower ratios indicate 

stronger spatial dependence and greater spatial 
continuity (Cambardella et al., 1994). Across  

all classes and sample sizes, the nugget:sill ratios 

for both EC water ratios were low, indicating 

strong spatial dependence and supporting the use 
of EC 1:2.5 and EC 1:5 as secondary variables  

in the interpolation of ECe . In Class 1, the low 

ratios for both EC water ratios suggest strongly 

structured, patchy distributions of ECe  (Figures 

4a to 4f), as described by López-Granados et al. 

(2002). Similarly, Class 2 also exhibited low 

ratios, indicating strong spatial dependence with 
moderately patchy distributions (Figures 4g to 4l). 

In Class 3, despite low nugget:sill ratios indicating 

strong spatial dependence, the low ECe  values 
limited the interpretability of spatial variation 

(Figures 4m to 4r). Overall, the results align with 

Phontusang et al. (2018), which confirming that 

spatial variation in salt-affected soils is mainly 
influenced by structural factors such as 

topography, hydrological patterns, and climate 

(Zheng et al., 2009). The spatial dependence of 

ECe  across study sites is clearly depicted in 

Figures 3a to 3l. Although Class 3 exhibited the 

highest range values, particularly for EC 1:5 (up 
to 365.28 m), the consistently low ECe values in 

this class limit the practical relevance of observed 

spatial structure (Figures 3m to 3r). 

Mapping accuracies 
The mapping accuracies derived from 

cokriging are presented in Table 6. Prediction 

errors were used to evaluate the accuracy of 

spatial interpolation of soil ECe  using EC 

measurements at 1:2.5 and 1:5 soil-to-water ratios 

(Figure 4). According to John et al. (2021), 

reliable model predictions are indicated by lower 
ME and RMSE values, ideally close to zero.  

In this study, the ME values for all classes  

and sample sizes were generally close to zero for 
both EC water ratios, indicating that the cross-

variogram models were nearly unbiased,  

with minimal systematic overestimation or 

underestimation of ECe. 

This study observed that almost all the ME  

and RMSE values were generally aligned with  

the corresponding R2 values across all classes  

and sample sizes (Tables 5 and 6). In Class 1, both 

positive and negative ME values were observed 

for EC water ratio 1:2.5 at sample sizes of 25  
and 100, respectively, while a negative ME  

was found at n = 50. A positive ME indicates  

a slight underestimation of ECe  (i.e., observed  
> estimated) and a negative ME indicates a slight 

overestimation of ECe (i.e., observed < estimated) 

(Yao et al., 2014). For EC 1:5, negative ME 

values, indicating a slight overestimation, were 
observed at sample sizes of 50 and 100, while the 

smaller sample size of 25 showed a much higher 

negative ME (-41.29 dS m-1), reflecting severe 
overestimation. The RMSE values for both EC 

water ratios in Class 1 ranged from 65.13 to 

191.79 dS m-1, indicating considerable prediction 
errors, which reflect the elevated and highly 

variable ECe values observed in this class (0 to 

345 dS m-1; Figure 4). According to Rhoades 

(1982), ECe values exceeding 12 dS m-1 classify 
the soil as strongly saline, suggesting that parts of 

the Muang Pia Sub-district, particularly Class 1, 

are at high risk of salinity, potentially impacting 
the productivity of rice and other crops. 

In Class 2, ME values for both EC ratios  

were close to zero, indicating minimal bias in the 

estimation models. The RMSE values were low  
(≤ 2.30 dS m-1), suggesting high predictive 

accuracy. In Class 3, ME values were also close 

to zero, with slight overestimation observed  
only at sample sizes of 100 (for EC 1:2.5) and 25 

(for EC 1:5). RMSE values for both EC ratios 

were very low (≤ 0.33 dS m-1), reflecting high 
estimation accuracy. However, in Class 3, the low 

ME and RMSE values for EC 1:2.5 at n = 25 were 

not aligned with the low R², likely because the low 

ECe values in this non-saline zone. 
A comparison of RMSE values across the three 

classes showed that Class 1 consistently produced 

higher RMSE than Classes 2 and 3, a result that 
aligns with Phontusang et al. (2018). This is 

attributed to higher ECe values and a greater CV 

(> 2) in Class 1 (Table 4). The elevated RMSE 

may also be influenced by limited ECe contrast, 

where a narrow range of ECe values (e.g., CV = 

0.03 in Table 4) reduce spatial differentiation, 

thereby reducing model accuracy.  
Cokriging interpolation using EC water ratios 

of 1:2.5 and 1:5 as secondary variables yielded  

the highest estimation performance for ECe. This 

improvement is attributable to the strong 

correlation between ECe and the EC water ratios, 

as reflected in the fitted cross-variogram models 

(Bogunovic et al., 2017; Wu et al., 2025).  
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Cokriging has been shown to outperform ordinary 

kriging when a strong relationship exists between 

primary and secondary variables, especially when 
the primary variable is difficult or costly to 

measure. In such cases, cokriging enables the use 

of readily obtainable secondary data to enhance 

spatial prediction accuracy (Wu et al., 2025).  

This approach also reduces sampling effort and 

cost (Xie and Li, 2016). However, cokriging 
inherently smooths spatial variability, which  

may obscure local heterogeneity. Furthermore, 

incorporating multiple secondary variables  
 

 
Figure 4. Maps of cokriging estimations from different EC water ratios 1:2.5 (a-c, g-i, m o) and 1:5 

(d-f, j-l, p-r) in different salt-affected soil classes 
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increases model complexity and uncertainty  

due to the need to estimate more parameters 
(Knotters et al., 1995; Wang et al., 2012). 

In terms of estimated ECe ranges, Phontusang 

et al. (2018) ranging between 65 to 368, 0 to 25, 

and 0 to 3.7 dS m-1 for Classes 1, 2, and 3, 

respectively. In this study, the estimated ECe 

values ranged between 0 to 345 (Class 1), 0 to 

22.5 (Class 2), and 0 to 1.99 dS m-1 (Class 3) 

(Figure 4). These results demonstrate that ECe 

predictions based on EC water ratios of 1:2.5 and 

1:5 are in close agreement with field-measured 
values reported by Phontusang et al. (2018).  

This confirms the suitability of EC water ratios as 

effective secondary variables for cokriging-based 

estimation of soil ECe. 

CONCLUSIONS 

This study demonstrates that ECe  can be 

accurately estimated using EC 1:2.5 and 1:5 ratios 
with cokriging spatial interpolation, supported by 

strong correlations (R² up to 0.98) and generally 

low ME and RMSE values. While the EC 1:5 ratio 

with Gaussian models performed well for most 
classes, Class 1 (n = 25) exhibited higher errors. 

The approach provides an effective spatial 

interpolation method for the study area, reflecting 
the strong site-specific co-dependence between 

EC water ratios and ECe. While its applicability  

to other regions requires external validation,  

this approach complements, rather than replaces, 
traditional saturated paste extraction, and support 

precision agriculture and sustainable management 

of salt-affected soils. 
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